Konuralp Journal of Mathematics

# Conformable Fractional Calculus on Fuzzy Logic 

Abdullah Akkurt ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Kahramanmaraş Sütçü İmam University, 46100, Kahramanmaraş, Turkey.


#### Abstract

In this article, we present a new general definition of fuzzy conformable fractional derivative and fractional integral, that depends on an unknown kernel. We will get some new applications with the help of this concept.


Keywords: Conformable fractional derivative, Fractional derivative and integrals, Fuzzy logic, Fuzzy fractional derivative. 2010 Mathematics Subject Classification: 26A33, 26D10, 26D15.

## 1. Introduction

Since Zadeh's introduction of the concept of fuzzy sets [21], many scientists have explored fuzzy set theory. The fuzzy logic theory is part of mathematical analysis and has been extensively researched in recent years.
The fractional calculation, dealing with arbitrary - order integral and derivative operators, is a very popular subject with a history of over 300 years or so. The fractional analysis compared to traditional analysis is a very useful tool in modeling real-world problems. In the near future, applications of fractional derivatives and integrals can be seen in many areas.
Today, there are many real-valued fractional integrals and fractional derivatives such as Riemann-Liouville, Caputo, Grünwald-Letnikov, Hadamard, Riesz. For these, please see [7], [14]. Here, all fractional derivatives do not certain some properties such as Product Rule, Quotient Rule, Chain Rule, Roll's Theorem and Mean Value Theorem.
To overcome such issues; Khalil et al. proposed the following concept [9]. This formula is the limit definition of the conformable derivative.

$$
\begin{equation*}
T_{\alpha}(f)(t)=\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon t^{1-\alpha}\right)-f(t)}{\varepsilon} . \tag{1.1}
\end{equation*}
$$

In [6], Almeida et al. gave the following limit definition formula for conformable fractional derivatives using kernels.

$$
\begin{equation*}
f^{(\alpha)}(t)=\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon k(t)^{1-\alpha}\right)-f(t)}{\varepsilon} . \tag{1.2}
\end{equation*}
$$

For more information about conformable fractional derivatives and integrals, please refer to [1]-[5], [15]-[19].
In the field of derivatives, analytical approaches to the theory of fuzzy fractional analysis are based essentially on Riemann-Liouville or Caputo-Liouville versions. These versions are most often incorporated into scientific research in recent years. This fuzzy conformal fractional derivative seems to be a natural extension of the $H$-derivative [22] with its own mathematical details associated with the definition of its two-sided limits.
Omar and Mohammed [11] have given the following conformable fractional definition for fuzzy valued functions.

$$
\begin{aligned}
D^{\alpha} f(t) & =\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon\left(t-t_{0}\right)^{1-\alpha}\right) \ominus f(t)}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{f(t) \ominus f\left(t-\varepsilon\left(t-t_{0}\right)^{1-\alpha}\right)}{\varepsilon},
\end{aligned}
$$

and

$$
\begin{aligned}
D^{\alpha} f(t) & =\lim _{\varepsilon \rightarrow 0} \frac{f(t) \ominus f\left(t+\varepsilon\left(t-t_{0}\right)^{1-\alpha}\right)}{-\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{f\left(t-\varepsilon\left(t-t_{0}\right)^{1-\alpha}\right) \ominus f(t)}{-\varepsilon}
\end{aligned}
$$

## 2. Fuzzy-valued fractional calculus

Now, we give some preliminary information about the fuzzy numbers mentioned in [8], [20].
Definition 2.1. A fuzzy number is a fuzzy set $\mathbb{R}_{\mathscr{F}}=\{u: \mathbb{R} \rightarrow[0,1]\}$ which satisfies the following conditions (i)-(iv):
(i) $u$ is normal, that is, there exists $x_{0} \in \mathbb{R}$ such that $u\left(x_{0}\right)=1$,
(ii) $u$ is fuzzy convex in $\mathbb{R}$, that is, for $0 \leq t \leq 1$,

$$
\begin{equation*}
u(t a+(1-t) b) \geq \min \{u(a), u(b)\}, \text { for any } a, b \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

(iii) $u$ is upper semicontinuous,
(iv) $[u]^{0}=\overline{\{x \in \mathbb{R} \mid u(x)>0\}}$ is compact.

Here, space $E$ is the space of all fuzzy numbers on $\mathbb{R}$.
If $u$ is a fuzzy number on $\mathbb{R}$, we define $[u]^{\lambda}=\{x \in \mathbb{R} \mid u(x) \geq \lambda\}$ the $\lambda$-level of $u$, with $\lambda \in(0,1]$. From the conditions (i) to (iv), it follows that the $\lambda$-level set of $u \in E,[u]^{\lambda}$, is a nonempty compact interval, for any $\lambda \in[0,1]$. We denote by $[\underline{u}(r), \bar{u}(\lambda)]$ the $\lambda$-level of a fuzzy number $u$. For $u_{1}, u_{2} \in E$, and $r \in \mathbb{R}$, the sum $u_{1}+u_{2}$ and the product $r \cdot u_{1}$ are defined by

$$
\begin{equation*}
\left[u_{1}+u_{2}\right]^{\lambda}=\left[u_{1}\right]^{\lambda}+\left[u_{2}\right]^{\lambda},\left[r \cdot u_{1}\right]^{\lambda}=r\left[u_{1}\right]^{\lambda}, \forall \lambda \in[0,1] \tag{2.2}
\end{equation*}
$$

where $\left[u_{1}\right]^{\lambda}+\left[u_{2}\right]^{\lambda}$ means the usual addition of two intervals of $\mathbb{R}$ and $r\left[u_{1}\right]^{\lambda}$ means the usual scalar product between $r$ and an real interval. For $u \in E$, we define the diameter of the $\lambda$-level set of $u$ as $\operatorname{diam}[u]^{\lambda}=\bar{u}(\lambda)-\underline{u}(\lambda)$.

Definition 2.2. ([8]) The generalized Hukuhara difference of two fuzzy numbers $u, v \in E$ (gH-difference for short) is defined as follows:

$$
u \ominus_{g H} v=w \Leftrightarrow\left\{\begin{array}{c}
(i) u=v+w  \tag{2.3}\\
\operatorname{or}(i i) v=u+(-1) w
\end{array}\right.
$$

A function $u:[a, b] \rightarrow E$ is called d-increasing (d-decreasing) on $[a, b]$ iffor every $r \in[0,1]$ the function $t \mapsto$ diam $[u(t)]^{r}$ is nondecreasing (nonincreasing) on $[a, b]$. If $u$ is $d$-increasing or $d$-decreasing on $[a, b]$, then we say that $u$ is $d$-monotone on $[a, b]$.

Definition 2.3. ([8]) Let $f:(a, b) \rightarrow E$ and $x \in(a, b)$. The fuzzy function $f$ is said to be generalized Hukuhara differentiable ( $g H$ differentiable) at $x_{0}$, if there exists an element $f^{\prime}\left(x_{0}\right) \in E$ such that

$$
\begin{equation*}
f_{g}^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right) \ominus_{g} f\left(x_{0}\right)}{h} \tag{2.4}
\end{equation*}
$$

Denote by $C([a, b], E)$ the set of all continuous fuzzy functions and $A C([a, b], E)$ the set of all absolutely continuous fuzzy functions on the interval $[a, b]$ with values in $E$. Let $L([a, b], E)$ be the set of all fuzzy functions $f:[a, b] \rightarrow E$ such that the functions $x_{0} \mapsto D_{0}\left[f\left(x_{0}\right), \hat{0}\right]$ belongs to $L^{1}[a, b]$.

Lemma 2.4. ([12]) Let $u, v: \mathbb{R}_{\mathscr{F}} \longrightarrow[0,1]$ be the fuzzy sets. Then, $u=v$ if and only if $[u]^{\lambda}=[v]^{\lambda}$ for all $\lambda \in[0,1]$. The following arithmetic operations on fuzzy numbers are well known and frequently used below. If $u, v \in \mathbb{R}_{\mathscr{F}}$, then

$$
\begin{align*}
{[u+v]^{\lambda} } & =\left[u_{1}^{\lambda}+v_{1}^{\lambda}, u_{2}^{\lambda}+v_{2}^{\lambda}\right]  \tag{2.5}\\
{[\lambda u]^{\lambda} } & =k[u]^{\lambda}=\left\{\begin{array}{ll}
{\left[k u_{1}^{\lambda}, k u_{2}^{\lambda}\right.} \\
{\left[k u_{2}^{\lambda}, k u_{1}^{\lambda}\right.}
\end{array}\right],  \tag{2.6}\\
\text { if } k \geq 0, & \text { if } k<0 .
\end{align*}
$$

Definition 2.5. ([10], [13]). Let $u, v \in \mathbb{R}_{\mathscr{F}}$. If there exists $w \in \mathbb{R}_{\mathscr{F}}$ such as $u=v+w$, then $w$ is called the $H$-difference of $u, v$, and it is denoted as $u \ominus v$.

Definition 2.6. ([23]) Let we denote

$$
\overline{0}= \begin{cases}1, & t=0  \tag{2.7}\\ 0, & t \neq 0\end{cases}
$$

Then, $\overline{0} \in \mathbb{R}_{\mathscr{F}}$ be a neutral element with respect to + , i.e., $u+\overline{0}=\overline{0}+u \quad u \in \mathbb{R}_{\mathscr{F}}$ :
(i) With respect to $\overline{0}$, none of $u \in \mathbb{R}_{\mathscr{F}} / \mathbb{R}$ has opposite in $\mathbb{R}_{\mathscr{F}}$
(ii) For any $a, b \in \mathbb{R}$ with $a, b \geq 0$ or $a, b \leq 0$ and any $u \in \mathbb{R}_{\mathscr{F}}$, we have $(a+b) \cdot u=a \cdot u+b \cdot u$, for general $a, b \in \mathbb{R}$ the above property does not hold.
(iii) For any $k \in \mathbb{R}$ and any $u, v \in \mathbb{R}_{\mathscr{F}}$, we have $k \cdot(u+v)=k \cdot u+k \cdot v$ (iv) For any $k, v \in \mathbb{R}$ and any $u \in \mathbb{R}_{\mathscr{F}}$, we have $k \cdot(v \cdot u)=(k \cdot v) \cdot u$. Define $d: \mathbb{R}_{\mathscr{Y}} \times \mathbb{R}_{\mathscr{F}} \longrightarrow \mathbb{R}_{+} \cup\{0\}$ by the equation

$$
\begin{equation*}
d(u, v)=\sup _{\beta \in[0,1]} d_{H}\left([u]^{\beta},[v]^{\beta}\right) \text {, for all } u, v \in \mathbb{R}_{\mathscr{F}} \tag{2.8}
\end{equation*}
$$

where $d_{H}$ is the Hausdorff metric.

$$
\begin{equation*}
d_{H}\left([u]^{\beta},[v]^{\beta}\right)=\max \left\{\left|u_{1}^{\beta}-v_{1}^{\beta}\right|,\left|u_{2}^{\beta}-v_{2}^{\beta}\right|\right\} . \tag{2.9}
\end{equation*}
$$

It is well known that $\left(\mathbb{R}_{\mathscr{F}}, d\right)$ is a complete metric space. We list the following properties of $d(u, v)$ :

$$
\begin{align*}
d(u+w, v+w) & =d(u, v)  \tag{2.10}\\
d(u, v) & =d(v, u) \\
d(k u, k v) & =|k| d(u, v) \\
d(u, v) & \leq d(u, w)+d(w, v)
\end{align*}
$$

for all $u, v, w \in \mathbb{R}_{\mathscr{F}}$ and $\lambda \in \mathbb{R}$.
Now, let's give some notations that we will use in definitions as follows:
$\mathbb{A}:=\left(t_{0}, T\right] \subset \mathbb{R}$ with $t_{0} \geq 0, \mathbb{D}:=[0,1]-\{0\}$, and $\mathscr{F}(\mathbb{R})$ denotes to set of fuzzy numbers on $\mathbb{R}$. As long as, $t \in \mathbb{A}, \alpha \in \mathbb{D}, t_{0} \in \mathbb{R}, P \in$ $\mathscr{F}(\mathbb{R}), f \in C(\mathbb{A} \times \mathscr{F}(\mathbb{R}), \mathscr{F}(\mathbb{R}))$, and $h \in C(\mathbb{A}, \mathscr{F}(\mathbb{R}))$. So, $D^{\alpha} f(t)$ denotes to fuzzy conformable fractional derivative of $t$ over $\mathbb{A}$.
The purpose of this article is to give the definition of the conformable fractional derivative and fractional integral of a fuzzy function. This study was prepared using the methods used in [11]. The fuzzy conformable fractional derivative and integral have been redefined using an unknown kernel.

## 3. Generalized fuzzy conformable fractional derivative

In this section, we present a new definition for generalized fuzzy compatible fractional derivative using an unknown kernel.
Definition 3.1. Let $k:[a, b] \rightarrow \mathbb{R}$ be a continuous nonnegative map such that $k\left(t-t_{0}\right), k^{\prime}\left(t-t_{0}\right) \neq 0$, whenever $t_{0} \geq 0$. Let $f \in C(\mathbb{A}, \mathscr{F}(\mathbb{R}))$ and $\alpha \in \mathbb{D}$. If $\exists D^{\alpha} f(t) \in \mathscr{F}(\mathbb{R})$, then, $f$ is generalized fuzzy conformable fractional derivative at $t \in \mathbb{A}$, with respect to kernel $k$, if the limit

$$
\begin{align*}
D^{\alpha} f(t) & =\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right) \ominus f(t)}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{f(t) \ominus f\left(t-\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right)}{\varepsilon} \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
D^{\alpha} f(t) & =\lim _{\varepsilon \rightarrow 0} \frac{f(t) \ominus f\left(t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right)}{-\varepsilon}  \tag{3.2}\\
& =\lim _{\varepsilon \rightarrow 0} \frac{f\left(t-\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right) \ominus f(t)}{-\varepsilon}
\end{align*}
$$

Theorem 3.2. Let $f \in C(\mathbb{A},(\mathbb{R}))$ and $\alpha \in \mathbb{D}$, then $f$ is fuzzy continuous at $t$.
Proof. Let $t, t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)} \in(0, a)$ with $\varepsilon>0$. Then, by properties of equation (2.10) and the triangle inequality, we have

$$
\begin{aligned}
d\left(f\left(t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right), f(t)\right) & =d\left(f\left(t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right) \ominus f(t), \overline{0}\right) \\
& \leq \varepsilon \cdot d\left(\frac{\left(f\left(t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right) \ominus f(t)\right)}{\varepsilon}, f^{(\alpha)}(t)\right)+\varepsilon d\left(f^{(\alpha)}(t), \overline{0}\right)
\end{aligned}
$$

where $\varepsilon$ is so small that the $H$-difference $f\left(t+\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right) \ominus f(t)$ exists. By the differentiability, the right-hand side goes to zero as $\varepsilon \longrightarrow 0^{+}$, and hence, $f$ is right fuzzy continuous.
On the other side, let $t, t-\varepsilon^{k^{1-\alpha}\left(t-t_{0}\right)}\left(k^{\prime}\left(t-t_{0}\right) \quad(0, a)\right.$ with $\varepsilon>0$. Then, by properties of equation (2.10) and the triangle inequality, we have

$$
\begin{aligned}
d\left(f(t), f\left(t-\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right)\right) & =d\left(f(t) \ominus f\left(t-\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right), \overline{0}\right) \\
& \leq \varepsilon d\left(f^{(\alpha)}(t), \overline{0}\right)+\varepsilon . d\left(f^{(\alpha)}(t), \frac{\left(f(t) \ominus f\left(t-\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right)\right)}{\varepsilon}\right)
\end{aligned}
$$

where $\varepsilon$ is so small that the $H$-difference $f(t) \ominus f\left(t-\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\right)$ exists. By the differentiability, the right-hand side goes to zero as $\varepsilon \longrightarrow 0^{+}$, and hence, $f$ is left fuzzy continuous.
For the other part, similar proof can be made.
Theorem 3.3. Let $\alpha \in(0,1]$. If $f$ is differentiable and $f$ is $\alpha$-differentiable, then

$$
\begin{equation*}
D^{\alpha} f(t)=\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)} f_{g}^{\prime}(t) \tag{3.3}
\end{equation*}
$$

Proof. Note that

$$
\begin{equation*}
\left.D^{\alpha} f(t)=\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon^{k^{1-\alpha}\left(t-t_{0}\right)}\right.}{k^{\prime}\left(t-t_{0}\right)}\right) \ominus f(t) . \tag{3.4}
\end{equation*}
$$

Set $h=\varepsilon \frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{k^{\prime}\left(t-t_{0}\right)}}$, then one finds

$$
\begin{align*}
D^{\alpha} f(t) & =\lim _{h \rightarrow 0} \frac{f(t+h) \ominus f(t)}{h \cdot k^{\alpha-1}\left(t-t_{0}\right) k^{\prime}\left(t-t_{0}\right)}  \tag{3.5}\\
& =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)} \lim _{h \rightarrow 0} \frac{f(t+h) \ominus f(t)}{h}  \tag{3.6}\\
& =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)} D^{1} f(t)  \tag{3.7}\\
& =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)} f_{g}^{\prime}(t) . \tag{3.8}
\end{align*}
$$

Thus the proof is complete.

## 4. Generalized fuzzy conformable fractional integral

In this section, we present a new definition for generalized fuzzy conformable fractional integral using an unknown kernel.
Definition 4.1. Let $t_{0} \geq 0, a \geq 0$ and $x \in(0, a)$. Also, let $f$ be a function defined on ( $\left.a, x\right]$ and $\alpha \in \mathbb{R}$. Let $k:[a, b] \rightarrow \mathbb{R}$ be a continuous nonnegative map such that $k\left(t-t_{0}\right), k^{\prime}\left(t-t_{0}\right) \neq 0$. Then, the $\alpha$-generalized fractional integral of $f$ is defined by,

$$
\begin{equation*}
I_{t_{0}}^{\alpha}(f)(x)=\int_{t_{0}}^{x} k^{\alpha-1}\left(t-t_{0}\right) k^{\prime}\left(t-t_{0}\right) f(t) d t . \tag{4.1}
\end{equation*}
$$

Theorem 4.2. If $f \in C(\mathbb{A}, \mathscr{F}(\mathbb{R}))$ with $\alpha \in \mathbb{D}$. then:

$$
\begin{equation*}
\left[D^{\alpha}\left(I_{t_{0}}^{\alpha} f\right)(t)\right]=f(t) . \tag{4.2}
\end{equation*}
$$

Proof. Note that,

$$
\begin{aligned}
{\left[D^{\alpha}\left(I_{t_{0}}^{\alpha} f\right)(t)\right]=\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\left[D^{1}\left(I_{t_{0}}^{\alpha} f\right)(t)\right] } & =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\left[\frac{\mathrm{d}}{\mathrm{~d} t}\left(I_{t_{0}}^{\alpha} f\right)(t)\right] \\
& =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\left[\frac{\mathrm{d}}{\mathrm{~d} t} \int_{t_{0}}^{t} k^{\alpha-1}\left(s-t_{0}\right) k^{\prime}\left(s-t_{0}\right) f(s) \mathrm{d} s\right] \\
& =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)}\left[k^{\alpha-1}\left(t-t_{0}\right) k^{\prime}\left(t-t_{0}\right) f(t)\right] \\
& =\frac{k^{1-\alpha}\left(t-t_{0}\right)}{k^{\prime}\left(t-t_{0}\right)} k^{\alpha-1}\left(t-t_{0}\right) k^{\prime}\left(t-t_{0}\right)[f(t)] \\
& =f(t) .
\end{aligned}
$$

Thus the proof is complete.

## References

[1] A. Akkurt, M.E. Yıldırım and H. Yıldırım, On Some Integral Inequalities for Conformable Fractional Integrals, Asian Journal of Mathematics and Computer Research, 15(3): 205-212, 2017.
[2] A. Akkurt, M.E. Yıldırım and H. Yıldırım, A new Generalized fractional derivative and integral, Konuralp Journal of Mathematics, Volume 5 No. 2 pp. 248-259 (2017).
[3] M.E. Yıldırım, A. Akkurt and H. Yıldırım, On the Hadamard's type inequalities for convex functions via conformable fractional integral, Journal of Inequalities and Special Functions, Volume 9 Issue 3(2018), Pages 1-10.
[4] M.Z Sarıkaya, A. Akkurt, H. Budak, M.E. Yıldırım, and H. Yıldırım, Hermite-Hadamard's inequalities for conformable fractional integrals. An International Journal of Optimization and Control: Theories \&Amp; Applications (IJOCTA), 9(1), 49-59, 2019. https://doi.org/10.11121/ijocta.01.2019.00559.
[5] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
[6] R. Almeida, M. Guzowska and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Mathematics, vol. 14, no. 1, 2016, pp. 1122-1124. https://doi.org/10.1515/math-2016-0104
[7] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Math. Studies., North-Holland, New York, 2006.
[8] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems 230 (2013) 119-141.
[9] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
[10] S. Markov, "Calculus for interval functions of a real variable," Computing, vol. 22, no. 4, pp. 325-337, 1979.
[11] O.A. Arqub and M. Al-Smadi, Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput 24, 12501-12522 (2020). https://doi.org/10.1007/s00500-020-04687-0
[12] H. Y. Goo and J. S. Park, "On the continuity of the Zadeh extensions," Journal of the Chungcheong Mathematical Society, vol. 20, no. 4, pp. 525-533, 2007.
[13] L. Stefanini, "A generalization of Hukuhara difference and division for interval and fuzzy arithmetic," Fuzzy Sets and Systems, vol. 161, no. 11, pp. 1564-1584, 2010.
[14] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993
[15] M. Z. Sarikaya, H. Budak and F.Usta, On generalized the conformable fractional calculus, TWMS J. App. Eng. Math. V.9, N.4, 2019, pp. 792-799.
[16] M. Z. Sarikaya, A. Akkurt, H. Budak, M.E. Türkay and H. Yıldırım, On some special functions for conformable fractional integrals. Konuralp Journal of Mathematics, 8(2), 376-383.
[17] M.Z. Sarıkaya, Gronwall type inequalities for conformable fractional integrals. Konuralp Journal of Mathematics, 4(2), 217-222, 2016.
[18] F. Usta and M.Z. Sarıkaya, Some improvements of conformable fractional integral inequalities. International Journal of Analysis and Applications, 14(2), 162-166, 2017.
[19] F. Usta and M.Z. Sarikaya, On generalization conformable fractional integral inequalities. Filomat, 32(16), 5519-5526, 2018.
[20] V. Lakshmikantham, R.N. Mohapatra, Theory of Fuzzy Differential Equations and Applications, Taylor \& Francis, London (2003).
[21] L.A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965), 338-353.
[22] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, vol. 91, no. 2, pp. 552-558, 1983.
[23] G. A. Anastassiou and S. G. Gal, "On a fuzzy trigonometric approximation theorem of Weierstrass-type," Journal of Fuzzy Mathematics, vol. 9, pp. 701-708, 2001.

