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Abstract
In this study, we introduce mappings that transform helices in Euclidean n-space to non-
null helices in Minkowski n-space or Minkowski (n+ 1)-space. Furthermore, we show that
these mappings preserve the axes of the helices, and we also obtain the invariants of the
mappings. Especially, by using these mappings, we give some examples of non-null helices
which are constructed in Minkowski 3-space or Minkowski 4-space from some helices in
Euclidean 3-space.
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1. Introduction
Helices are widely studied geometric objects that found relevancy in many fields, in-

cluding but not limited to biology, computer aided design, architecture, or mechanical
engineering. For example, the shape of the twisted-ladder structure of deoxyribonucleic
acid (DNA) is a double helix [6, 13,15].

In Euclidean 3-space, a helix is defined by the property that its tangent vector field
makes a fixed angle with a fixed direction which is the axis of the helix . This well-known
result was stated by M. A. Lancret in 1802 [9] and first proved by B. de Saint Venant
in 1845. A necessary and sufficient condition for a curve to be a general helix is to have
the ratio of its curvature to torsion constant. If both curvature and torsion are non-zero
constants, then the curve is a circular helix [2,9,14]. We can adapt the helix notion to the
Minkowski 3-space by using the angle notions in this space. Helix notion can similarly be
extended to any n-dimensional (n > 3) Euclidean or Minkowski spaces see [4, 10].

In [3], Altunkaya and Kula studied mappings that preserve helices in the n-dimensional
Euclidean space, and in [1], Altunkaya studied mappings that preserve helices in the n-
dimensional Minkowski space. These special mappings have been further characterized in
these works.
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The papers mentioned above led us to study mappings from n-dimensional Euclidean
space to n-dimensional Minkowski space that transform helices. We found some special
mappings which can be associated with special relativity with a suitable change of the
first coordinate to time (ct). Also, with these mappings, one can find the correlation of
the helicoid motion of a particle in these spaces.

This paper is organized as follows. In section 2, we give basic theory of curves in
Euclidean n-space and Minkowski n-space. Also, similar to well-known the notion of helix
in Euclidean n-space, we give definition of non-null helix with non-null axis by using notion
of angle between two non-null vector in Minkowski n-space.

In section 3, we define mappings that transform helices with the axis e1 or en from
Euclidean n-space Rn to Minkowski n-space Rn

1 , and vice versa. While one mapping that
transforms a helix with the axis e1 in Rn to a non-null helix with the timelike axis e1 in Rn

1 ,
the other mappings that transform a helix with axis en in Rn to a non-null helix with the
spacelike axis en in Rn

1 . After, we give some examples about spacelike (or timelike) helix
in Minkowski 3-space which is generated by a helix in Euclidean 3-space and illustrate
them.

In section 4, we also introduce mappings that transform a helix with the axis e1 (or
en) in Rn to a non-null helix with the timelike axis (e1, 0) (or the spacelike axis (0, en))
in Rn+1

1 . Finally, by using these mappings, we give some examples for non-null helices
are constructed in Minkowski 4-space, which plays an important role in the theory of
relativity, from some helices in Euclidean 3-space.

2. Preliminary
2.1. Euclidean space

Let Rn denote the Euclidean n-space, that is, the n-dimensional real vector space en-
dowed with the standard inner product

⟨x, y⟩ =
n∑

i=1
xiyi,

for all x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn. Also, the norm of a vector x ∈ Rn

is defined by ∥x∥ =
√

⟨x, x⟩. Let {e1, e2, ..., en} be the orthonormal basis where ej =
(δ1j , δ2j , ..., δnj) is a unit vector in Rn for j = 1, 2, ..., n.

Let the curve γ : I ⊂ R → Rn be a regular curve of order n (i.e. that {γ′(t), γ′′(t), ..., γ(n)(t)}
is a linearly independent subset of Rn for any t ∈ I). Now, let {V1, V2, ..., Vn} be the moving
Frenet frame along the regular curve γ where Vi (i = 1, 2, ..., n) denotes the ith Frenet
vector field. Then, the Frenet formulae are given by

V
′

1 = νκ1V2

V
′

i = −νκi−1Vi−1 + νκiVi+1, i = 2, 3, ..., n− 1
V

′
n = −νκn−1Vn−1

where ν = ||γ′|| and κi is the curvature functions of γ [5, 7].

Definition 2.1. The curve γ : I ⊂ R → Rn is a helix if its tangent vector field V1 makes
the fixed angle θ with a fixed direction U which is the axis. That is, ⟨V1, U⟩ = cos θ where
θ ∈ (0, π) \π

2 is a constant [12].

Definition 2.2. The (n+ 1) − helix mapping G : Rn \N → Rn+1 is defined by

G (x1, x2, ..., xn) = c

d2 + x2
1 + x2

2 + ...+ (1 − a2)x2
n

(d, x1, x2, ..., xn)

where N =
{
(x1, x2, . . . , xn) ∈ Rn| x2

1 + x2
2 + . . .+ x2

n−1 −
(
a2 − 1

)
x2

n + d2 ̸= 0
}
, a > 1,

c ̸= 0 and d ̸= 0 [3].
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Theorem 2.3. The curve γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn is a helix in Rn whose tangent
vector field V1 makes the fixed angle θ = cos−1( 1

a) with axis en iff

G(γ) = c

d2 + γ2
1 + γ2

2 + ...+ (1 − a2)γ2
n

(d, γ1, γ2, ..., γn) (2.1)

is a helix in Rn+1 whose tangent vector field V1 makes the fixed angle θ = cos−1( 1
a) with

axis (0, en) where c ̸= 0, d ̸= 0, a > 1 and d2 + γ2
1 + γ2

2 + ...+ (1 − a2)γ2
n ̸= 0 [3].

2.2. Minkowski space
Let Rn

1 denote the Minkowski n-space, that is, the n-dimensional real vector space Rn

endowed with the scalar product

⟨x, y⟩⋆ = −x1y1 +
n∑

i=2
xiyi,

for all x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn. Also, the norm of a vector x ∈ Rn
1 is

defined by ∥x∥⋆ =
√

|⟨x, x⟩⋆|. A vector x ∈ Rn
1 is said to be spacelike (resp. timelike, null)

if ⟨x, x⟩⋆ > 0 or x = 0 (resp. ⟨x, x⟩⋆ < 0, ⟨x, x⟩⋆ = 0).
A curve α : I → Rn

1 is said to be spacelike (resp. timelike, null) if α′ = dα
dt is a spacelike

(resp. timelike, null) vector at any t ∈ I [10].

Definition 2.4. Let U,W be any two non-null vectors in Rn
1 .

(1) Assume that U and W are spacelike vectors, then
(a) if Sp {U,W} is a spacelike plane, then there is a unique number 0 ≤ θ ≤ π

such that ⟨U,W ⟩⋆ = ∥U∥⋆∥W∥⋆ cos θ,
(b) if Sp {U,W} is a timelike plane, then there is a unique number θ ≥ 0 such

that ⟨U,W ⟩⋆ = ε∥U∥⋆∥W∥⋆ cosh θ where ε = 1 or ε = −1 according to
sgn(U2) = sgn(W2) or sgn(U2) ̸= sgn(W2), respectively,

(2) Assume that U and W are timelike vectors, then there is a unique number θ ≥ 0
such that ⟨U,W ⟩⋆ = ε∥U∥⋆∥W∥⋆ cosh θ where ε = 1 or ε = −1 according to U and
W have different time-orientation or same time-orientation, respectively,

(3) Assume that U is spacelike and W is timelike, then there is a unique number
θ ≥ 0 such that ⟨U,W ⟩⋆ = ε∥U∥⋆∥W∥⋆ sinh θ where ε = 1 or ε = −1 according to
sgn(U2) = sgn(W1) or sgn(U2) ̸= sgn(W1), respectively,

where θ is angle between U and W [11].

Let α : I → Rn
1 be a non-null (spacelike or timelike) curve. We assume that {α′(t), α′′(t)

, ..., α(n)(t)} are linearly independent at any t ∈ I. Now, let
{
V 1, V 2, ..., V n

}
be the moving

Frenet frame along the regular curve α where V i (i = 1, 2, ..., n) denotes the ith Frenet
vector field. Then, the Frenet formulae are given by

V
′
1 = ν⋆ε2k1V 2,

V
′
i = −ν⋆εi−1ki−1V i−1 + ν⋆εi+1kiV i+1, i = 2, 3, ..., n− 1

Vn
′ = −ν⋆εn−1kn−1 V n−1

where, ki (i = 1, 2, ..., n− 1) denotes the ith curvature, ν⋆ = ∥α′∥⋆ and εi =
〈
V i, V i

〉
⋆

for
1 ≤ i ≤ n [8].

By means of Definition 2.4, we can give the following two definitions of non-null helices
with non-null axis in Rn

1 .

Definition 2.5. A regular curve α : I → Rn
1 is a spacelike helix if its tangent vector field

V1 makes the fixed angle θ with a non-null unit vector U ∈ Rn
1 which is the axis. That is,

ε⟨V1, U⟩⋆ = f(θ̄) is a constant where,
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(1) If U is a timelike vector, then f(θ) = sinh θ, θ ≥ 0,
(2) If U is a spacelike vector and Sp {V1, U} is a spacelike plane in Rn

1 , then f(θ) =
cos θ, θ ∈ (0, π) \π

2 ,
(3) If U is a spacelike vector and Sp {V1, U} is a timelike plane in Rn

1 , then f(θ) =
cosh θ, θ ≥ 0.

Definition 2.6. A regular curve α : I → Rn
1 is a timelike helix if its tangent vector field

V1 makes the fixed angle θ with a non-null unit vector U ∈ Rn
1 which is the axis. That is,

ε⟨V1, U⟩⋆ = g(θ̄) is a constant where,
(1) If U is a timelike vector, then g(θ) = cosh θ, θ ≥ 0,
(2) If U is a spacelike vector, then g(θ) = sinh θ, θ ≥ 0.

Remark 2.7. Throughout this study, all curves are regular and the mappings are built
for helices with the axes e1 or en. Moreover, by using similar method, the mappings can
be constructed by helices with different axis.

3. Mappings that transform helices from Rn to Rn
1

In this section, we introduce mappings that transform helices with axes e1 or en from
Euclidean n-space to Minkowski n-space, and vice versa.

3.1. A mapping for helices with axis e1

In this subsection, we introduce a mapping that transforms a helix with axis e1 in Rn

to a non-null helix with the timelike axis e1 in Rn
1 .

Now, let us define the mapping Ψ : Rn \ Γ → Rn
1 \ Γ

Ψ (x) = λ

−a2x2
1 + ∥x∥2x, (3.1)

where Γ =
{
x = (x1, x2, . . . , xn) ∈ Rn| ∥x∥2 − a2x1

2 ̸= 0
}

and a ∈
(
1,

√
2
)
∪
(√

2,∞
)
, λ ̸=

0.
We get easily the following corollary for the mapping Ψ.

Corollary 3.1. Ψ is an involution. That is, Ψ = Ψ−1.

Lemma 3.2. The hypercone C =
{
x = (x1, x2, ..., xn) ∈ Rn|

n∑
i=2

xi
2 = b2x2

1, b2 ̸= a2 − 1
}

is
invariant under the mapping Ψ where a > 1 is a constant.

Proof. Let x = (x1, x2, ..., xn) ∈ C and Ψ(x) = y. So,

yi = λ

−a2x2
1 + ∥x∥2 xi, 1 ≤ i ≤ n,

and
n∑

i=2
y2

i =
(

λ

−a2x2
1 + ∥x∥2

)2 n∑
i=2

x2
i

= b2
(

λ

−a2x2
1 + ∥x∥2

)2

x1
2

= b2 y2
1.

Thus, y = (y1, y2, ..., yn) ∈ C. □
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Lemma 3.3. γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn is a helix whose tangent vector field V1

makes the fixed angle θ = cos−1( 1
a) with axis e1 iff

∥∥∥γ′
∥∥∥2

= a2
(
γ

′
1

)2
or equivalently,(

1 − a2) (γ1
′)2 +

n∑
i=2

(γi
′)2 = 0 where a > 1 [3].

Lemma 3.4. α = (α1, α2, ..., αn) : J ⊂ R → Rn
1 is a timelike (spacelike) helix whose

tangent vector field V1 makes the fixed angle θ = cosh−1(1/b), (θ = sinh−1(1/b)) with the
timelike axis e1 iff 〈

α′, α′〉
∗ = ϵb2(α1

′)2, (3.2)
or equivalently,

−(1 + ϵb2)
(
α1

′)2 +
n∑

i=2

(
αi

′)2 = 0, (3.3)

where b is a nonzero constant and ϵ = ±1.

Proof. The proof can be obtained easily by using Lemma 2.1 and Lemma 2.2 in [1] □
By the following theorem, we say that the mapping Ψ transforms a helix with axis e1

in Rn to a non-null helix with the timelike axis e1 in Rn
1 .

Theorem 3.5. Let γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn be a regular curve. Then, the curve γ
is a helix whose tangent vector field V1 makes the fixed angle θ = cos−1( 1

a), a ∈ (1,∞) \
√

2
with axis e1 iff the curve,

α : J ⊂ R → Rn
1 , α = Ψ(γ) = λ

−a2γ2
1 + ∥γ∥2γ (3.4)

is a timelike (spacelike) helix whose tangent vector field V1 makes the fixed angle θ =
cosh−1

(
ε√

2−a2

) (
θ = sinh−1

(
ε√

a2−2

))
in Rn

1 with the timelike axis e1 where λ ̸= 0 and
1 < a <

√
2 (a >

√
2).

Proof. Suppose that the curve γ is a helix whose tangent vector field V1 makes the fixed
angle θ = cos−1( 1

a) with axis e1 where a ∈ (1,∞) \
√

2. Now, let the non-null curve α be
given by α = Ψ(γ) in Rn

1 . Then, we have,
αi = h γi for i = 1, 2, ..., n (3.5)

where

h = λ

−a2γ2
1 + ∥γ∥2 . (3.6)

So, 〈
α′, α′〉

⋆ = −(hγ1)′2 +
n∑

i=2
(hγi)′2 (3.7)

and after a straightforward calculation, we obtain
n∑

i=2
(hγi)′2 = −

(
1 − a2

)
(hγ1)′2. (3.8)

Furthermore, since α is a non-null curve, by using (3.5),(3.7) and (3.8), we get〈
α′, α′〉

⋆ =
(
a2 − 2

) (
α1

′)2. (3.9)

Therefore, from (3.2), the curve α is a non-null helix with the timelike axis e1 where
ϵb2 = a2 − 2. (3.10)

Thus, by using Lemma 3.4 and (3.10), we have two cases below.



1338 H. Altınbaş, M. Mak, B. Altunkaya, L. Kula

Case 1: If 1 < a <
√

2 then α is timelike helix (ϵ = −1) whose tangent vector field V1

makes the fixed angle θ = cosh−1
(

ε√
2−a2

)
with timelike axis e1.

Case 2: If a >
√

2 then α is spacelike helix (ϵ = 1) whose tangent vector field V1 makes
the fixed angle θ = sinh−1

(
ε√

a2−2

)
with timelike axis e1.

Conversely, let us take the non-null helix α = Ψ(γ) that satisfies Case 1 or Case 2.
Then, by Lemma 3.4, (3.5), (3.6) and (3.10), we get the following differential equation

(
1 − a2

)
(hγ1)′2 +

n∑
i=2

(hγi)′2 = 0. (3.11)

After a straightforward calculation, we obtain

h2
(
−a2(γ1

′)2 +
∥∥γ′∥∥2

)
= 0. (3.12)

Since h ̸= 0, we have
∥∥∥γ′
∥∥∥2

= a2
(
γ

′
1

)2
. From Lemma 3.3, γ is a helix in Rn. □

As a result of Theorem 3.5 and Corrollary 3.1, Ψ−1(α) = γ is also a helix in Rn.

Example 3.6. Let us take the helix

γ(t)=
(√

2t3

3
+

√
2t, 1

3

(
t2 + 2

)3/2
, t

)

and its tangent vector

V1(t) =
(√

2
3
,
t
√
t2 + 2√

3 (t2 + 1)
,

1√
3 (t2 + 1)

)

makes the fixed angle θ = cos−1(
√

2
3) with axis e1 in R3. If we choose λ = 1 in (3.4),

α(t) = Ψ(γ(t)) =
(

3
√

2t
(
t2 + 3

)
12t2 + 8

,
3
(
t2 + 2

)3/2

12t2 + 8
,

9t
12t2 + 8

)

is a timelike helix and its tangent vector

V1(t) =
(

√
2, t

(
t2 − 2

)√
t2 + 2

t4 − t2 + 2
,

2 − 3t2

t4 − t2 + 2

)

makes the fixed angle θ = sinh−1
(√

2
)

with timelike axis e1 in R3
1 (see Figure 1).
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(a) (b)

Figure 1. (a) The helix γ in R3, (b) The timelike helix α = Ψ(γ) in R3
1.

Example 3.7. Let us take the helix

γ(t)=
(

5et
√

29
, et cos 2t, et sin 2t

)

and its tangent vector

V1(t) =
(√

5
34
,

√
29
170

(cos 2t− 2 sin 2t),
√

29
170

(sin 2t+ 2 cos 2t)
)

makes the fixed angle θ = cos−1(
√

5
34) with axis e1 in R3. If we choose λ = 1 in (3.4),

α(t) = Ψ(γ(t)) =
(

− 5e−t

4
√

29
,−1

4
e−t cos 2t,−1

2
e−t sin t cos t

)

is a spacelike helix and its tangent vector

V1(t) =
( √

5
2
√

6
,

√
29

2
√

30
(2 sin 2t+ cos 2t),

√
29

2
√

30
(sin 2t− 2 cos 2t)

)

makes the fixed angle θ = cosh−1
( √

5
2
√

6

)
with timelike axis e1 in R3

1. Also, the helices γ

and α lie on the surface
{

(x, y, z) ∈ R3
∣∣∣ y2 + z2 = 29

25x
2
}

(see Figure 2).



1340 H. Altınbaş, M. Mak, B. Altunkaya, L. Kula

(a) (b)

Figure 2. (a) The conical helix γ in R3, (b) The spacelike helix α = Ψ(γ) in
R3

1.

3.2. Mappings for helices with axis en

In this subsection, we introduce mappings which transforms a helix with axis en in Rn

to a non-null helix with the spacelike axis en in Rn
1 .

Now, let ψ1 : Rn → Rn
1 be the mappping defined by

ψ1 (x) =
(
a2 − 1
a

xn,

√
a2 − 1
a

x2,

√
a2 − 1
a

x3, . . . ,

√
a2 − 1
a

xn−1,
1
a
x1

)
, (3.13)

where x = (x1, x2, . . . , xn) ∈ Rn and a > 1.
Similar to Lemma 3.3 and Lemma 3.4 , we give the following two Lemmas.

Lemma 3.8. γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn is a helix whose tangent vector field V1
makes the fixed angle θ = cos−1( 1

a) with axis en iff ∥γ′∥2 = a2 (γ′
n)2 or equivalently,(

1 − a2) (γ′
n)2 +

n−1∑
i=1

(γi
′)2 = 0 where a > 1.

Lemma 3.9. α = (α1, α2, ..., αn) : J ⊂ R → Rn
1 is a non-null helix whose tangent vector

field V1 makes the fixed angle with the spacelike axis en iff〈
α′, α′〉

∗ = ϵb2(α′
n

)2
, (3.14)

or equivalently,

−
(
α′

1
)2 +

n−1∑
j=2

(
α′

j

)2
+ (1 − ϵb2)

(
α′

n

)2 = 0, (3.15)

where b is a nonzero constant and ϵ = ±1.
By the following theorem, we say that the mapping ψ1 transforms a helix with axis en

in Rn to a non-null helix with the spacelike axis en in Rn
1 .

Theorem 3.10. Let γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn be a regular curve. Then, the curve
γ is a helix whose tangent vector field V1 makes the fixed angle θ = cos−1( 1

a) with axis en

where a ∈
(
1,

√
2
)

∪
(√

2,∞
)

iff the curve

α : J ⊂ R → Rn
1 , α = ψ1(γ) (3.16)

is a timelike (spacelike) helix whose tangent vector field V1 makes the fixed angle θ =
sinh−1

(
ε√

−2+a2

) (
θ = cosh−1

(
ε√

2−a2

))
with the spacelike axis en in Rn

1 , where a >
√

2 (1 < a <
√

2).
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Proof. Suppose that the curve γ is a helix whose tangent vector field V1 makes the fixed
angle θ = cos−1( 1

a) with en where a ∈ (1,∞) \
√

2. Now, by using (3.16), we have

α1 = a2 − 1
a

γn, (3.17)

αj =
√
a2 − 1
a

γj , j = 2, 3, ..., n− 1, (3.18)

αn = 1
a
γ1. (3.19)

So, 〈
α′, α′〉

⋆ =
(
α′

n

)2 (2 − a2
)
, (3.20)

and from (3.14), the curve α is a non-null helix with the spacelike axis en where
ϵb2 = 2 − a2. (3.21)

Thus, by using Lemma 3.9 and (3.21),
Case 1: If 1 < a <

√
2 then α is spacelike helix (ϵ = 1) whose tangent vector field V1 makes

the fixed angle θ = cosh−1
(

ε√
2−a2

)
with spacelike axis en.

Case 2: If a >
√

2 then α is timelike helix (ϵ = −1) whose tangent vector field V1 makes
the fixed angle θ = sinh−1

(
ε√

a2−2

)
with spacelike axis en.

Conversely, let us take the non-null helix α with spacelike axis en in Rn
1 that satisfies Case

1 or Case 2. Then, it is clear that the curve γ is a helix with axis en in Rn. □
Let ψ2 : Rn → Rn

1 be the mappping defined by

ψ2 (x) =
(√

a4 − 1xn,
√
a2 + 1x2,

√
a2 + 1x3, . . . ,

√
a2 + 1xn−1, ax1

)
, (3.22)

where x = (x1, x2, . . . , xn) ∈ Rn and a > 1.
By the following theorem, we say that the mapping ψ2 transforms a helix with axis en

in Rn to a timelike helix with the spacelike axis en in Rn
1 .

Theorem 3.11. Let γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn be a regular curve. Then, the curve
γ is a helix whose tangent vector field V1 makes the fixed angle θ = cos−1( 1

a) with axis en

where a > 1 iff the curve,
α : J ⊂ R → Rn

1 , α = ψ2(γ) (3.23)
is a timelike helix whose tangent vector field V1 makes the fixed angle θ = sinh−1(εa) with
the spacelike axis en in Rn

1 .

Proof. We omit the proof since it is analogous to the proof of Theorem 3.10. □
Let ψ3 : Rn → Rn

1 be the mappping defined by

ψ3 (x) =
(
a
√
a2 − 1xn, ax2, ax3, . . . , axn−1,

√
a2 − 1x1

)
, (3.24)

where x = (x1, x2, . . . , xn) ∈ Rn and a > 1.
By the following theorem, we say that the mapping ψ3 transforms a helix with axis en

in Rn to a timelike helix with the spacelike axis en in Rn
1 .

Theorem 3.12. Let γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn be a regular curve. Then, the curve
γ is a helix whose tangent vector field V1 makes the fixed angle θ = cos−1( 1

a) with axis en

where a > 1 iff the curve,
α : J ⊂ R → Rn

1 , α = ψ3(γ) (3.25)
is a timelike helix whose tangent vector field V1 makes the fixed angle θ = sinh−1(ε

√
a2 − 1)

with the spacelike axis en in Rn
1 .
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Proof. We omit the proof since it is analogous to the proof of Theorem 3.10. □
Example 3.13. Let us take the helix

γ (t) =
(√

11 cos t
6
,
√

11 sin t

6
,
5t
6

)
and its tangent vector

V1(t) =
(

−
√

11
6

sin t

6
,

√
11
6

cos t
6
,
5
6

)
makes the fixed angle θ = cos−1(5

6) with axis e3 in R3. Also, the curve

α(t) = ψ1 (γ (t)) =
(

11t
36
,
11
6

sin t

6
,
5
√

11
6

cos t
6

)
is a spacelike helix and its tangent vector

V1(t) =
(√

11
14

csc t
6
,

√
11
14

cot t
6
,− 5√

14

)

makes the fixed angle θ̄ = cosh−1
(

5√
14

)
with the spacelike axis e3 in R3

1. Moreover, the
curve γ lies on the helicoid

{
(x, y, z) ∈ R3 ∣∣ y

x = tan z
5
}

in R3 and the curve α lies on the
surface

{
(x, y, z) ∈ R3

∣∣∣yz =
√

11
5 tan 6x

11

}
in R3

1 (see Figure 3).

(a) (b)

Figure 3. (a) The helix γ in R3, (b) The spacelike helix α = ψ1 (γ) in R3
1.

Example 3.14. Let us take the spherical helix

γ (t) =
(

−3
5

cos 4t− 2
5

cos 6t,−3
5

sin 4t− 2
5

sin 6t, 2
√

6
5

sin t
)

and its tangent vector

V1(t) =
(

2
√

6
5

sin 5t, −2
√

6
5

cos 5t, 1
5

)
makes the fixed angle θ = cos−1(1

5) with axis e3 in R3. Also, the curve

α(t) = ψ2 (γ (t)) =
(

24
√

26
5

sin t,−
√

26
5

(3 sin 4t+ 2 sin 6t),−3 cos 4t− 2 cos 6t
)
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is a timelike helix and its tangent vector

V1(t) =
(

2
√

26 cos t
sin 4t+ sin 6t

,−
√

26(cos 4t+ cos 6t)
sin 4t+ sin 6t

, 5
)

makes the fixed angle θ = sinh−1 (5) with spacelike axis e3 in R3
1. Moreover, the curve γ lies

on the unit sphere in R3 and the curve α lies on the surface
{

(x, y, z) ∈ R3
∣∣∣ x2

624 + y2

26 + z2

25 = 1
}

in R3
1 (see Figure 4).

(a) (b)

Figure 4. (a) The spherical helix γ in R3, (b) The timelike helix α = ψ2 (γ)
in R3

1.

Example 3.15. Let us take the helix

γ (t) =
(

2t sin t+ 2 cos t√
3

,
2 sin t− 2t cos t√

3
,
t2 + 1

3

)

and its tangent vector

V1(t) =
(√

3
2

cos t,
√

3
2

sin t, 1
2

)

makes the fixed angle θ = cos−1(1
2) with axis e3 in R3. Also, the curve

α(t) = ψ3 (γ (t)) =
(

2t2 + 2√
3

,
4 sin t− 4t cos t√

3
, 2t sin t+ 2 cos t

)

is a timelike helix and its tangent vector

V1(t) =
(
2 sec t, 2 tan t,

√
3
)

makes the fixed angle θ = sinh−1(
√

3) with spacelike axis e3 in R3
1. Moreover, the curve

γ lies on the paraboloid
{
(x, y, z) ∈ R3 ∣∣x2 + y2 = 4z

}
in R3 and the curve α lies on the

surface
{

(x, y, z) ∈ R3
∣∣∣ 3y2

4 + z2 = 2
√

3x
}

in R3
1 (see Figure 5).
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(a) (b)

Figure 5. (a) The paraboloidal helix γ in R3, (b) The timelike helix α = ψ3(γ)
in R3

1.

4. Mappings that transform helices from Rn to Rn+1
1

Now, we introduce a mapping that transforms a helix with axis e1 in Rn to a non-null
helix with the timelike axis (e1, 0) in Rn+1

1 .
Let Φ : Rn \ Ω → Rn+1

1 be the mappping defined by

Φ (x1, x2, . . . , xn) = µ

d2 − a2x2
1 + ∥x∥2 (x1, x2, . . . , xn, d) , (4.1)

where Ω =
{
x ∈ Rn | ∥x∥2 − a2x1

2 + d2 ̸= 0
}

, µ ̸= 0, d ̸= 0 and a > 1.
Analogously to the proof of Theorem 3.5, we can prove that the following theorem.

Theorem 4.1. Let γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn be a regular curve. Then, the curve
γ is a helix whose tangent vector field V1 makes the fixed angle θ = cos−1( 1

a) with axis
e1 ∈ Rn where a ∈ (1,∞) \

√
2 iff the curve β : J ⊂ R → Rn+1

1 ,

β = Φ(γ) = µ

d2 − a2γ2
1 + ∥γ∥2 (γ1, γ2, ..., γn, d) (4.2)

is a timelike (spacelike) helix whose tangent vector field V1 makes the fixed angle θ =
cosh−1

(
ε√

2−a2

)(
θ = sinh−1

(
ε√

a2−2

))
with the timelike axis (e1, 0) ∈ Rn+1

1 , where µ ̸=
0, d ̸= 0 and 1 < a <

√
2 (a >

√
2).

Example 4.2. Let us take the helix

γ(t)=
(
t3

3
+ t,

2
3

(
t2 + 2

)3/2
, 2t
)

and its tangent vector

V1(t) =
(

1√
5
,

2t
√
t2 + 2√

5 (t2 + 1)
,

2√
5 (t2 + 1)

)
makes the fixed angle θ = cos−1( 1√

5) with axis e1 in R3. If we choose µ = 2 and d = 2 in
(4.2),

β(t) = Φ(γ(t)) =
(

3t
(
t2 + 3

)
24t2 + 34

,
3
(
t2 + 2

)3/2

12t2 + 17
,

9t
12t2 + 17

,
9

12t2 + 17

)
is a spacelike helix and its tangent vector

V1(t) =
(

1√
3
,
2t
(
4t2 + 1

)√
t2 + 2√

3 (4t4 + 5t2 + 17)
,

34 − 24t2√
3 (4t4 + 5t2 + 17)

,− 16
√

3t
4t4 + 5t2 + 17

)
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makes the fixed angle θ = cosh−1
(

1√
3

)
with timelike axis (e1, 0) = (1, 0, 0, 0) in R4

1.

Example 4.3. Let us take the cylindrical helix

γ(t)=
(√

3√
2
t, cos t√

2
, sin t√

2

)
and its tangent vector

V1(t) =
(√

3
2
,−1

2
sin t√

2
,
1
2

cos t√
2

)

makes the fixed angle θ = cos−1(
√

3
2 ) with axis e1 in R3. If we choose µ = 1 and d = 1

2 in
(4.2),

β(t) = Φ(γ(t)) =
(

2
√

6t
5 − 2t2

,
4

5 − 2t2
cos t√

2
,

4
5 − 2t2

sin t√
2
,

2
5 − 2t2

)
is a timelike helix and its tangent vector

V1(t) =

√3
2
,

√
2
(
2t2 − 5

)
sin t√

2 + 8t cos t√
2

4t2 + 10
,

√
2
(
5 − 2t2

)
cos t√

2 + 8t sin t√
2

4t2 + 10
,

2t
2t2 + 5


makes the fixed angle θ = sinh−1

(√
3
2

)
with timelike axis (e1, 0) = (1, 0, 0, 0) in R4

1.

Now, we define mappings that transforms a helix with en in Rn to a non-null helix with
the spacelike axis (0, en) in Rn+1

1 .
Let φi = ψi ◦ G : Rn → Rn+1

1 be a mapping for i = 1, 2, 3. Then, the mapping ψi

transforms a helix from with axis en in Rn to another helix with the spacelike axis (0, en)
in Rn+1

1 .

Corollary 4.4. Let γ = (γ1, γ2, ..., γn) : I ⊂ R → Rn be a regular curve. Then, the curve
γ is a helix whose tangent vector field V1 makes the fixed angle θ = cos−1( 1

a) with axis
en ∈ Rn where a > 1. Then,

1) Let us take,

β1 = φ1 (γ) = c

d2 − a2γ2
n + ∥γ∥2

(
a2 − 1
a

γn,

√
a2 − 1
a

γ1,

√
a2 − 1
a

γ2, . . . ,

√
a2 − 1
a

γn−1,
1
a
d

)
i) β1 : J ⊂ R → Rn+1

1 is a timelike helix whose tangent vector field V1 makes
the fixed angle θ = sinh−1

(
ε√

a2−2

)
with the spacelike axis (0, en), where a >

√
2,

ii) β1 : J ⊂ R → Rn+1
1 is a spacelike helix whose tangent vector field V1

makes the fixed angle θ = cosh−1
(

ε√
2−a2

)
with the spacelike axis (0, en), where

1 < a <
√

2.
2) The curve β2 : J ⊂ R → Rn+1

1 ,

β2 = φ2 (γ) = c

d2 − a2γ2
n + ∥γ∥2

(√
a4 − 1γn,

√
a2 + 1γ1,

√
a2 + 1γ2, . . . ,

√
a2 + 1γn−1, ad

)
is a timelike helix whose tangent vector field V1 makes the fixed angle θ = sinh−1 (εa)
with the spacelike axis (0, en).

3) The curve β3 : J ⊂ R → Rn+1
1 ,

β3 = φ3 (γ) = c

d2 − a2γ2
n + ∥γ∥2

(
a
√
a2 − 1γn, aγ1, aγ2, . . . , aγn−1, d

√
a2 − 1

)
is a timelike helix whose tangent vector field V1 makes the fixed angle
θ = sinh−1

(
ε
√
a2 − 1

)
with the spacelike axis (0, en).
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Example 4.5. Let us take the helix

γ (t) =
(√

11 cos t
6
,
√

11 sin t

6
,
5t
6

)
and its tangent vector

V1(t) =
(

−
√

11
6

sin t

6
,

√
11
6

cos t
6
,
5
6

)
makes the fixed angle θ = cos−1(5

6) with axis e3 in R3. If we choose c = 1 and d = 1 in
Corollary 4.4, then

1) The curve

φ1 (γ (t)) =
( 11t

432 − 11t2
,

66
432 − 11t2

cos t
6
,

66
432 − 11t2

sin t

6
,

30
432 − 11t2

)
is a spacelike helix in R4

1. Then, its tangent vector field

V1(t) =
(

11t2 + 432
12

√
14t

,

(
11t2 − 432

)
sin t

6 + 132t cos t
6

12
√

14t
,

(
432 − 11t2

)
cos t

6 + 132t sin t
6

12
√

14t
,

5√
14

)

makes the fixed angle θ̄ = cosh−1
(

5√
14

)
with the spacelike axis (0, e3) = (0, 0, 0, 1)

in R4
1.

2) The curve

φ2 (γ (t)) =
(

6
√

671t
2160 − 55t2

,
36

√
671

2160 − 55t2
cos t

6
,

36
√

671
2160 − 55t2

sin t

6
,

216
2160 − 55t2

)
is a timelike helix in R4

1. Then, its tangent vector field

V1(t) =

(√
61
11

11t2 + 432
60t

,

√
61
11

(
11t2 − 432

)
sin t

6 + 132t cos t
6

60t
,

√
61
11

(
432 − 11t2

)
cos t

6 + 132t sin t
6

60t
,

6
5

)

makes the fixed angle θ = sinh−1
(

6
5

)
with the spacelike axis (0, e3) = (0, 0, 0, 1)

in R4
1.

3) The curve

φ3 (γ (t)) =
(

36
√

11t
2160 − 55t2

,
216

√
11

2160 − 55t2
cos t

6
,

216
√

11
2160 − 55t2

sin t

6
,

36
√

11
2160 − 55t2

)
is a timelike helix in R4

1. Then, its tangent vector field

V1(t) =
(

11t2 + 432
10

√
11t

,

(
11t2 − 432

)
sin t

6 + 132t cos t
6

10
√

11t
,

(
432 − 11t2

)
cos t

6 + 132t sin t
6

10
√

11t
,

√
11
5

)

makes the fixed angle θ = sinh−1
(√

11
5

)
with the spacelike axis (0, e3) = (0, 0, 0, 1)

in R4
1.
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