On the Solutions of a Fourth Order Difference Equation

Raafat Abo-Zeid ${ }^{1}$
${ }^{1}$ Department of Basic Science, The Higher Institute for Engineering \& Technology, Al-Obour, Cairo, Egypt

Article Info

Keywords: difference equation, invariant set, forbidden set, convergence. 2010 AMS: 39A20.
Received: 16 April 2021
Accepted: 18 June 2021
Available online: 30 June 2021

Abstract

In this paper, we solve and study the global behavior of the well defined solutions of the difference equation $$
x_{n+1}=\frac{x_{n} x_{n-3}}{A x_{n-2}+B x_{n-3}}, \quad n=0,1, \ldots
$$

where $A, B>0$ and the initial values $x_{-i}, i \in\{0,1,2,3\}$ are real numbers.

1. Introduction

In [1], we determined an explicit formula for the solutions of the fourth order difference equation

$$
x_{n+1}=\frac{x_{n} x_{n-2}}{a x_{n-2}+b x_{n-3}}, n=0,1, \ldots
$$

where a, b are positive real numbers and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are real numbers.
In [2] and [8], we determined the forbidden set and introduced an explicit formula for the solutions of each of the two fourth order difference equations (respectively)

$$
x_{n+1}=\frac{a x_{n} x_{n-2}}{-b x_{n}+c x_{n-3}}, n=0,1, \ldots
$$

and

$$
x_{n+1}=\frac{a x_{n} x_{n-2}}{b x_{n}+c x_{n-3}}, n=0,1, \ldots
$$

where a, b, c are positive real numbers and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are real numbers.
In [10], the authors studied the qualitative analysis of the fourth order difference equation

$$
x_{n+1}=a x_{n-1}+\frac{b x_{n-1}}{c x_{n-1}-d x_{n-3}}, n=0,1, \ldots
$$

where a, b, c, d are positive real numbers and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are arbitrary real numbers.
In [15], the authors obtained the solutions of the fourth order difference equation

$$
x_{n+1}=\frac{x_{n} x_{n-3}}{x_{n-2}\left(\pm 1 \pm x_{n} x_{n-3}\right)}, \quad n=0,1, \ldots
$$

where the initial conditions are arbitrary real numbers.
In [24], the author studied the boundedness character of the positive solutions of the fourth order difference equation

$$
x_{n+1}=\max \left\{A, \frac{x_{n}^{p}}{x_{n-3}^{p}}\right\}, n=0,1, \ldots
$$

where the parameters A and p are positive real numbers. For more on difference equations (See [3]- [7], [9], [11]- [14], [16]- [23]) and the references therein.

In this paper, we study the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-3}}{A x_{n-2}+B x_{n-3}}, \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

where $A, B>0$ and the initial values $x_{-i}, i \in\{0,1,2,3\}$ are real numbers.
The transformation

$$
\begin{equation*}
z_{n}=\frac{x_{n-1}}{x_{n}}, \text { with } z_{-2}=\frac{x_{-3}}{x_{-2}}, z_{-1}=\frac{x_{-2}}{x_{-1}} \text { and } z_{0}=\frac{x_{-1}}{x_{0}} \tag{1.2}
\end{equation*}
$$

reduces Equation (1.1) into the difference equation

$$
\begin{equation*}
z_{n+1}=\frac{A}{z_{n-2}}+B, n=0,1, \ldots \tag{1.3}
\end{equation*}
$$

During this paper, we suppose that

$$
\theta_{j}=\frac{\lambda_{+}^{j}-\lambda_{-}^{j}}{\sqrt{B^{2}+4 A}}
$$

where $\lambda_{-}=\frac{B}{2}-\frac{\sqrt{B^{2}+4 A}}{2}$ and $\lambda_{+}=\frac{B}{2}+\frac{\sqrt{B^{2}+4 A}}{2}, j=0,1, \ldots$.
Let $\mu_{l}(j)=A x_{l} \theta_{j}+x_{l-1} \theta_{j+1}, l \in\{0,-1,-2\}$ and $j=0,1, \ldots$.
We give the following Lemma without proof:
Lemma 1.1. The following identities are true:

1. $A \theta_{j}+B \theta_{j+1}=\theta_{j+2}, j=0,1, \ldots$.
2. $A \mu_{l}(j)+B \mu_{l}(j+1)=\mu_{l}(j+2), l \in\{0,-1,-2\}$ and $j=0,1, \ldots$.

2. Solution of Equation (1.1)

In this section, we shall give two invariant sets and introduce the solution of Equation (1.1).
Consider the sets

$$
D_{+}=\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right) \in \mathbb{R}^{4}:-\frac{u_{0}}{\left(\lambda_{+} / A\right)^{3}}=\frac{u_{-1}}{\left(\lambda_{+} / A\right)^{2}}=-\frac{u_{-2}}{\lambda_{+} / A}=u_{-3}\right\}
$$

and

$$
D_{-}=\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right) \in \mathbb{R}^{4}:-\frac{u_{0}}{\left(\lambda_{-} / A\right)^{3}}=\frac{u_{-1}}{\left(\lambda_{-} / A\right)^{2}}=-\frac{u_{-2}}{\lambda_{-} / A}=u_{-3}\right\}
$$

Theorem 2.1. The two sets D_{+}and D_{-}are invariant sets for Equation (1.1).
Proof. Let $\left(x_{0}, x_{-1}, x_{-2}, x_{-3}\right) \in D_{+}$. We show that $\left(x_{n}, x_{n-1}, x_{n-2}, x_{n-3}\right) \in D_{+}$for each $n \in \mathbb{N}$. The proof is by induction on n. The point $\left(x_{0}, x_{-1}, x_{-2}, x_{-3}\right) \in D_{+}$implies

$$
\left.-\frac{x_{0}}{\left(\lambda_{+} / A\right)^{3}}=\frac{x_{-1}}{\left(\lambda_{+} / A\right)^{2}}=-\frac{x_{-2}}{\lambda_{+} / A}=x_{-3}\right\}
$$

Now for $n=1$, we have

$$
\begin{aligned}
x_{1} & =\frac{x_{0} x_{-3}}{A x_{-2}+B x_{-3}}=\frac{-\left(\lambda_{+} / A\right)^{2} x_{-2}\left(A / \lambda_{+}\right) x_{-2}}{A x_{-2}-B\left(A / \lambda_{+}\right) x_{-2}} \\
& =-\frac{1}{A^{2}} \frac{\lambda_{+} x_{-2}}{1-B / \lambda_{+}}=-\frac{1}{\left(A / \lambda_{+}\right)^{3}} x_{-2}
\end{aligned}
$$

Then we have

$$
-\frac{x_{1}}{\left(\lambda_{+} / A\right)^{3}}=\frac{x_{0}}{\left(\lambda_{+} / A\right)^{2}}=-\frac{x_{-1}}{\lambda_{+} / A}=x_{-2}
$$

This implies that $\left(x_{1}, x_{0}, x_{-1}, x_{-2}\right) \in D_{+}$.
Suppose now that for a certain $n \in \mathbb{N},\left(x_{n}, x_{n-1}, x_{n-2}, x_{n-3}\right) \in D_{+}$. That is

$$
-\frac{x_{n}}{\left(\lambda_{+} / A\right)^{3}}=\frac{x_{n-1}}{\left(\lambda_{+} / A\right)^{2}}=-\frac{x_{n-2}}{\lambda_{+} / A}=x_{n-3}
$$

Then

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n} x_{n-3}}{A x_{n-2}+B x_{n-3}}=\frac{-\left(\lambda_{+} / A\right)^{2} x_{n-2}\left(A / \lambda_{+}\right) x_{n-2}}{A x_{n-2}-B\left(A / \lambda_{+}\right) x_{n-2}} \\
& =-\frac{1}{A^{2}} \frac{\lambda_{+} x_{n-2}}{1-B / \lambda_{+}}=-\frac{1}{\left(A / \lambda_{+}\right)^{3}} x_{n-2}
\end{aligned}
$$

Then we have

$$
-\frac{x_{n+1}}{\left(\lambda_{+} / A\right)^{3}}=\frac{x_{n}}{\left(\lambda_{+} / A\right)^{2}}=-\frac{x_{n-1}}{\lambda_{+} / A}=x_{n-2}
$$

This means that the point $\left(x_{n+1}, x_{n}, x_{n-1}, x_{n-2}\right) \in D_{+}$. Therefore, D_{+}is an invariant set for Equation (1.1).
By similar way, we can show that D_{-}is an invariant set for Equation (1.1).
This completes the proof.

Theorem 2.2. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a well defined solution of Equation (1.1). Then

$$
x_{n}=\left\{\begin{align*}
\frac{v}{\mu_{-2}\left(\frac{n+2}{3}\right) \mu_{-1}\left(\frac{n-1}{3}\right) \mu_{0}\left(\frac{n-1}{3}\right)}, & n=1,4, \ldots \tag{2.1}\\
\frac{v}{\mu_{-2}\left(\frac{n+1}{3}\right) \mu_{-1}\left(\frac{n+1}{3}\right) \mu_{0}\left(\frac{n-2}{3}\right)}, & n=2,5, \ldots \\
\frac{v}{\mu_{-2}\left(\frac{n}{3}\right) \mu_{-1}\left(\frac{n}{3}\right) \mu_{0}\left(\frac{n}{3}\right)}, & n=3,6, \ldots
\end{align*}\right.
$$

where $v=x_{0} x_{-1} x_{-2} x_{-3}$.
Proof. We can write the given solution (2.1) as

$$
\begin{aligned}
x_{3 m+1} & =\frac{v}{\mu_{-2}(m+1) \mu_{-1}(m) \mu_{0}(m)} \\
x_{3 m+2} & =\frac{v}{\mu_{-2}(m+1) \mu_{-1}(m+1) \mu_{0}(m)}
\end{aligned}
$$

and

$$
x_{3 m+3}=\frac{v}{\mu_{-2}(m+1) \mu_{-1}(m+1) \mu_{0}(m+1)}
$$

When $m=0$,

$$
\begin{aligned}
x_{1} & =\frac{v}{\mu_{-2}(1) \mu_{-1}(0) \mu_{0}(0)}=\frac{v}{\left(A x_{-2}+B x_{-3}\right) x_{-2} x_{-1}} \\
& =\frac{x_{0} x_{-3}}{A x_{-2}+B x_{-3}}, \\
x_{2} & =\frac{v}{\mu_{-2}(1) \mu_{-1}(1) \mu_{0}(0)}=\frac{v}{\left(A x_{-2}+B x_{-3}\right)\left(A x_{-1}+B x_{-2}\right) x_{-1}} \\
& =\frac{x_{1} x_{-2}}{A x_{-1}+B x_{-2}}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{3} & =\frac{v}{\mu_{-2}(1) \mu_{-1}(1) \mu_{0}(1)}=\frac{v}{\left(A x_{-2}+B x_{-3}\right)\left(A x_{-1}+B x_{-2}\right)\left(A x_{0}+B x_{-1}\right)} \\
& =\frac{x_{0} x_{-3}}{A x_{-2}+B x_{-3}} \frac{x_{-2} x_{-1}}{\left(A x_{-1}+B x_{-2}\right)\left(A x_{0}+B x_{-1}\right)} \\
& =\frac{x_{1} x_{-2}}{A x_{-1}+B x_{-2}} \frac{x_{-1}}{A x_{0}+B x_{-1}}=\frac{x_{2} x_{-1}}{A x_{0}+B x_{-1}} .
\end{aligned}
$$

Suppose that the result is true for $m>0$.
Then

$$
\begin{aligned}
\frac{x_{3 m} x_{3 m-3}}{A x_{3 m-2}+B x_{3 m-3}} & =\frac{\frac{v}{\mu_{-2}(m) \mu_{-1}(m) \mu_{0}(m)} \frac{v}{\mu_{-2}(m-1) \mu_{-1}(m-1) \mu_{0}(m-1)}}{\frac{A v}{\mu_{-2}(m) \mu_{-1}(m-1) \mu_{0}(m-1)}+\frac{v v}{\mu_{-2}(m-1) \mu_{-1}(m-1) \mu_{0}(m-1)}} \\
& =\frac{\frac{v}{\mu_{-1}(m) \mu_{0}(m)}}{A \mu_{-2}(m-1)+B \mu_{-2}(m)} .
\end{aligned}
$$

Using Lemma (1.1), we have

$$
A \mu_{-2}(m-1)+B \mu_{-2}(m)=\mu_{-2}(m+1)
$$

Then

$$
\begin{aligned}
& \frac{x_{3 m} x_{3 m-3}}{A x_{3 m-2}+B x_{3 m-3}} \\
& =\frac{\frac{v}{\mu_{-1}(m) \mu_{0}(m)}}{A \mu_{-2}(m-1)+B \mu_{-2}(m)} \\
& =\frac{v}{\mu_{-2}(m+1) \mu_{-1}(m) \mu_{0}(m)}=x_{3 m+1}
\end{aligned}
$$

Similarly we can show that

$$
\frac{x_{3 m+1} x_{3 m-2}}{A x_{3 m-1}+B x_{3 m-2}}=x_{3 m+2} \text { and } \frac{x_{3 m+2} x_{3 m-1}}{A x_{3 m}+B x_{3 m-1}}=x_{3 m+3}
$$

This completes the proof.

3. Global behavior of Equation (1.1)

In this section, we introduce the forbidden set and determine the global behavior of Equation (1.1). Clear that, if $x_{0}=0$ and $x_{-1} x_{-2} x_{-3} \neq 0$, then x_{4} is undefined. If $x_{-1}=0$ and $x_{0} x_{-2} x_{-3} \neq 0$, then x_{7} is undefined. If $x_{-2}=0$ and $x_{0} x_{-1} x_{-3} \neq 0$, then x_{6} is undefined. Finally, if $x_{-3}=0$ and $x_{0} x_{-1} x_{-2} \neq 0$, then x_{5} is undefined.
The following result provides the forbidden set of Equation (1.1).
Theorem 3.1. The forbidden set of equation (1.1) as

$$
\begin{aligned}
F= & \bigcup_{i=0}^{3}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right) \in \mathbb{R}^{4}: u_{-i}=0\right\} \cup \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right) \in \mathbb{R}^{4}: u_{0}=-\frac{u_{-1}}{A} \frac{\theta_{m+1}}{\theta_{m}}\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right) \in \mathbb{R}^{4}: u_{-1}=-\frac{u_{-2}}{A} \frac{\theta_{m+1}}{\theta_{m}}\right\} \cup \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right) \in \mathbb{R}^{4}: u_{-2}=-\frac{u_{-3}}{A} \frac{\theta_{m+1}}{\theta_{m}}\right\} .
\end{aligned}
$$

Theorem 3.2. Assume that $\left\{x_{n}\right\}_{n=-3}^{\infty}$ is a well defined solution of Equation (1.1). Then the following statements are true:

1. If $A+B>1$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to zero.
2. If $A+B<1$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ is unbounded.

Proof. We can write $\theta_{j}=\lambda_{+}^{j} \frac{\left(1-\left(\frac{\lambda_{-}}{\lambda_{+}}\right)^{j}\right)}{\sqrt{B^{2}+4 A}}$.

1. If $A+B>1$, then $\lambda_{+}>1$. That is $\theta_{m} \rightarrow \infty$ as $m \rightarrow \infty$. This implies that

$$
x_{3 m}=\frac{v}{\mu_{-2}(m) \mu_{-1}(m) \mu_{0}(m)} \rightarrow 0 \text { as } m \rightarrow \infty
$$

Similarly, we can show that

$$
x_{3 m+1} \rightarrow 0 \text { as } m \rightarrow \infty \text { and } x_{3 m+2} \rightarrow 0 \text { as } m \rightarrow \infty
$$

For (2), it is enough to note that $\lambda_{+}<1$ when $A+B<1$. This completes the proof.

Theorem 3.3. Assume that $A+B=1$, then every well defined solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Equation (1.1) converges to a finite limit.
Proof. When $A+B=1$, we have $\lambda_{+}=1$. Then

$$
\mu_{-j}(m)=A x_{-j} \theta_{m}+x_{-j-1} \theta_{m+1} \rightarrow \frac{A x_{-j}+x_{-j-1}}{\sqrt{B^{2}+4 A}} \text { as } m \rightarrow \infty, j \in\{0,1,2\}
$$

This implies that

$$
\begin{aligned}
x_{3 m} & =\frac{v}{\mu_{-2}(m) \mu_{-1}(m) \mu_{0}(m)} \rightarrow \\
& \frac{v\left(B^{2}+4 A\right)^{\frac{3}{2}}}{\left(A x_{0}+x_{-1}\right)\left(A x_{-1}+x_{-2}\right)\left(A x_{-2}+x_{-3}\right)} \text { as } m \rightarrow \infty .
\end{aligned}
$$

Similarly, we have that

$$
x_{3 m+1} \rightarrow \frac{v\left(B^{2}+4 A\right)^{\frac{3}{2}}}{\left(A x_{0}+x_{-1}\right)\left(A x_{-1}+x_{-2}\right)\left(A x_{-2}+x_{-3}\right)} \text { as } m \rightarrow \infty
$$

and

$$
x_{3 m+2} \rightarrow \frac{v\left(B^{2}+4 A\right)^{\frac{3}{2}}}{\left(A x_{0}+x_{-1}\right)\left(A x_{-1}+x_{-2}\right)\left(A x_{-2}+x_{-3}\right)} \text { as } m \rightarrow \infty
$$

Therefore, the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Equation (1.1) converges to

$$
\frac{v\left(B^{2}+4 A\right)^{\frac{3}{2}}}{\left(A x_{0}+x_{-1}\right)\left(A x_{-1}+x_{-2}\right)\left(A x_{-2}+x_{-3}\right)} \text { as } m \rightarrow \infty
$$

This completes the proof.
Example (1) Figure 1. shows that, if $A=0.2, B=0.4(A+B<1)$, then a solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.1) with $x_{-3}=3, x_{-2}=2$, $x_{-1}=-1$ and $x_{0}=3$ is unbounded.
Example (2) Figure 2. shows that, if $A=1.6, B=0.3(A+B>1)$, then a solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.1) with $x_{-3}=3, x_{-2}=2$, $x_{-1}=-1$ and $x_{0}=3$ converges to zero.
Example (3) Figure 3. shows that, if $A=0.62, B=0.38(A+B=1)$, then a solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.1) with $x_{-3}=-1, x_{-2}=1.2$, $x_{-1}=2.5$ and $x_{0}=1.7$ converges to

$$
\frac{v\left(B^{2}+4 A\right)^{\frac{3}{2}}}{\left(A x_{0}+x_{-1}\right)\left(A x_{-1}+x_{-2}\right)\left(A x_{-2}+x_{-3}\right)} \simeq 8.666
$$

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] R. Abo-Zeid, On a fourth order rational difference equation, Tbilisi Math. J., 12 (4) (2019), $71-79$.
[2] R. Abo-Zeid, Global behavior of a fourth order difference equation with quadratic term, Bol. Soc. Mat. Mexicana, 25 (2019), 187 - 194.
[3] R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (1) (2019), $147-158$.
[4] R. Abo-Zeid, Behavior of solutions of a higher order difference equation, Alabama J. Math., 42 (2018), 1-10.
[5] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., DOI:10.1515/gmj-2018-0008.
[6] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl., 24 (2) (2018), 220 - 239.
[7] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat 30(12) (2016), 3265 - 3276.
[8] R. Abo-Zeid, Global behavior of a fourth order difference equation, Acta Comment. Univ. Tartu. Math., 18(2) (2014), 211 - 220.
[9] R. P. Agarwal and E. M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math., 17 (2) (2008), 181-201.
[10] H. S. Alayachi, M. S. M. Noorani and E. M. Elsayed, Qualitative analysis of a fourth order difference equation, J. Appl. Anal. Comput., 10 (4) (2020), 1343-1354.
[11] A.M. Amleh, E. Camouzis and G. Ladas On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3(2) (2008), $195-225$.
[12] A.M. Amleh, E. Camouzis and G. Ladas On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3(1) (2008), 1 - 35.
[13] F. Balibrea and A. Cascales, On forbidden sets, J. Difference Equ. Appl. 21(10) (2015), 974 - 996.
[14] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman \& Hall/CRC, Boca Raton, 2008.
[15] H. El-Metwally and E. M. Elsayed, Qualitative study of solutions of some difference equations, Abstr. Appl. Anal., Volume 2012, Article ID 248291,16 pages, 2012.
[16] M. Gümüş, The global asymptotic stability of a system of difference equations, J. Difference Equ. Appl., 24 (6) (2018), 976 - 991.
[17] M. Gümüş and Ö. Öcalan, Global asymptotic stability of a nonautonomous difference equation, J. Appl. Math., Volume 2014, Article ID 395954, 5 pages, 2014.
[18] E.A. Jankowski and M.R.S. Kulenović, Attractivity and global stability for linearizable difference equations, Comput. Math. Appl. 57 (2009), 1592-1607.
[19] C.M. Kent and H. Sedaghat, Global attractivity in a quadratic-linear rational difference equation with delay, J. Difference Equ. Appl., 15 (10) (2009), 913-925.
[20] R. Khalaf-Allah, Asymptotic behavior and periodic nature of two difference equations, Ukrainian Math. J., 61 (6) (2009), 988 - 993.
[21] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
[22] M. R. S. Kulenović and M. Mehuljić, Global behavior of some rational second order difference equations, Int. J. Difference Equ., 7 (2) (2012), $153-162$.
[23] M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, 2002.
[24] S. Stević, Boundedness character of a fourth order nonlinear difference equation, Chaos, Sol. Frac., 40 (2009), 2364-2369.

