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Abstract

In this paper, we solve and study the global behavior of the well defined solutions of the
difference equation

xn+1 =
xnxn−3

Axn−2 +Bxn−3
, n = 0,1, ...,

where A,B > 0 and the initial values x−i, i ∈ {0,1,2,3} are real numbers.

1. Introduction

In [1], we determined an explicit formula for the solutions of the fourth order difference equation

xn+1 =
xnxn−2

axn−2 +bxn−3
, n = 0,1, ...,

where a,b are positive real numbers and the initial conditions x−3,x−2,x−1,x0 are real numbers.
In [2] and [8], we determined the forbidden set and introduced an explicit formula for the solutions of each of the two fourth order difference
equations (respectively)

xn+1 =
axnxn−2

−bxn + cxn−3
, n = 0,1, ...,

and
xn+1 =

axnxn−2

bxn + cxn−3
, n = 0,1, ...,

where a,b,c are positive real numbers and the initial conditions x−3,x−2,x−1,x0 are real numbers.
In [10], the authors studied the qualitative analysis of the fourth order difference equation

xn+1 = axn−1 +
bxn−1

cxn−1−dxn−3
, n = 0,1, ...,

where a,b,c,d are positive real numbers and the initial conditions x−3,x−2,x−1,x0 are arbitrary real numbers.
In [15], the authors obtained the solutions of the fourth order difference equation

xn+1 =
xnxn−3

xn−2(±1± xnxn−3)
, n = 0,1, ...,

where the initial conditions are arbitrary real numbers.
In [24], the author studied the boundedness character of the positive solutions of the fourth order difference equation

xn+1 = max{A, xp
n

xp
n−3
}, n = 0,1, ...,

where the parameters A and p are positive real numbers. For more on difference equations (See [3]- [7], [9], [11]- [14], [16]- [23]) and the
references therein.
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In this paper, we study the difference equation

xn+1 =
xnxn−3

Axn−2 +Bxn−3
, n = 0,1, ..., (1.1)

where A,B > 0 and the initial values x−i, i ∈ {0,1,2,3} are real numbers.
The transformation

zn =
xn−1

xn
, with z−2 =

x−3

x−2
, z−1 =

x−2

x−1
and z0 =

x−1

x0
(1.2)

reduces Equation (1.1) into the difference equation

zn+1 =
A

zn−2
+B, n = 0,1, .... (1.3)

During this paper, we suppose that

θ j =
λ

j
+−λ

j
−√

B2 +4A
,

where λ− = B
2 −

√
B2+4A

2 and λ+ = B
2 +

√
B2+4A

2 , j = 0,1, ....
Let µl( j) = Axlθ j + xl−1θ j+1, l ∈ {0,−1,−2} and j = 0,1, ....
We give the following Lemma without proof:

Lemma 1.1. The following identities are true:

1. Aθ j +Bθ j+1 = θ j+2, j = 0,1, ....
2. Aµl( j)+Bµl( j+1) = µl( j+2), l ∈ {0,−1,−2} and j = 0,1, ....

2. Solution of Equation (1.1)

In this section, we shall give two invariant sets and introduce the solution of Equation (1.1).
Consider the sets

D+ = {(u0,u−1,u−2,u−3) ∈ R4 :− u0

(λ+/A)3 =
u−1

(λ+/A)2 =− u−2

λ+/A
= u−3}

and

D− = {(u0,u−1,u−2,u−3) ∈ R4 :− u0

(λ−/A)3 =
u−1

(λ−/A)2 =− u−2

λ−/A
= u−3}.

Theorem 2.1. The two sets D+ and D− are invariant sets for Equation (1.1).

Proof. Let (x0,x−1,x−2,x−3) ∈ D+. We show that (xn,xn−1,xn−2,xn−3) ∈ D+ for each n ∈ N. The proof is by induction on n.
The point (x0,x−1,x−2,x−3) ∈ D+ implies

− x0

(λ+/A)3 =
x−1

(λ+/A)2 =− x−2

λ+/A
= x−3}.

Now for n = 1, we have

x1 =
x0x−3

Ax−2 +Bx−3
=
−(λ+/A)2x−2(A/λ+)x−2

Ax−2−B(A/λ+)x−2

=− 1
A2

λ+x−2

1−B/λ+
=− 1

(A/λ+)3 x−2.

Then we have

− x1

(λ+/A)3 =
x0

(λ+/A)2 =− x−1

λ+/A
= x−2.

This implies that (x1,x0,x−1,x−2) ∈ D+.
Suppose now that for a certain n ∈ N, (xn,xn−1,xn−2,xn−3) ∈ D+. That is

− xn

(λ+/A)3 =
xn−1

(λ+/A)2 =− xn−2

λ+/A
= xn−3.

Then

xn+1 =
xnxn−3

Axn−2 +Bxn−3
=
−(λ+/A)2xn−2(A/λ+)xn−2

Axn−2−B(A/λ+)xn−2

=− 1
A2

λ+xn−2

1−B/λ+
=− 1

(A/λ+)3 xn−2.

Then we have

− xn+1

(λ+/A)3 =
xn

(λ+/A)2 =− xn−1

λ+/A
= xn−2.

This means that the point (xn+1,xn,xn−1,xn−2) ∈ D+. Therefore, D+ is an invariant set for Equation (1.1).
By similar way, we can show that D− is an invariant set for Equation (1.1).
This completes the proof.
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Theorem 2.2. Let {xn}∞
n=−3 be a well defined solution of Equation (1.1). Then

xn =


ν

µ−2(
n+2

3 )µ−1(
n−1

3 )µ0(
n−1

3 )
, n = 1,4, ...,

ν

µ−2(
n+1

3 )µ−1(
n+1

3 )µ0(
n−2

3 )
, n = 2,5, ...,

ν

µ−2(
n
3 )µ−1(

n
3 )µ0(

n
3 )
, n = 3,6, ...,

(2.1)

where ν = x0x−1x−2x−3.

Proof. We can write the given solution (2.1) as

x3m+1 =
ν

µ−2(m+1)µ−1(m)µ0(m)
,

x3m+2 =
ν

µ−2(m+1)µ−1(m+1)µ0(m)
,

and

x3m+3 =
ν

µ−2(m+1)µ−1(m+1)µ0(m+1)
.

When m = 0,

x1 =
ν

µ−2(1)µ−1(0)µ0(0)
=

ν

(Ax−2 +Bx−3)x−2x−1

=
x0x−3

Ax−2 +Bx−3
,

x2 =
ν

µ−2(1)µ−1(1)µ0(0)
=

ν

(Ax−2 +Bx−3)(Ax−1 +Bx−2)x−1

=
x1x−2

Ax−1 +Bx−2
,

and

x3 =
ν

µ−2(1)µ−1(1)µ0(1)
=

ν

(Ax−2 +Bx−3)(Ax−1 +Bx−2)(Ax0 +Bx−1)

=
x0x−3

Ax−2 +Bx−3

x−2x−1

(Ax−1 +Bx−2)(Ax0 +Bx−1)

=
x1x−2

Ax−1 +Bx−2

x−1

Ax0 +Bx−1
=

x2x−1

Ax0 +Bx−1
.

Suppose that the result is true for m > 0.
Then

x3mx3m−3

Ax3m−2 +Bx3m−3
=

ν

µ−2(m)µ−1(m)µ0(m)

ν

µ−2(m−1)µ−1(m−1)µ0(m−1)
Aν

µ−2(m)µ−1(m−1)µ0(m−1)
+

Bν

µ−2(m−1)µ−1(m−1)µ0(m−1)

=

ν

µ−1(m)µ0(m)

Aµ−2(m−1)+Bµ−2(m)
.

Using Lemma (1.1), we have

Aµ−2(m−1)+Bµ−2(m) = µ−2(m+1).

Then
x3mx3m−3

Ax3m−2 +Bx3m−3

=

ν

µ−1(m)µ0(m)

Aµ−2(m−1)+Bµ−2(m)

=
ν

µ−2(m+1)µ−1(m)µ0(m)
= x3m+1.

Similarly we can show that

x3m+1x3m−2

Ax3m−1 +Bx3m−2
= x3m+2 and

x3m+2x3m−1

Ax3m +Bx3m−1
= x3m+3.

This completes the proof.
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3. Global behavior of Equation (1.1)

In this section, we introduce the forbidden set and determine the global behavior of Equation (1.1). Clear that, if x0 = 0 and x−1x−2x−3 6= 0,
then x4 is undefined. If x−1 = 0 and x0x−2x−3 6= 0, then x7 is undefined. If x−2 = 0 and x0x−1x−3 6= 0, then x6 is undefined. Finally, if
x−3 = 0 and x0x−1x−2 6= 0, then x5 is undefined.
The following result provides the forbidden set of Equation (1.1).

Theorem 3.1. The forbidden set of equation (1.1) as

F =
3⋃

i=0
{(u0,u−1,u−2,u−3) ∈ R4 : u−i = 0}∪

∞⋃
m=1
{(u0,u−1,u−2,u−3) ∈ R4 : u0 =−

u−1

A
θm+1

θm
}∪

∞⋃
m=1
{(u0,u−1,u−2,u−3) ∈ R4 : u−1 =−

u−2

A
θm+1

θm
}∪

∞⋃
m=1
{(u0,u−1,u−2,u−3) ∈ R4 : u−2 =−

u−3

A
θm+1

θm
}.

Theorem 3.2. Assume that {xn}∞
n=−3 is a well defined solution of Equation (1.1). Then the following statements are true:

1. If A+B > 1, then the solution {xn}∞
n=−3 converges to zero.

2. If A+B < 1, then the solution {xn}∞
n=−3 is unbounded.

Proof. We can write θ j = λ
j
+

(1− (
λ−
λ+

) j)

√
B2 +4A

.

1. If A+B > 1, then λ+ > 1. That is θm→ ∞ as m→ ∞. This implies that

x3m =
ν

µ−2(m)µ−1(m)µ0(m)
→ 0 as m→ ∞.

Similarly, we can show that

x3m+1→ 0 as m→ ∞ and x3m+2→ 0 as m→ ∞.

For (2), it is enough to note that λ+ < 1 when A+B < 1. This completes the proof.

Theorem 3.3. Assume that A+B = 1, then every well defined solution {xn}∞
n=−3 of Equation (1.1) converges to a finite limit.

Proof. When A+B = 1, we have λ+ = 1. Then

µ− j(m) = Ax− jθm + x− j−1θm+1→
Ax− j + x− j−1√

B2 +4A
as m→ ∞, j ∈ {0,1,2}.

This implies that

x3m =
ν

µ−2(m)µ−1(m)µ0(m)
→

ν(B2 +4A)
3
2

(Ax0 + x−1)(Ax−1 + x−2)(Ax−2 + x−3)
as m→ ∞.

Similarly, we have that

x3m+1→
ν(B2 +4A)

3
2

(Ax0 + x−1)(Ax−1 + x−2)(Ax−2 + x−3)
as m→ ∞,

and

x3m+2→
ν(B2 +4A)

3
2

(Ax0 + x−1)(Ax−1 + x−2)(Ax−2 + x−3)
as m→ ∞.

Therefore, the solution {xn}∞
n=−3 of Equation (1.1) converges to

ν(B2 +4A)
3
2

(Ax0 + x−1)(Ax−1 + x−2)(Ax−2 + x−3)
as m→ ∞.

This completes the proof.

Example (1) Figure 1. shows that, if A = 0.2, B = 0.4 (A+B < 1), then a solution {xn}∞
n=−3 of equation (1.1) with x−3 = 3, x−2 = 2,

x−1 =−1 and x0 = 3 is unbounded.
Example (2) Figure 2. shows that, if A = 1.6, B = 0.3 (A+B > 1), then a solution {xn}∞

n=−3 of equation (1.1) with x−3 = 3, x−2 = 2,
x−1 =−1 and x0 = 3 converges to zero.
Example (3) Figure 3. shows that, if A = 0.62, B = 0.38 (A+B = 1), then a solution {xn}∞

n=−3 of equation (1.1) with x−3 =−1, x−2 = 1.2,
x−1 = 2.5 and x0 = 1.7 converges to

ν(B2 +4A)
3
2

(Ax0 + x−1)(Ax−1 + x−2)(Ax−2 + x−3)
' 8.666.
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Figure 3.1: xn+1 =
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Figure 3.2: xn+1 =
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Figure 3.3: xn+1 =
xnxn−3

0.62xn−2 +0.38xn−3
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