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Abstract: In this research, we produce a homothetic motion in 𝐸1
𝑛 from a homothetic 

motion in 𝐸𝑛 by using a dual transformation. Furthermore, we define a transition 
from Euclidean umbrella matrix to Lorentzian umbrella matrix. Then, we examine 
the invariance of the axis of the umbrella motion that is �⃗� = (1,1, . . ,1) in both spaces. 
We also provide examples to make our results clear. Moreover, we draw their 
figures to investigate visual representations. Finally, we study on homothetic 
motions in dual spaces. 
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Öz: Bu çalışmada, dual dönüşüm yardımıyla 𝐸1
𝑛 deki homotetik hareketlerden 𝐸𝑛 de 

homotetik hareketler elde ettik. Ayrıca, Öklidyen şemsiye matrisleri ile Lorentzian 
şemsiye matrisleri arasında bir geçiş sağladık. Daha sonra, şemsiye hareketinin 
ekseni olan �⃗� = (1,1, . . ,1) in iki uzayda da sabit kaldığını gösterdik. Elde edilen 
sonuçların pekiştirilmesi amacıyla örnekler vererek şekillerini çizdik. Son olarak, 
homotetik hareketleri dual uzaylarda çalıştık. 
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1. Introduction
 
Kinematics is a subfield of physics, deals with the motions of points, bodies, and systems of bodies without 

considering the forces that cause them to move: mention frames, variables, and transformations. The study of 

kinematics is often referred to as the geometry of motion. Motion is the phenomenon of constant displacement of 

a rigid body relative to a certain reference point. Displacement of a rigid body is used to describe the motion of 

systems in mechanical engineering, robotics, biomechanics, astrophysics, and in other areas related. Homothetic 

motions of a rigid body in n-dimensional Euclidean space are generated by the homothetic transformations. In [1],  

the n-dimensional homothetic motion of a body in Euclidean space is generated by the transformation   

                                                                        [
𝑌
1
] = [ 

ℎ. 𝐴 𝑎
   0 1

 ] . [
𝑋
1
]                                                                (1) 

 where ℎ = ℎ. 𝐼𝑛 is a scalar matrix, 𝐴 ∈ SO(n) and 𝑎 ∈ ℝ1
𝑛. Here, if h = 1 in (1) one-parameter motions are defined. 

If 𝐴 ∈ O(𝑛) that provides the property 

𝐴𝑆 = 𝑆, 

where  

      𝑆 = [ 

1
1
 ⋮
1

 ] ∈ ℝ1
𝑛, 

then 𝐴 is called an umbrella matrix. Umbrella motions and homothetic motions in Euclidean spaces are given in 

[2].  Also, homothetic motions are studied by several authors [3] - [6]. 

The relationship between Euclidean and Lorentzian rotational motion matrices is given by using dual 

transformations between SO(𝑛 + 1) and SO(𝑛, 1) in [7]. In the light of this study, we examined dual 

transformations in dual spaces by investigating invariant axes in both spaces, see [8]. Additionally, we carry this 

research into Galilean spaces in [9]. Kinematics applications of dual transformations are also studied in [10]. In 

kinematics, there has been very important activities of an experimental nature concerning not only the study of 

models and the visualization of flows, but also that of objects like the human figure and the bodies of animals. 

Previous studies on kinematics can be used to obtain extensive information, cited as references [11] - [18]. Our 

paper is also expected to contribute to the existing literature on kinematics and its applications. 

The main objective of this paper is to define a transition from Euclidean homothetic motion matrices to Lorentzian 

homothetic motion matrices by means of dual transformations. Even though many researchers were worked on 

affine kinematics in both spaces, the new and the most intriguing part of this study is to give the relationship 

between homothetic motions in different spaces. In other words, the dual transformation defined in this paper 

works as a handy tool for obtaining Lorentzian homothetic motions from Euclidean homothetic motions. 

Additionally, we acquire umbrella motion matrices in Lorentzian space with a similar method. We examine the 

invariance of the axis of the umbrella motion that is �⃗� = (1,1, . . ,1) in both spaces. Moreover, we provide some 

examples making effective our obtained results. Furthermore, we draw their figures to give visual representations. 

Considering the importance of dual space in kinematics, we also focus on homothetic motions in dual spaces. 

2. Material and Method 

This section includes two subsections to give a background for Lorentzian space and dual transformations. Since 

we present the concepts with their dual notions in the following subsections, it would be appropriate to give the 

preliminaries of dual space beforehand. 

Definition 2.1  If a and a∗ are real numbers and ϵ2 = 0, the combination â = a + ϵa∗ is called a dual number, where 

ϵ is the dual unit.  

Definition 2.2  The set of all dual numbers forms a commutative ring over the real number field and is denoted by 

𝔻. The set 𝔻3 = {�⃗̂� = (�̂�1, �̂�2, �̂�3)|�̂�𝑖 ∈ 𝔻, 1 ≤ 𝑖 ≤ 3} is called a 𝔻-module or dual space.  
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Definition 2.3  The elements of 𝔻3 are called dual vectors. A dual vector �⃗̂� can be written �⃗̂� = �⃗� + 𝜖�⃗�∗ where �⃗� 

and �⃗�∗ are real vectors in ℝ3.  

Definition 2.4  The norm of a dual vector a⃗⃗̂ is defined by |�⃗̂�| = |�⃗�| + 𝜖
⟨�⃗⃗�,�⃗⃗�∗⟩

|�⃗⃗�|2
.  

For more details about dual space see [19]. 

2.1 Background on Lorentzian space 

We mention some fundamental definitions and properties in Lorentzian space that we use in this paper. 

Definition 2.5  The Lorentzian metric ⟨, ⟩ defined by  

⟨𝑢, 𝑣⟩ = 𝑢1𝑣1 + 𝑢2𝑣2+. . . +𝑢𝑛−1𝑣𝑛−1 − 𝑢𝑛𝑣𝑛                                                               (2) 

 in 𝐸1
𝑛 will be used in this study.  

It is pointed out that ⟨, ⟩ is a non-degenerate metric of index 1. It can also be written in the form: 

                                                                   ⟨𝑢, 𝑣⟩ = 𝑢𝑇 [ 

1 0 …   0
0 1 …   0
 ⋮  ⋮ ⋱    ⋮
0 0 … −1

 ] 𝑣 = 𝑢𝑇𝐺𝑣.                                      (3) 

After giving the Lorentzian metric, we recall that a vector 𝑣 ∈ 𝐸1
𝑛 can have one of three casual characters as given 

below.  

Definition 2.6  A vector 𝑣 ∈ 𝐸1
𝑛 is called 

  • spacelike if ⟨𝑣, 𝑣⟩ > 0 or 𝑣 = 0,  

  • timelike if ⟨𝑣, 𝑣⟩ < 0,  

  • lightlike if ⟨𝑣, 𝑣⟩ = 0 and 𝑣 ≠ 0.  

Since we will be working with more matrices in this study, let us recall some properties of Lorentzian matrices, 

see [20]. 

Definition 2.7  An 𝑛 × 𝑛 matrix 𝑆 is called   

  • semi symmetric if 𝑆𝑇 = 𝐺𝑆𝐺 or 𝑆 = 𝐺𝑆𝑇𝐺,  

  • semi skew-symmetric if 𝑆𝑇 = −𝐺𝑆𝐺 or 𝑆 = −𝐺𝑆𝑇𝐺,  

  • semi-orthogonal if 𝑆𝑇 = 𝐺𝑆−1𝐺 or 𝑆−1 = 𝐺𝑆𝑇𝐺, where 𝐺 is the sign matrix of Lorentzian space, see [21]. 

We will use dual vectors in the sections concerning dual spaces, so we need the following definition. 

Definition 2.8  The Lorentzian inner product of dual vectors �⃗̂�  and �⃗⃗̂�  is defined by 

⟨�⃗̂� , �⃗⃗̂�⟩ = ⟨�⃗�, �⃗⃗�⟩ + 𝜖(⟨�⃗�, �⃗⃗�∗⟩ + ⟨�⃗�∗, �⃗⃗�⟩) 

with �⃗̂� = �⃗� + 𝜖�⃗�∗  and �⃗⃗̂� = �⃗⃗� + 𝜖�⃗⃗�∗ . A dual vector �⃗̂�   is called timelike if ⟨�⃗̂� , �⃗̂�⟩ < 0, spacelike if ⟨�⃗̂� , �⃗̂�⟩ > 0 and 

lightlike (or null) if ⟨�⃗̂� , �⃗̂�⟩ = 0, where ⟨, ⟩ is Lorentzian inner product. We call the dual space 𝔻3 together with this 

Lorentzian inner product as dual Lorentzian space and indicate it by 𝔻1
3.  

Previous studies in Lorentzian space can be used to achieve more information [22] – [24]. Also, in Lorentzian 

space, rotational motions are studied by [25] and [26]. 
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2.2 Dual transformations 

The dual transformation between SO(𝑛)\{𝑎𝑛𝑛 = 0} and SO(𝑛 − 1,1) which is defined below, will be used for 

obtaining semi-orthogonal matrices from orthogonal matrices. We acquire Lorentzian matrices from Euclidean 

matrices by using this dual transformation. 

Definition 2.9  Dual transformation between SO(𝑛)\{𝑎𝑛𝑛 = 0} and SO(𝑛 − 1,1) is defined in Dohi et al. (2010). 

Two sets can be given by  

 SO(𝑛) = {𝐴 ∈ 𝐺𝐿(𝑛, ℝ)|𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼𝑛 , det𝐴 = 1}, 

SO(𝑛 − 1,1) = {𝐴 ∈ 𝐺𝐿(𝑛, ℝ)|𝐴𝑇𝐺𝐴 = 𝐴𝐺𝐴𝑇 = 𝐺, det𝐴 = 1}, 

where 𝐺 = [  
𝐼𝑛−1   0
 0 −1

 ] and 𝐼𝑛 is 𝑛 × 𝑛 identity matrix. 

Let 𝐴 ∈ 𝑆𝑂(𝑛) , then it can be written in the block form as  

𝐴 = [
  𝐵 𝐶
  𝐷 𝑎𝑛𝑛

], 

where 𝑎𝑛𝑛 ≠ 0. Here, 𝐵 is an (𝑛 − 1) × (𝑛 − 1) square matrix, 𝐶 is a column matrix and 𝐷 is a row matrix. Since 

𝑎𝑛𝑛 ≠ 0, then we can use the following two sets given by  

𝔖1 = {𝐴 ∈ SO(𝑛)|𝑎𝑛𝑛 ≠ 0}, 

𝔖2 = {𝐴 ∈ SO(𝑛 − 1,1)|𝑎𝑛𝑛 ≠ 0}. 

 Therefore, the dual transformation can be defined as  

    𝑓: 𝔖1 → 𝔖2 

                                                                  𝑓: 𝐴 ↦ 𝑓(𝐴) =
1

𝑎𝑛𝑛
[  𝑎𝑛𝑛(𝐵−1)𝑇 𝐶

       −𝐷 1
 ],                                                        (4) 

here 𝑇 denotes transposition. 

We now give the definition of dual transformation in dual spaces. We will use it for obtaining dual semi-orthogonal 

matrices from dual orthogonal matrices. 

Definition 2.10  There is dual transformation between SÔ(𝑛)\{�̂�𝑛𝑛 = 0} and SÔ(𝑛 − 1,1). Firstly, we give the 

following sets:  

SÔ(𝑛) = {�̂� ∈ 𝐺𝐿(𝑛,𝔻)|�̂�𝑇�̂� = �̂��̂�𝑇 = 𝐼𝑛 , det�̂� = 1}, 

SÔ(𝑛 − 1,1) = {�̂� ∈ 𝐺𝐿(𝑛,𝔻)|�̂�𝑇𝐺�̂� = �̂�𝐺�̂�𝑇 = 𝐺, det�̂� = 1}, 

where 𝐺 = [
 𝐼𝑛−1    0
   0 −1  

] and 𝐼𝑛 is 𝑛 × 𝑛 identity matrix. 

We write the dual matrix �̂� ∈ SÔ(𝑛) in the block form as  

�̂� = [  
�̂� �̂�
�̂� �̂�𝑛𝑛

], 

where �̂�𝑛𝑛 ≠ 0. Since �̂�𝑛𝑛 ≠ 0, then two sets can be written as 

𝔖1̂ = {�̂� ∈ SÔ(𝑛)|�̂�𝑛𝑛 ≠ 0}, 

𝔖2̂ = {�̂� ∈ SÔ(𝑛 − 1,1)|�̂�𝑛𝑛 ≠ 0}. 



Homothetic Motions and Dual Transformations 

 

198 
 

Now, 𝑓 dual transformation can be defined as below  

    𝑓: 𝔖1̂ → 𝔖2̂ 

                                                          𝑓: �̂� ↦ 𝑓(�̂�) =
1

�̂�𝑛𝑛
[ 
�̂�𝑛𝑛(�̂�−1)𝑇 �̂�

       −�̂� 1
 ]                                                              (5) 

For more details about dual transformation in dual space see [8]. 

3. Results 

 

This section includes five subsections to investigate homothetic motions and umbrella motions with the help of 

dual transformations. We also carry the results into the dual space.  

 

3.1 Homothetic motions and dual transformations 

 

In this section, we examine homothetic motions by means of dual transformations. We obtain a Lorentzian 

homothetic motion from a Euclidean homothetic motion. 

Theorem 3.1  Let 𝐻 ∈ 𝐸𝑛 given by  

                                                                                           𝐻 = [
 ℎ. 𝐴 𝑎 
   0 1

]        (6) 

 where ℎ = ℎ. 𝐼𝑛 is a scalar matrix, 𝐴 ∈ SO(𝑛 − 1) and 𝑎 ∈ ℝ1
𝑛−1. 

𝑓ℎ defines a dual transformation, 

                                                                                                𝑓ℎ: 𝐸
𝑛 → 𝐸1

𝑛 

                                                                             𝐻 ↦ 𝑓ℎ(𝐻) = 𝐻𝐿 = [
 ℎ. 𝑓(𝐴) 𝑎
       0 1

 ]  (7) 

 where 𝑓 is the dual transformation given in (4), thus 𝑓(𝐴) ∈ SO(𝑛 − 2,1). The semi-orthogonal matrix 𝐻𝐿 ∈ 𝐸1
𝑛 

represents the homothetic motion in n-dimensional Lorentzian space.  

Proof   We show that  

 𝑓ℎ
2(𝐻) = 𝑓ℎ(𝑓ℎ(𝐻)) 

                              = 𝑓ℎ(𝐻𝐿),     𝑓
2 = 𝑖𝑑. 

= 𝐻 

                                                                                                   𝑓ℎ
2 = 𝑖𝑑. 

 Thus, 𝑓ℎ is a dual transformation.  

3.2 Applications with one-parameter homothetic motions 

After examining homothetic motions with dual transformations, we investigate one-parameter homothetic 

motions by means of dual transformations. One-parameter homothetic motion in n-dimensional Euclidean space 

is generated by the transformation  

                                                            [
𝑌(𝑡)
   1

] = [
 ℎ. 𝐴(𝑡) 𝑎(𝑡)

     0    1
] . [

𝑋(𝑡)
   1

]                                       (8) 

 where ℎ = ℎ. 𝐼𝑛 is a scalar matrix, 𝐴(𝑡) ∈ SO(𝑛). 
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By using 𝑓ℎ dual transformation in (7), Lorentzian one-parameter homothetic motion matrix can be represented 

by  

                                                                𝐻𝐿(𝑡) = [ 
ℎ. 𝑓(𝐴(𝑡)) 𝑎(𝑡)

       0 1
].                                                                          (9) 

Example 1  Let 𝐻 ∈ 𝐸4 be a one-parameter homothetic motion matrix is given by  

𝐻(𝑡) =

[
 
 
 
 

  −2𝑡cos2(𝑡) + 𝑡 2𝑡sin(𝑡) − 2𝑡cos(𝑡) 2𝑡sin(𝑡)cos(𝑡) + 2𝑡 𝑡

2𝑡sin(𝑡) + 2𝑡cos(𝑡)                   𝑡 2𝑡cos(𝑡) − 2𝑡sin(𝑡) 𝑡2

2𝑡sin(𝑡)cos(𝑡) − 2𝑡 2𝑡sin(𝑡) + 2𝑡cos(𝑡)       2𝑡cos2(𝑡) − 𝑡 𝑡3

                0                   0                    0 1

  

]
 
 
 
. 

Then, Lorentzian one-parameter homothetic motion matrix 𝐻𝐿(𝑡) can be obtained by using 𝑓ℎ as follows  

𝐻𝐿(𝑡) =

[
 
 
 
 
 
 
 

  

        
𝑡

2𝑡cos2(𝑡) − 𝑡

−2𝑡sin(𝑡) − 2𝑡cos(𝑡)

2𝑡cos2(𝑡) − 𝑡
 
2𝑡sin(𝑡)cos(𝑡) + 2𝑡

2𝑡cos2(𝑡) − 𝑡
𝑡

−2𝑡sin(𝑡) + 2𝑡cos(𝑡)

2𝑡cos2(𝑡) − 𝑡
        

−2𝑡cos2(𝑡) + 𝑡

2𝑡cos2(𝑡) − 𝑡

2𝑡cos(𝑡) − 2𝑡sin(𝑡)

2𝑡cos2(𝑡) − 𝑡
𝑡2

−2𝑡sin(𝑡)cos(𝑡) + 2𝑡

2𝑡cos2(𝑡) − 𝑡
 
−2𝑡sin(𝑡) − 2𝑡cos(𝑡)

2𝑡cos2(𝑡) − 𝑡
         

1

2𝑡cos2(𝑡) − 𝑡
𝑡3

                    0                     0                      0 1 ]
 
 
 
 
 
 
 

. 

 

 Example 2  Let 𝐴(𝑡) be a homothetic matrix is given by  

𝐴(𝑡) =

[
 
 
 
 
 
 

  

2(𝑡 − 𝑡3)

1 + 3𝑡2

4(𝑡3 − 𝑡2)

1 + 3𝑡2

4(𝑡3 + 𝑡2)

1 + 3𝑡2

4(𝑡3 + 𝑡2)

1 + 3𝑡2

2(𝑡 − 𝑡3)

1 + 3𝑡2

4(𝑡3 − 𝑡2)

1 + 3𝑡2

4(𝑡3 − 𝑡2)

1 + 3𝑡2

4(𝑡3 + 𝑡2)

1 + 3𝑡2

2(𝑡 − 𝑡3)

1 + 3𝑡2

  

]
 
 
 
 
 
 

. 

 If we multiply the matrix 𝐴(𝑡) with the curve 𝜙(𝑠) = (sin(𝑠), cos(𝑠), 𝑠3), then we obtain the matrix 𝐴(𝑡). 𝜙(𝑠). The 

elements of the matrix 𝐴(𝑡). 𝜙(𝑠) can be represented by a surface 𝑆1 = Ψ(𝑡, 𝑠) = (
2sin(𝑠)(𝑡−𝑡3)

1+3𝑡2 +
4cos(𝑠)(𝑡3−𝑡2)

1+3𝑡2 +

4𝑠3(𝑡3+𝑡2)

1+3𝑡2 ,
4sin(𝑠)(𝑡3+𝑡2)

1+3𝑡2 +
2cos(𝑠)(𝑡−𝑡3)

1+3𝑡2 +
4𝑠3(𝑡3−𝑡2)

1+3𝑡2 ,
4sin(𝑠)(𝑡3−𝑡2)

1+3𝑡2 +
4cos(𝑡3+𝑡2)

1+3𝑡2 +
2𝑠3(𝑡−𝑡3)

1+3𝑡2 ).  See Fig. (1). 

 

Figure 1. The surface 𝑆1 ∈ 𝐸3 

 

By using 𝑓 dual transformation, we obtain the Lorentzian homothetic matrix 𝐴𝐿(𝑡). 
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𝐴𝐿(𝑡) =

[
 
 
 
 
 
 

 

           1
−4(𝑡3 + 𝑡2)

2(𝑡 − 𝑡3)

4(𝑡3 + 𝑡2)

2(𝑡 − 𝑡3)

−4(𝑡3 − 𝑡2)

2(𝑡 − 𝑡3)
          1

4(𝑡3 − 𝑡2)

2(𝑡 − 𝑡3)

−4(𝑡3 − 𝑡2)

2(𝑡 − 𝑡3)

−4(𝑡3 + 𝑡2)

2(𝑡 − 𝑡3)
          1

 

]
 
 
 
 
 
 

. 

 By multiplying the matrix 𝐴𝐿(𝑡) with 𝜙(𝑠), we acquire the matrix 𝐴𝐿(𝑡). 𝜙(𝑠). The elements of the matrix 

𝐴𝐿(𝑡). 𝜙(𝑠) can be expressed as a surface 𝑆2 = Ψ(𝑡, 𝑠) = (sin(𝑠) +
−4cos(𝑠)(𝑡3+𝑡2)

2(𝑡−𝑡3)
+

4𝑠3(𝑡3+𝑡2)

2(𝑡−𝑡3)
,
−4sin(𝑠)(𝑡3−𝑡2)

2(𝑡−𝑡3)
+

cos(𝑠) +
4𝑠3(𝑡3−𝑡2)

2(𝑡−𝑡3)
,
−4sin(𝑠)(𝑡3−𝑡2)

2(𝑡−𝑡3)
+

−4cos(𝑠)(𝑡3+𝑡2)

2(𝑡−𝑡3)
+ 𝑠3). See Fig. (2).  

 

Figure 2. The surface 𝑆2 ∈ 𝐸1
3 

3.3 Umbrella motions and dual transformations  

In this section, we define a transition from a Euclidean umbrella motion to a Lorentzian umbrella motion. We 

obtain an umbrella matrix in 𝐸1
𝑛 from an umbrella matrix in 𝐸𝑛 with the help of a dual transformation. 

Theorem 3.2  Let 𝑈 ∈ 𝐸𝑛 given by  

                                                                                                 𝑈 = [ 
𝐴 𝐶
0 1

]                                                                (10) 

 where 𝐴 is an (𝑛 − 1) × (𝑛 − 1) umbrella matrix. 𝑓𝑢 defines a dual transformation, 

                                                                                                    𝑓𝑢: 𝐸𝑛 → 𝐸1
𝑛 

                                                                      𝑈 ↦ 𝑓𝑢(𝑈) = 𝑈𝐿 = [ 
𝑓(𝐴) 𝐶
   0 1

 ]                                                                                (11) 

 where 𝑓 is the dual transformation given in (4), thus 𝑓(𝐴) ∈ SO(𝑛 − 2,1). The semi-orthogonal matrix 𝑈𝐿 ∈ 𝐸1
𝑛 

represents the umbrella motion in n-dimensional Lorentzian space.  

 Proof   𝑓𝑢 is a dual transformation, since it holds  

    𝑓𝑢
2(𝑈) = 𝑓𝑢(𝑓𝑢(𝑈)) 

                                = 𝑓𝑢(𝑈𝐿),    𝑓
2 = 𝑖𝑑. 

                                                                                          = 𝑈 

                                                                                                     𝑓𝑢
2 = 𝑖𝑑. 
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Example 3   Let 𝑈 represents the umbrella motion in 𝐸4 given by  

𝑈 =

[
 
 
 
 
 
 
 

 

     
1

3

1 − √3

3

1 + √3

3
cos𝜃

1 + √3

3
      

1

3

1 − √3

3
sin𝜃

1 − √3

3

1 + √3

3
     

1

3
   𝜃

     0       0      0    1 ]
 
 
 
 
 
 
 

. 

By applying the 𝑓𝑢 dual transformation to the umbrella motion matrix 𝑈, we obtain the Lorentzian matrix 𝑓𝑢(𝑈) =

𝑈𝐿 as follows 

𝑈𝐿 =

[
 
 
 

  

       1 −1 − √3 1 + √3 cos𝜃

−1 + √3         1 1 − √3 sin𝜃

−1 + √3 −1 − √3      1    𝜃
       0         0      0    1

 

]
 
 
 

. 

Theorem 3.3  𝑓 dual transformation leaves invariant the axis of the umbrella matrix in 𝐸𝑛 and 𝐸1
𝑛 , which is  �⃗� =

(1,1, . . ,1). 

Proof  The Euclidean umbrella matrix 𝐴 ∈ SO(𝑛) and the Lorentzian umbrella motion matrix 𝑓(𝐴) ∈ SO(𝑛 − 1,1) 

leave the same axis invariant, where 𝑓 is the dual transformation given in (4). Thus, it holds that  

𝐴. [ 

1
1
 ⋮
1

 ] = [ 

1
1
 ⋮
1

 ],     𝑓(𝐴). [ 

1
1
 ⋮
1

 ] = [ 

1
1
 ⋮
1

 ]. 

Example 4  Let 𝐴 be an umbrella matrix in 𝐸3 given in Ex. 3 as follows  

𝐴 =

[
 
 
 
 
 
 

 

     
1

3

1 − √3

3

1 + √3

3

1 + √3

3
      

1

3

1 − √3

3

1 − √3

3

1 + √3

3
      

1

3

 

]
 
 
 
 
 
 

. 

 We acquire the Lorentzian umbrella matrix 𝐴𝐿 under the 𝑓 dual transformation as follows  

𝐴𝐿 = [ 
       1 −1 − √3 1 + √3

−1 + √3        1 1 − √3

−1 + √3 −1 − √3     1

 ]. 

Now, let us verify that 𝑓 dual transformation leaves invariant the axis of the matrix 𝐴, which is �⃗� = (1,1, . . ,1), as 

given in Theorem 3.3. 

[
 
 
 
 
 
      

1

3

1 − √3

3

1 + √3

3

1 + √3

3
     

1

3

1 − √3

3

1 − √3

3

1 + √3

3
     

1

3 ]
 
 
 
 
 
 

. [
1
1
1
] = [

1
1
1
] 

[ 
       1 −1 − √3 1 + √3

−1 + √3        1 1 − √3

−1 + √3 −1 − √3     1

 ] . [
1
1
1
] = [

1
1
1
]. 
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Example 5 Let 𝐴 be an umbrella matrix is given by  

𝐴 =

[
 
 
 
 
 
 

 

  
1 − 𝜃2

1 + 3𝜃2

2(𝜃2 − 𝜃)

1 + 3𝜃2

2(𝜃2 + 𝜃)

1 + 3𝑡2

2(𝜃2 + 𝜃)

1 + 3𝜃2
  

1 − 𝜃2

1 + 3𝜃2

2(𝜃2 − 𝜃)

1 + 3𝜃2

2(𝜃2 − 𝜃)

1 + 3𝜃2

2(𝜃2 + 𝜃)

1 + 3𝜃2
  

1 − 𝜃2

1 + 3𝜃2

 

]
 
 
 
 
 
 

. 

If we multiply the matrix 𝐴 with the curve 𝜙(𝛼) = (sin(𝛼), cos(𝛼), 𝛼3), then we obtain the matrix 𝐴. 𝜙(𝛼). The 

elements of the matrix 𝐴. 𝜙(𝛼) can be represented by a surface 𝑆3 = Ψ(𝜃, 𝛼) = (
2𝛼3(𝜃2+𝜃)

3𝜃2+1
+

sin(𝛼)(1−𝜃2)

3𝜃2+1
+

2cos(𝛼)(𝜃2−𝜃)

3𝜃2+1
,
2𝛼3(𝜃2−𝜃)

3𝜃2+1
+

2sin(𝛼)(𝜃2+𝜃)

3𝜃2+1
+

cos(𝛼)(1−𝜃2)

3𝜃2+1
,
𝛼3(1−𝜃2)

3𝜃2+1
+

2sin(𝛼)(𝜃2−𝜃)

3𝜃2+1
+

2cos(𝛼)(𝜃2+𝜃)

3𝜃2+1
). See Fig. (3). 

 

Figure 3. The surface 𝑆3 ∈ 𝐸3 

With the help of 𝑓 dual transformation, we can get the Lorentzian matrix 𝐴𝐿 as below  

𝐴𝐿 =

[
 
 
 
 
 
 

  

           1
−2(𝜃2 + 𝜃)

1 − 𝜃2

2(𝜃2 + 𝜃)

1 − 𝜃2

−2(𝜃2 − 𝜃)

1 − 𝜃2
          1

2(𝜃2 − 𝜃)

1 − 𝜃2

−2(𝜃2 − 𝜃)

1 − 𝜃2

−2(𝜃2 + 𝜃)

1 − 𝜃2
         1

  

]
 
 
 
 
 
 

. 

By multiplying the matrix 𝐴𝐿 with 𝜙(𝛼), we acquire the matrix 𝐴𝐿 . 𝜙(𝛼). The elements of the matrix 𝐴𝐿 . 𝜙(𝛼) can 

be expressed as a surface 𝑆4 = Ψ(𝜃, 𝛼) = (
2𝛼3(𝜃2+𝜃)

1−𝜃2 −
2cos(𝛼)(𝜃2+𝜃)

1−𝜃2 + sin(𝛼),
2𝛼3(𝜃2−𝜃)

1−𝜃2 +
−2sin(𝛼)(𝜃2−𝜃)

1−𝜃2 +

cos(𝛼), 𝛼3 +
−2sin(𝛼)(𝜃2−𝜃)

1−𝜃2 −
2cos(𝛼)(𝜃2+𝜃)

1−𝜃2 ). See Fig. (4).  
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Figure 4. The surface 𝑆4 ∈ 𝐸1
3 

 3.4. Dual homothetic motions and dual transformations 

 

In this section, we examine homothetic motions in n-dimensional dual space 𝔻𝑛 . We give a transition from a dual 

homothetic motion matrix in �̂�𝑛 to a dual homothetic motion matrix in �̂�1
𝑛 by means of dual transformations. 

Theorem 3.4  Let �̂� ∈ �̂�𝑛 given by  

                                                                                               �̂� = [ ℎ. �̂� �̂�
   0 1

 ]                                                              (12) 

 where ℎ = ℎ. 𝐼𝑛 is a scalar matrix, �̂� ∈ SÔ(𝑛 − 1) and �̂� ∈ 𝔻1
𝑛−1.  𝑓ℎ defines a dual transformation, 

    𝑓ℎ: �̂�
𝑛 → �̂�1

𝑛 

                                                                              �̂� ↦ 𝑓ℎ(�̂�) = �̂�𝐿 = [ ℎ. 𝑓(�̂�) �̂�
     0 1

 ]                                                                   (13) 

where 𝑓 is the dual transformation given in (5), thus 𝑓(�̂�) ∈ SÔ(𝑛 − 2,1). The dual semi-orthogonal matrix �̂�𝐿 ∈

�̂�1
𝑛 represents the homothetic motion in n-dimensional dual Lorentzian space.  

Proof   We show that  

      𝑓ℎ
2(�̂�) = 𝑓ℎ(𝑓ℎ(�̂�)) 

                                   = 𝑓ℎ(�̂�𝐿),    𝑓
2 = 𝑖𝑑. 

     = �̂� 

 𝑓ℎ
2 = 𝑖𝑑. 

 Therefore, 𝑓ℎ is a dual transformation.  

Example 6  Let �̂� ∈ �̂�4 be a dual homothetic matrix for �̂� = 𝜃 + 𝜖 is given by  

�̂� =

[
 
 
 
 
 
 
 

  

cos2�̂� − sin2�̂�

3

2cos�̂�sin�̂� − 2

3

2cos�̂� + 2sin�̂�

3
    �̂�2

2cos�̂�sin�̂� + 2

3

−cos2�̂� + sin2�̂�

3

2sin�̂� − 2cos�̂�

3
2cos�̂�

2cos�̂� − 2sin�̂�

3

2sin�̂� + 2cos�̂�

3
             

1

3
2sin�̂�

             0              0              0      1

 

]
 
 
 
 
 
 
 

. 

 Thus, we can obtain the dual homothetic matrix 𝐻�̂�  with the help of 𝑓ℎ dual transformation is given in (13).  

𝐻�̂� = [ 

  sin2�̂� − cos2�̂� −2 − 2cos�̂�sin�̂�    2cos�̂� + 2sin�̂�     �̂�2

  2 − 2sin�̂�cos�̂� −sin2�̂� + cos2�̂� −2cos�̂� + 2sin�̂� 2cos�̂�
−2cos�̂� + 2sin�̂� −2cos�̂� − 2sin�̂�                3 2sin�̂�
              0                 0                0      1

 ]. 

3.5 Dual umbrella motions and dual transformations  

In this section, we carry our work in umbrella motions from n-dimensional real space to dual space 𝔻𝑛 . We give a 

transition from a dual Euclidean umbrella motion to a dual Lorentzian umbrella motion by using the dual 

transformation. Thence, we acquire a dual umbrella matrix in �̂�1
𝑛 from a dual umbrella matrix in �̂�𝑛 . 

Theorem 3.5  Let �̂� ∈ �̂�𝑛 given by     
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                                                                                            �̂� = [ �̂� �̂�
0 1

 ]                                                                                        (14) 

 where �̂� is an (𝑛 − 1) × (𝑛 − 1) dual umbrella matrix. 𝑓𝑢 defines a dual transformation, 

    𝑓𝑢: �̂�𝑛 → �̂�1
𝑛 

                                                                  �̂� ↦ 𝑓𝑢(�̂�) = �̂�𝐿 = [𝑓(�̂�) �̂�
0 1

]                                             (15) 

 where 𝑓 is the dual transformation given in (5), thus 𝑓(�̂�) ∈ SÔ(n − 2,1). The dual semi-orthogonal matrix �̂�𝐿 ∈

�̂�1
𝑛 represents the umbrella motion in n-dimensional dual Lorentzian space.  

Proof   Since 𝑓𝑢 is a dual transformation, it satisfies  

       𝑓𝑢
2(�̂�) = 𝑓𝑢(𝑓𝑢(�̂�)) 

                                   = 𝑓𝑢(�̂�𝐿),    𝑓
2 = 𝑖𝑑. 

     = �̂� 

 𝑓𝑢
2 = 𝑖𝑑. 

4. Discussion and Conclusion 

 

The geometry of the motion is important in the study of spatial mechanisms. It has a number of applications in 

geometric modeling of mechanical products or in the design of robotic motion. In this study, homothetic motions 

of a rigid body are examined. The new and the exciting part of this study is to define the dual transformation as a 

handy tool for obtaining one homothetic motion from another. We define a transition from Euclidean homothetic 

motion matrices to Lorentzian homothetic motion matrices. We give this transition by using dual transformations. 

With a similar method, we acquire umbrella motions in Lorentzian spaces. We also investigate the invariance of 

the axis of the umbrella motion that is �⃗� = (1,1, . . ,1) in both spaces. Additionally, related examples of matrices are 

provided. Furthermore, we draw their figures to investigate visual representations. Finally, because of the 

importance of the dual space in kinematics, robotics, and other areas related, we carry this work into dual spaces. 

Our paper is expected to contribute to the existing literature on kinematics. 
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