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Abstract

In this article, we present a new general definition of fuzzy conformable fractional derivative and fractional integral, that depends on an
unknown kernel. We will get some new applications with the help of this concept.
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1. Introduction

Since Zadeh’s introduction of the concept of fuzzy sets [21], many scientists have explored fuzzy set theory. The fuzzy logic theory is part of
mathematical analysis and has been extensively researched in recent years.

The fractional calculation, dealing with arbitrary - order integral and derivative operators, is a very popular subject with a history of over 300
years or so. The fractional analysis compared to traditional analysis is a very useful tool in modeling real-world problems. In the near future,
applications of fractional derivatives and integrals can be seen in many areas.

Today, there are many real-valued fractional integrals and fractional derivatives such as Riemann-Liouville, Caputo, Griinwald-Letnikov,
Hadamard, Riesz. For these, please see [7], [14]. Here, all fractional derivatives do not certain some properties such as Product Rule,
Quotient Rule, Chain Rule, Roll’s Theorem and Mean Value Theorem.

To overcome such issues; Khalil et al. proposed the following concept [9]. This formula is the limit definition of the conformable derivative.

ft+el=) —f(t).
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In [6], Almeida et al. gave the following limit definition formula for conformable fractional derivatives using kernels.
f(r+ek) =) = £
£ (1) = lim . (1.2)
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For more information about conformable fractional derivatives and integrals, please refer to [1]-[5], [15]-[19].

In the field of derivatives, analytical approaches to the theory of fuzzy fractional analysis are based essentially on Riemann-Liouville
or Caputo-Liouville versions. These versions are most often incorporated into scientific research in recent years. This fuzzy conformal
fractional derivative seems to be a natural extension of the H —derivative [22] with its own mathematical details associated with the definition
of its two-sided limits.

Omar and Mohammed [11] have given the following conformable fractional definition for fuzzy valued functions.
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2. Fuzzy-valued fractional calculus

Now, we give some preliminary information about the fuzzy numbers mentioned in [8], [20].

Definition 2.1. A fuzzy number is a fuzzy set R & = {u: R — [0, 1]} which satisfies the following conditions (i)-(iv):
(i) u is normal, that is, there exists xy € R such that u(xg) =1,
(i) u is fuzzy convex in R, that is, for 0 <t <1,

u(ta+(1—1)b) > min{u(a),u(b)}, forany a,b € R, (2.1)
(iii) u is upper semicontinuous,
(iv) [u]° = {x € R | u(x) > 0} is compact.

Here, space E is the space of all fuzzy numbers on R.

If u is a fuzzy number on R, we define [u]* = {x € R | u(x) > A} the A—level of u, with A & (0, 1]. From the conditions (i) to (iv), it follows
that the A-level set of u € E, [u]*, is a nonempty compact interval, for any A € [0,1]. We denote by [u(r),@(1)] the A-level of a fuzzy number
u. Foruy, up € E, and r € R, the sum u| 4 u; and the product r- u; are defined by

i+l =]+ o] o)t = ), VA €00,1), 2.2)
where [141]/l =+ [142]”L means the usual addition of two intervals of R and r [ul]/l means the usual scalar product between r and an real interval.
For u € E, we define the diameter of the A-level set of u as diam[u]* = @(A) —u(A).

Definition 2.2. ([8]) The generalized Hukuhara difference of two fuzzy numbers u,v € E (gH-difference for short) is defined as follows:

Hu=v+w

or (i) v=u+(—1)w. 23

uegﬂv:wﬁ{

A function u : [a,b] — E is called d -increasing ( d -decreasing) on [a,b] if for every r € [0, 1] the function t — diam[u(t)]" is nondecreasing
(nonincreasing) on |a,b). If u is d -increasing or d -decreasing on [a,b], then we say that u is d -monotone on |a,b).

Definition 2.3. ([8]) Let f : (a,b) — E and x € (a,b). The fuzzy function f is said to be generalized Hukuhara differentiable (gH-
differentiable) at x, if there exists an element f'(xy) € E such that

fi(x0) = lim f&o +4) Sg [ (x0) h)h@g fx0) 2.4)

Denote by C([a,b),E) the set of all continuous fuzzy functions and AC(|a,b],E) the set of all absolutely continuous fuzzy functions on the
interval [a,b) with values in E. Let L([a,b],E) be the set of all fuzzy functions f : [a,b] — E such that the functions xo — Do[f(xo),0)]
belongs to L'[a,b].

Lemma 2.4. ([12]) Let u,v: Rz — [0,1] be the fuzzy sets. Then, u=v if and only if [u]* = [v]* for all A € [0,1]. The following arithmetic
operations on fuzzy numbers are well known and frequently used below. If u,v € R &, then

R e 17 Qv . (2.5

kb k|, if k>0,

At = kut =
i 2 kuk k|, ifk <0,

(2.6)

Definition 2.5. ([10], [13]). Let u,v € R g. If there exists w € Rz such as u =v+w, then w is called the H-difference of u,v, and it is
denoted as u©v.

Definition 2.6. ([23]) Let we denote
— 1, t=0
0= { 0. 140, 2.7

Then, 0 € R & be a neutral element with respect to +, i.e., u +0=04+u uec Rg:



Konuralp Journal of Mathematics 129

(i) With respect to 0, none of u € R # /R has opposite in R &

(ii) For any a,b € R with a,b > 0 or a,b < 0 and any u € R4, we have (a+b)-u=a-u+b-u, for general a,b € R the above property does
not hold.

(iii) For any k € R and any u,v € Rz, we have k- (u+v) =k-u+k-v (iv) Forany k,v € Rand any u € Rz, we have k- (v-u) = (k-v)-u
Define d : Rz x Rz — R4 U{0} by the equation

d(u,v)= sup dy <[u]ﬁ7 [v]ﬁ) , forallu,v e Ry (2.8)
Belo,1]

where dy is the Hausdorff metric.
dy ([u]ﬁ [v]ﬁ) = max { )ulf — v1 —vy ‘} (2.9)

It is well known that (R &, d) is a complete metric space. We list the following properties of d(u,v):

du+wyv+w) = d(u,v) (2.10)
d(u,v) = d(vu)
d(ku,kv) = |k|d(u,v)
d(u,v) < d(u,w)+d(w,v)

for all u,v,w € Rz and A € R.

Now, let’s give some notations that we will use in definitions as follows:

A= (tp,T] C R with zg > 0,D:=[0,1] — {0}, and .# (R) denotes to set of fuzzy numbers on R. Aslongas,r € A, a € D,jp eR, P €
F(R), feCAXx F(R),Z(R)),and h € C(A,F(R)). So, D*f(t) denotes to fuzzy conformable fractional derivative of 7 over A.

The purpose of this article is to give the definition of the conformable fractional derivative and fractional integral of a fuzzy function. This
study was prepared using the methods used in [11]. The fuzzy conformable fractional derivative and integral have been redefined using an
unknown kernel.

3. Generalized fuzzy conformable fractional derivative

In this section, we present a new definition for generalized fuzzy compatible fractional derivative using an unknown kernel.

Definition 3.1. Let k : [a,b] — R be a continuous nonnegative map such that k (t —t) , k' (t — ty) # 0, whenever ty > 0. Let f € C(A,.Z (R))
and a € D. If AD*f(t) € F (R), then, f is generalized fuzzy conformable fractional derivative at t € A, with respect to kernel k, if the limit

f(z+£ k,(’ ’0)91’()
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Theorem 3.2. Let f € C(A,(R)) and a € D, then f is fuzzy continuous at t.

Proof. Lett, t+ ek e ( i U 30) (0,a) with € > 0. Then, by properties of equation (2.10) and the triangle inequality, we have

(s (f+8 < )eﬂ )

€
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where € is so small that the H—difference f (t +ek~h) k’( <t to ) © f(¢) exists. By the differentiability, the right-hand side goes to zero as
&£ — 0T, and hence, f is right fuzzy continuous.
On the other side, let ¢, t — 8# (0,a) with € > 0. Then, by properties of equation (2.10) and the triangle inequality, we have

d (f(t),f(t—ew)) = d (f(z)@f(z—sw) ,6)

M
8d<f(a)(t),6)+e,d 9@, (f( )9f< q=n) )) 7
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where € is so small that the H—difference f(¢) © f ( 8%')“)) exists. By the differentiability, the right-hand side goes to zero as

€ — 07, and hence, f is left fuzzy continuous.
For the other part, similar proof can be made. O

Theorem 3.3. Letr o € (0,1]. If f is differentiable and f is o.-differentiable, then

kl o (4
D () = o L), (33)
Proof. Note that
f (1 +ehpriiz) ”0 @f()
Seth = 8%;}?), then one finds
a I fl+nef)
DR = Ilzlg%)h.ka_l(tfto)k’(tfto) (3-5)
_ KT —n) RS f()
T W) Ak G0
kl—a _
- ﬁﬂm) 37)
K (r—p
V) (t(i tO)O) fe(@). (3.8)
Thus the proof is complete. O

4. Generalized fuzzy conformable fractional integral

In this section, we present a new definition for generalized fuzzy conformable fractional integral using an unknown kernel.

Definition 4.1. Ler 1y > 0, a > 0 and x € (0,a) . Also, let f be a function defined on (a,x] and . € R. Let k : [a,b] — R be a continuous
nonnegative map such that k(t —tg) , k' (t —ty) # 0. Then, the o-generalized fractional integral of f is defined by,

10 = [k = 10)K (1 ~10) £ (1), @1

Theorem 4.2. If f € C(A,.# (R)) with o € D. then:

[D* (12 ) ()] =£ (). “2)
Proof. Note that,
l—o (4 l—o (4
D) 0] = pruzn o] = R ol
l—o
_ %[i K (s—10) K (s —10) (s )ds}
l—o (0
= S e ek =) )
1—a (4 _
— e ) =) 1)
= f().
Thus the proof is complete. O
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