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In this study, two methods have been proposed to find the critical buckling load of bars that are 

in water and buckled under the effect of P singular force and distributed self-weight. Three 

different Euler's cases were taken into account in the study. In the first method, the solution of 

the stability differential equation of the bar in water is solved by the Differential Transformation 

Method (DTM), while in the second method, the Dunkerley formula is applied to determine the 

critical buckling load factor of the buckled bar in water. Finally, the results obtained by solving 

an example with the two proposed methods were compared with the finite element method. SAP 

2000 program was used for finite element analysis. From the results obtained, it was observed 

that the two methods gave results in good agreement to the finite element method. 
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Su İçeresindeki Çubuğun Stabilite Analizi için Diferansiyel Dönüşüm 

Yöntemi ve Dunkerley Formülünün Uygulanması  
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Bu çalışmada su içerisinde olan ve P tekil kuvvet ve yayılı kendi ağırlığı etkisinde burkulan 

çubukların kritik burkulma yükünün bulunması için iki yöntem önerilmiştir. Çalışmada üç farklı 

Euler durumu dikkate alınmıştır. Sunulan yöntemlerden ilkinde su içerindeki çubuğun stabilite 

diferansiyel denklemin çözümü Diferansiyel dönüşüm yöntemi (DTM) ile çözülürken, ikinci 

yöntemde Dunkerley Formülü su içerisinde burkulan çubuğun kritik burkulma yük faktörünün 

belirlenmesi için uygulanmıştır. Çalışmanın sonunda bir örnek önerilen iki yöntem ile çözülerek 

elde edilen sonuçlar sonlu elamanlar yöntemi ile karşılaştırılmıştır. Sonlu elemanlar yöntemi ile 

analiz için SAP 2000 programı kullanılmıştır. Elde edilen sonuçlardan iki yönteminde sonlu 

elemanlar yöntemine yeter uygunlukta sonuç verdiği gözlenmiştir. 

https://dx.doi.org/10.30855/gmbd.2021.02.10
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1. INTRODUCTION (GİRİŞ)

The use of columns has become widespread in 

civil, mechanical, and aerospace engineering and has 

a significant place among engineering structures. 

Therefore, extensive studies have been performed in 

recent decades to determine elastic columns' critical 

buckling load. Euler  was the first researcher that 

studies the buckling of a prismatic column under a 

compressive force or self-weight [1]. 

Wei et al. [2] investigated elastic bars stability 

with variable cross-section under self-weight and 

concentrated end load. They transformed governing 

https://orcid.org/0000-0001-8566-3433
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equation for EB(Euler–Bernoulli) columns into an 

integral equation and evaluated critical buckling load 

by investigating the lowest eigenvalue of the 

resulting integral equation.  They validated the 

effectiveness of this method by numerical examples. 

Darbandi et al. [3] studied the static stability of 

the variable cross-section columns under distributed 

axial force. They used the EB  beam theory to model 

the column and used the singular perturbation 

method of Wentzel-Kramers-Brillouin to solve the 

problem. Wang [4] investigated the stability of 

columns under self-weight and a tip load. The 

governing equation was integrated by turning the 

two-point boundary value problem into an initial 

value problem. Four boundary conditions were 

studied. Optimum locations of the support for 

maximum load-bearing capacity were obtained. 

Huang and Li [5] investigated analytic approach to 

solve EB columns' buckling instability with 

arbitrarily axial nonhomogeneity and/or varying 

cross-section. Differential equations of buckling for 

different support conditions (pinned-pinned, 

clamped, and cantilevered columns) were derived 

with varying flexural rigidity and reduced to a 

Fredholm integral equation. The impact of the 

method was approved by comparing our results with 

existing closed-form solutions and numerical results. 

Krutii and vandynskyi [6] proposed a new method 

to study the uniform column's buckling problem 

under self-weight. The method base was on the exact 

solution of the appropriate differential equation for a 

column's buckling. The solution was stated with 

dimensionless fundamental functions and initial 

parameters. The stress-strain state of the column was 

defined. The analytical form of the load is defined 

because of the dimensionless nature of the 

fundamental functions. The values of the buckling 

coefficient were determined. Wahrhaftig et al. [7] 

Investigated mathematical solutions of a column, 

including the self-weight, to obtain the critical 

buckling load. They Compared the analytical 

solutions with computation modeling. 

The bar's critical buckling strength, whose weight 

is considered, will differ depending on whether the 

bar is in an air or water environment. Pekbey [8] 

developed self-weight buckling of the column at its 

top fixed and lower end fixed-roller supported in 

water and presented an analytical solution to 

determine the heavy column's critical buckling load. 

The Differential Transformation Method (DTM) 

is an alternative method for solving differential 

equations. DTM was first introduced by Zhou [9]. 

Several studies on the method have been presented in 

the literature [10–16]. Holubowski and Tarczewska 

[17] presented the application of the DTM to the

stability analysis of nonuniformly loaded beams

subjected to bending. They solved two coupled

ordinary differential equations with variable

coefficients and parameters to obtain the critical

load. Rajasekaran [18] investigated the stability of

fully or partially supported heavy prismatic piles and

fully supported non-prismatic piles by using DTM.

Chai and Wang [19] used DTM to study the critical

buckling load of axially compressed heavy columns

of various support conditions. They compared

obtained results with an analytical solution.

Therefore, the method was also shown to be very

accurate.

In this study, different from the literature, the 

DTM and Dunkerley formula approach is proposed 

to determine the critical buckling load of a rectiliner 

bar in water under the singular load and its weight. It 

is accepted that the material is linear elastic in the 

study. 

2. METHOD (METOD)

In this study, three different Euler cases are 

considered in a bar under the influence of their 

weight in water and with a singular force P above it, 

as shown in figure 1. 

Figure 1. Three different Euler cases  a) Free-

Clamped b) Sliding -Clamped  c) Sliding-Pinned (Üç 

farklı Euler durumu a) Serbest-ankastre b)Kayııcı ankastre -

Ankastree c) Kayıcı ankastre-mafsallı)   
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According to the given set of axes, the 

differential equation of stability is written as follows, 

using the literature [8]. 

4 2

4 2
[( ) ] 0s f

y y d dy
Az

dz dz

d d
EI P

dz dz
 + −+ =  (1) 

where EI is the bending stiffness, P is axial 

singular load, and A is cross-section area, ɣs and ɣf 

are the bar and air's unit weight, respectively. y 

indicates horizontal displacement, and z indicates the 

axis along the bar axis. The differential Eq.(2) is 

obtained by integrating the differential Eq.(1). 

3

3
[( ) ][ s f

y dy
Az

dz

d
EI P c

dz
 + −+ = (2) 

Since the shear force is zero at the beginning of 

the bar for the Euler states considered according to 

the selected axes. The constant integration c in the 

differential Eq. (2) is zero. In this case, the 

differential Eq. (2) can be written as 

3

3
[( ) ][ 0s f

y dy
Az

dz

d
EI P

dz
 + −+ = (3) 

To make the differential Eq. (3) dimensionless, 

the transformation given in Eq. (4) is applied, and 

Eq. (5) is obtained. 

z

H
 = (4) 

2
2

3

3
[( ) ][ 0s f

y PH A H dy
H

EI EI d

d

d


 


+ −+ =  (5) 

The necessary arrangements are made in the 

differential Eq. (5), and the differential Eq. (6) is 

obtained. 

3

3
* * (1 ) ][ 0

y dy
n a b

d

d
n

d



+ −+ =  (6) 

Here n, a, and b are defined as follows. 

2PH
n

EI
= (7) 

s AH
a

P


= (8) 

f

s

b



= (9) 

Eq. (11) is obtained by substituting Eq. (10) in 

Eq. (5). 

dy

d



= (10) 

2

2
* * (1 ) ][ 0n a b

d
n

d


 


+ −+ =  (11) 

The boundary conditions required for the 

differential Eq. solution (11) are given below for 

three different Euler cases. 

Free Clamped:

2
0 0

d

H d

EI 



=  = (12) 

1 0 =  = (13) 

Sliding- Clamped:
0 0 =  = (14) 

1 0 =  = (15) 

Sliding-Pinned:
0 0 =  = (16) 

2
1 0

d

H d

EI 



=  = (17) 

3. APPLICATION OF THE DTM METHOD

(DTM UYGULAMASI)

If the DTM method detailed in the literature 

[16,20] is applied to Eq. (11) the following equation 

is obtained. 

[ ] * * (1 ) * [ 1]
[ 2]

( 2) * ( 1)

[ * k n a b k
k

k k

n  


+ − −
+ = −

+ +
(18) 

If DTM is applied to the boundary conditions, the 

following relations are obtained. 

Free Clamped:
[1] 0 = (19) 

0

[ ] 0
N

k

k
=

= (20) 

Clamped Sliding:
[0] 0 = (21) 

0

[ ] 0
N

k

k
=

= (22) 

Sliding-Pinned:
[0] 0 = (23)
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0

* [ ] 0
N

k

k k
=

= (24) 

If the boundary conditions are applied for each 

different Euler case, the resulting transcendent 

equations are obtained as follows. 

1( ) [0] 0A n  = (Free Clamped) (25) 

2 ( ) [1] 0A n  =  (Sliding- Clamped) (26) 

3 ( ) [1] 0A n  = (Sliding -Pinned) (27) 

In Eq. (25), (26), and (27), n values that make θ 

[0] and θ [1] non-zero are the buckling load factor of

the system.

4. DUNKERLEY FORMULA (DUNKERLEY

FORMÜLÜ) 

Dunkerley formula, whose theory and basic 

principles are given in the literature [21-22], has been 

adapted to the Stability Analysis of Bars in Water 

problem.With the Dunkerley formula [21, 22] for the 

critical buckling loads of the given systems, the 

system's total buckling load can be found with the 

help of the buckling loads found separately for the 

case of buckling in water with the effect of singular 

force and self-weight (Fig. 2). 

Figure 2. Application of the Dunkerley formula 

(Dunkerley formülünün uygulanması) 

The critical buckling load of the given system is 

found by the following equation. 

For the single load case, the critical buckling load 

is written as 

The critical buckling load of a bar under the 

influence of its own weight is found by Eq. (30). 

With the appliction of Dunkerley formula α 

buckling load factor is found by the help of Eq. (31). 

1 2

1 1 1

cr cr cr  
= + (31) 

α's buckling load factors and are given in Table 1 

for three different Euler cases considered. 

Table 1. α values for Euler cases. (Euler durumları için α 

değerleri) 

αcr values 

Euler αcr1 αcr2 

F-C 2.4674 7.8373 

C-S 9.6696 18.9563 

S-P 2.4674 3.4766 

5. RESULTS (SONUÇLAR) 

To investigate the suitability of the methods

presented in the study, the buckling load factors of 

bars in air and water for three different Euler cases 

were calculated with the DTM and Dunkerley 

Formula presented in this study, and the obtained 

results were compared with the results of the SAP 

2000 program in Table 2. Convergence of DTM 

method according to the number of elements is given 

in Table 3. In order to investigate the suitability of 

the methods presented in the study, the SAP 2000 

program, which analyzes with the finite element 

method, was chosen. As the number of elements in 

the solution increases with SAP 2000, the obtained 

solution approaches the exact solution. For this 

reason, sufficient number of elements has been taken 

into account in SAP 2000 and the SAP 2000 program 

has been taken as a reference for the convenience of 

the presented methods. In the modeling with 

SAP2000 in water, the water effect is considered as 

the distributed load along the rod. In SAP 2000, the 

lengths of the bars are defined as 1 m and flexural 

stiffness EI = 1 kNm2. Bars are modeled with 5 

elements and frame element type is used in 

2cr cr

EI
N

H
= (28) 

1 1 2cr cr

EI
N

H
= (29) 

2 2 2cr cr

EI
N AH

H
 = = (30)
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modeling. In the study, the first mode was considered as the buckling mode. 

Table 2. Buckling load factors of bars in the air and water. (Havada ve su içindeki çubuğun burkulma yük faktörü) 

In the air 

Euler DTM (a) Dunkerley (b)   FEM 

SAP2000 (c) 

%(a-c)/c %(b-c)/c 

F-C 1.8960 1.877 1.8820 0.7439 -0.2657

C-S 6.5484 6.403 6.5497 -0.0198 -2.2398

S-P 1.4466 1.4432 1.4525 -0.4062 -0.6403

In the water 

Euler DTM (a) Dunkerley (b)   FEM 

SAP2000 (c) 

%(a-c)/c %(b-c)/c 

F-C 1.9540 1.9355 1.9579 -0.1992 -1.1440

C-S 6.8433 6.6903 6.84471 -0.0206 -2.256

S-P 1.5270 1.5235 1.5328 -0.3784 -0.6067

Table 3. Convergence of DTM method according to the number of elements (Eleman sayısına bağlı olarak DTM 

yönteminin yakınsaklığı) 

Euler 5 elements 10 elements 15 elements 16 elements 

F-C 1.9782 1.9539 1.9540 1.9540 

C-S 5.0724 6.7586 6.8430 6.8433 

S-P 1.3619 1.5266 1.5270 1.5270 

6. CONCLUSION (SONUÇ)

In this paper, two methods are proposed to find 

the critical buckling load for three different Euler 

cases of bars in water and buckled under the singular 

load P at the top and the distributed self-weight. In 

the first method, the solution of the differential 

equation representing the stability was performed by 

the DTM method, while in the second method, the 

Dunkerley formulation was used to find the critical 

buckling load. It was observed that the two methods 

presented from the solved example gave results 

compatible with the finite element method. It is seen 

that the DTM method gives results closer to the finite 

element method than the Dunkerley method. The 

presented methods are particularly useful in 

understanding the stability behavior with few 

parameters. 
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