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Abstract 

In this study, microwave spectroscopy method has been used in liquid measurements and K nearest neighbors algorithm has been used 

for classifying liquids. For this aim, firstly an experimental setup consisting of a vector network analyzer, a patch antenna and a bottle 

have been built to measure the reflection parameter of each liquid used in classification experiments. The aim of this study is to examine 

both the parameters that may affect the measurements taken with the proposed system and the algorithm parameters that may affect 

the performance in the classification of liquids and the effects of these parameters. Measurements have been taken by leaving different 

distances between the antenna and the liquid in order to examine whether the distance of the liquids to the antenna affects the 

measurement result, and if so, what effect. For examining the parameters of K nearest neighbors algorithm that may affect the 

classification, the scattering parameters of different liquids measured using the patch antenna have been used as microwave dataset. In 

addition, the effect of container type has been analyzed. Performance tests have been conducted by weighting and without weighting 

the algorithm, by measuring the accuracy rate when different numbers of nearest neighbors and different distance metrics have been 

used. The results reveal that the classification made by applying weighting is more successful than the classification made without 

weighting regardless of the number of nearest neighbors and used distance metrics. 

Keywords: Microwave measurement, circular patch antenna, K nearest neighbors algorithm, liquid classification, distance metric, 

weighting, number of nearest neighbors. 

K En Yakın Komşular Tabanlı Sıvı Sınıflandırması İçin Yansıma Katsayıları ve 

Parametrelerin Etkilerinin Değerlendirilmesi  

Öz 

Bu çalışmada sıvı ölçümlerinde mikrodalga spektroskopi yöntemi kullanılmış ve sıvıların sınıflandırılmasında K en yakın komşular 

algoritması kullanılmıştır. Bu amaçla, öncelikle sınıflandırma deneylerinde kullanılan her bir sıvının yansıma parametresini ölçmek 

için bir vektör ağ analizörü, bir yama anteni ve bir şişeden oluşan deney düzeneği oluşturulmuştur. Bu çalışmanın amacı, hem önerilen 

sistemle alınan ölçümleri etkileyebilecek parametreleri hem de sıvıların sınıflandırılmasında performansı etkileyebilecek algoritma 

parametrelerini ve bu parametrelerin etkilerini incelemektir. Sıvıların antene olan mesafesinin ölçüm sonucunu etkileyip 

etkilemediğini, etkiliyorsa etkisini incelemek için anten ile sıvı arasında farklı mesafeler bırakılarak ölçümler yapılmıştır. 

Sınıflandırmayı etkileyebilecek en yakın komşu algoritmasının parametrelerini incelemek için, yama anten kullanılarak ölçülen farklı 

sıvıların saçılma parametreleri mikrodalga veri seti olarak kullanılmıştır. Ayrıca kap tipinin etkisi analiz edilmiştir. Farklı sayıda en 

yakın komşu ve farklı mesafe ölçütleri kullanıldığında doğruluk oranı ölçülerek ağırlıklandırılarak ve algoritma ağırlıklandırılmadan 

performans testleri yapılmıştır. Sonuçlar, ağırlıklandırma uygulanarak yapılan sınıflandırmanın, en yakın komşu sayısına ve kullanılan 

uzaklık ölçütlerine bakılmaksızın ağırlıklandırma yapılmadan yapılan sınıflandırmaya göre daha başarılı olduğunu ortaya koymaktadır.  

Anahtar Kelimeler: Mikrodalga ölçümü, dairesel yama anten, K en yakın komşular algoritması, sıvı sınıflandırması, mesafe ölçüsü, 

ağırlıklandırma, en yakın komşu sayısı. 
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1. Introduction 

The measure of a liquid being a flammable liquid is 

the flash point. Flash point is the lowest temperature at 

which a liquid will emit sufficient vapor to form an air-

flammable mixture. Alcohols cannot be distinguished 

visually because they are 100% liquid and colorless 

liquids, and they are in a small group of chemicals that 

can spontaneously ignite (Q. Chen, Kang, Zhou, & 

Wang, 2017). The flash point of alcohol-water solutions 

diluted with water will increase and as the flash point 

value of flammable liquids increases, the risk of fire 

hazards decreases (Cheremisinoff, 1999), However, 

these liquids, besides their flammable properties, also 

contain toxic substances and endanger human health. 

For instance, drinking methanol accidentally causes 

serious health problems (Slaughter, Mason, Beasley, 

Vale, & Schep, 2014). From this perspective, the 

classification of liquids is important to manage the 

hazards of chemicals and take necessary measures.  

Classification of flammable and explosive liquids 

using THz time history spectroscopy in classification of 

liquids (Tan et al., 2017), characterization of aqueous 

alcohol solutions in bottles and determination of the 

alcohol content of an aqueous solution were performed 

(Jepsen, Jensen, & Møller, 2008). An electronic nose 

using machine learning was proposed to detect mixtures 

of water, methanol and ethanol (Hayasaka et al., 2020). 

Flammable liquids were detected using the X-ray 

spectroscopy method (Orachorn, Chankow, & Srisatit, 

2019), (H. Chen, Hu, Wang, Xu, & Hou, 2020). Raman 

spectroscopy method was used for screening and 

determination of methanol content in ethanol-based 

products (Wirasuta et al., 2019). 

Liquids differ in complex permeability and 

reflection and transmission coefficients. Microwave 

frequency bands can be used to determine complex 

permeability, reflection and transmission coefficients of 

liquids and to characterize liquids. Liquid 

characterization is also important for food safety and 

quality. For fruit quality control, non-destructive control 

experiments with microwave method were performed 

(Jawad et al., 2017). It was also used to calculate the 

permeability, reflection coefficient, S11, and 

transmission coefficient, S21, (Li, Haigh, Soutis, Gibson, 

& Sloan, 2018), (Jiang, Ju, & Yang, 2016) of the liquids. 

Microwave measurement method is fast, non-hazardous 

and not affected by environmental conditions (Li, 

Haigh, Soutis, Gibson, & Sloan, 2017b). It was used to 

measure the permeability of thin layer materials 

(Borisov & Karpenko, 2001) and to measure the 

parameters of silicon (Yurchenko, Novikov, & Kitaeva, 

2012). 

There are many microwave measurement methods 

used in fluid measurements in the literature, such as 

open-ended coaxial probe techniques (Li et al., 2017b) 

and Free space method (Jose, Varadan, & Varadan, 

2001). When the coaxial probe method is used, the 

probability of inaccuracy in solid material 

measurements is high. The cost of the measurement 

method to be used is also important. For example, Time-

Domain Reflectometers (TDRs) are expensive 

(Venkatesh & Raghavan, 2005). For Free space 

technique, measurements vary according to the choice 

of the horn antenna, the design of the specimen holder 

and the geometry and location of the specimen. An 

improperly determined measurement location and an 

unsuitable sample geometry increase the likelihood of 

erroneous measurements (Li, Haigh, Soutis, Gibson, & 

Sloan, 2017a). 

K Nearest Neighbors (KNN) algorithm does not 

require a training step and is resistant to noisy training 

data (Bhatia, 2010). Therefore, it is commonly used as a 

basic classifier in many field problems (Jain, Duin, & 

Mao, 2000). KNN is known as instance-based learning. 

In it, training samples are stored exactly and the 

classification of an unknown, i.e., a new test sample, 

takes into account the similarity between the samples in 

the training set. The similarity is, for example, its 

proximity to the data in the training set. The distance 

metric is used to decide which member of the training 

set is the nearest. Once the nearest training sample is 

found, the class is estimated for the test sample 

(Chakrabarti et al., 2008). For this, the test sample is 

compared with the records that are most similar in the 

current training set at hand (Larose & Larose, 2014). In 

the literature, there are several distance metrics. 

However, the most commonly used distance function for 

KNN is the Euclidean distance metric. The microwave 

measurement methods and KNN algorithm were used 

together for different purposes including classification 

of kidney stones (Saçlı et al., 2019), detection of deep 

tissue injuries (Moghadas & Mushahwar, 2018) and 

detection of breast cancer (Aydın & Kaya Keleş, 2017). 

Although the performance of KNN has been heavily 

studied, it has not been evaluated for classifying 

alcoholic liquids with different distance metrics, the 

different number of nearest neighbors, and the 

weighting process. Different from the literature, in this 

study it is evaluated whether weighting application 

using different distance metrics and changing the 

number of nearest neighbors can affect the performance 

of KNN algorithm when it is used for alcoholic liquid 

classification made with microwave datasets. Another 

issue examined in the study is the parameters that may 

affect the measurements. Determining these parameters 

and paying attention to them while making 

measurements ensure more reliable measurements. The 

remainder of this paper is as follows. First, the factors 

affecting microwave measurements are examined and 

the effects of different parameters on the measurement 

results are presented. Parameters used for KNN 

algorithm and their implementation are described in 

Section 2. Experimental setup of this study which was 

used to collect and use microwave measurement data is 

explained in Section 3. Finally, Section 4 concludes this 

paper. 
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2. Parameters of K Nearest Neighbors 

Algorithm for Liquid Classification and 

Their Implementation 

In KNN, the similarities of the data to be classified 

with the data in the training set are computed. As a result 

of the computation, the data to be classified is assigned 

to the nearest classes in the training set. The nearest 

number of neighbors and similarity function criteria 

affect the performance of KNN (Kresse & Danko, 

2012). In KNN, training samples are defined with n-

dimensional numerical properties. Each sample shows a 

point in n-dimensional space. Thus, all training samples 

are stored in an n-dimensional sample space. The 

objective is to find the nearest k training samples to the 

unknown sample. The distance between two points, such 

as X= (x1, x2,…., Xn) and Y= (y1, y2, ……., Yn) is 

expressed by different distance metrics (Chakrabarti et 

al., 2008). 

Basic parameters of KNN algorithm are distance 

metric, number of nearest neighbors, k, and weighting 

application. k expresses the number of neighbors, and 

classification is made based on this value. For instance, 

if k value is set to 1, the nearest 1 neighbor is taken into 

consideration and the tested sample is assigned to the 

class where this neighbor is located. In this study, four 

different distance metrics will be used.  

As given in (1) Minkowski distance metric is 

calculated by summing the absolute difference between 

the two points by taking the p prime in the distance 

criterion. Then 1/p of this sum is taken. This equation 

gives Euclid distance if p value is set to 2, Manhattan 

distance if p → ∞, and Chebyshev distance if p value is 

set to 1 (Kresse & Danko, 2012). 

 

(∑ |𝑥𝑖 − 𝑦𝑖|𝑝𝑛
𝑖=1 )

1
𝑝⁄                 (1) 

 

Euclidean distance metric, defined as a straight line 

distance between two points in any number of 

dimension spaces, is calculated by taking the square root 

of the sum of the squares of the differences between the 

respective coordinates of each point, as given in (2) 

(Kresse & Danko, 2012). 

    

(√∑ (𝑥𝑖 − 𝑦𝑖)𝟐𝒏
𝒊=𝟏 )                (2) 

 

As given in (3) Manhattan distance metric calculates 

the linear distance between actual vectors using the sum 

of absolute differences (Kresse & Danko, 2012). 

 
(∑ |𝑥𝑖 − 𝑦𝑖|𝒏

𝒊=𝟏 )                 (3) 

 

Finally, Chebyschev distance metric, also known as 

the maximum value distance, is calculated using (4) 

(Rey, Kordon, & Wells, 2012).  

 

𝑙𝑖𝑚𝑝→∞(∑ |𝑥𝑖 − 𝑦𝑖|𝑝𝑛
𝑖=1 )

1
𝑝⁄ = 𝑚𝑎𝑥𝑖=1

𝑛 |𝑥𝑖 − 𝑦𝑖|        (4)                                          

 

In KNN, weight values are assigned to all neighbors. 

The weight values of neighboring samples that are 

closer to the sample to be classified in the weighting 

application are higher than the other neighbors. 

Generally, the most preferred method of assigning 

weight is the method in which the weight of each 

neighbor is taken in 1/d. Here d represents the distance 

between neighbors (Doad & Bartere, 2013). 

2.1. Performance of the Classifier 

There are several performance metrics used to 

evaluate how well a classifier is performing at the end 

of the classification process (Chakrabarti et al., 2008). 

The metrics used in this study were confusion matrix, 

accuracy, precision, recall, Kappa, Area Under the 

Receiver Operating Characteristic (ROC) Curve (AUC), 

Matthews Correlation Coefficient (MCC) and Root 

Mean Square (RMS). Confusion matrix is often used to 

determine the performance of the classification model 

with a series of test data with actual values known 

(Chakrabarti et al., 2008), (Larose & Larose, 2014). 

True Positive (TP) values, i.e. actual alcoholic liquids, 

are positive values that have been predicted correctly. 

True Negative (TN) values, i.e. actual non-alcoholic 

liquids, are negative values that have been predicted 

correctly. These values indicate that, for the selected 

sample, the actual class is the same as the predicted 

class. They are the diagonal elements of the matrix and 

are shown in green in Figure 1. False Positive (FP) 

values, i.e. non-alcoholic liquids misclassified as 

alcoholic liquids, and False Negative (FN) values, i.e. 

alcoholic liquids misclassified as non-alcoholic liquids, 

occur when the actual class is different from the 

predicted class. That is, they indicate the number of 

incorrectly classified samples. They are shown in red in 

Figure 1. The increase in TP and TN values and the 

decrease in FN and FP values indicate that the 

classification performance is good.  

Using the confusion matrix, the accuracy value can 

be calculated as in (5). Accuracy is the ratio of 

accurately estimated samples to the total number of 

samples. High accuracy rate is an indicator of high 

classification performance.  

 

Accuracy =
TP+TN

TP+TN+FP+FN
                (5) 

 

 
Figure 1. Confusion matrix 

Other performance metrics are also calculated using a 

confusion matrix. For example, precision is calculated 

using the left side of the matrix (Equation (6)). It is a 

measure of the precision of the classification algorithm. 

Recall, which is a measure of the integrity of the 

classification algorithm, is calculated using (7). 
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Precision =
TP

TP+FP
                 (6) 

 

Recall =
TP

FN + TP
                   (7) 

 

The harmonic mean of precision and recall values gives 

F-measure value (8). It is difficult to compare the two 

models with low recall and high precision and vice 

versa. In this case, the value of F-measure is checked. 

 

F_Measure =
2∗Recall∗ Precision

Recall+ Precision
                (8) 

 

Kappa value is used to measure how much agreement 

there is between the classification made as a result of the 

classification and the actual classifications in a dataset. 

 

Kappa =
P(x)−P(y)

1−P(y)
               (9) 

 
where P(x) is a value that shows probabilistic accuracy 

of the classification algorithm and P(y) is the weighted 

average of the probability of classifications made in the 

same dataset. 

 

In a ROC curve, the horizontal axis shows the false 

positive rate (FPR), the vertical axis the correct positive 

rate (TPR). The area under this curve (AUC) is used as 

the classification metric. FPR and TPR values are 

calculated using (10) and (11), respectively. 

 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                (10) 

 

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (11) 

 

MCC is used as a measure of the quality of binary 

classifications in machine learning and is calculated 

using (12). 

 

𝑀𝐶𝐶 =
𝑇𝑃𝑥𝑇𝑁−𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃+𝐹𝑃)𝑥(𝑇𝑃+𝐹𝑁)𝑥(𝑇𝑁+𝐹𝑃)𝑥(𝑇𝑁+𝐹𝑁)
             (12) 

 

RMS is used to scale the differences between the actual 

values and the values predicted by the model. It is 

determined by taking the square root of the mean square 

error and calculated using (13). 

 

Rms = √
1

n
∑ (Tik − Ak)2n

k=1                (13) 

 

where Tik is the predicted value and Ak is the objective 

value. If the error value approaches zero, it means that 

the correct prediction of the classification algorithm 

increases. 

 

When the values of accuracy, precision, recall, F-

measure, AUC, MCC and Kappa are 1, it indicates 

perfect classification. Therefore, these values are 

desired to be as close to 1 as possible. 

3. Experimental Setup for Collecting and 

Using Microwave Measurement Data 

Scattering parameters (S parameters) describe the 

electrical behavior of linear electrical networks when 

they are exposed to various steady-state stimuli by 

electrical signals. The measurement system shown in 

Figure 2 consists of a vector network analyzer (VNA) 

and a circular patch antenna that can send signals 

between a specific frequency band and record the 

reflection coefficient of the reflected signals. The 

reflection coefficient (S11) of the reflected signals from 

the source is expressed as the ratio of the amplitude of 

the reflected signal to the amplitude of the transmitted 

signal. The resonance frequency of the antenna fed with 

the 50 Ohm SMA (SubMiniature version A) feed probe 

is 1.5 GHz. The measurement setup used in this study is 

given in Figure 2. The reflection parameter (S11) of each 

liquid was measured so that the distance between the 

antenna and the bottle remains 5 mm without touching 

the patch antenna to the liquids in 0.5 liter pet bottles 

with the microwave measurement device. 

Measurements were made between 1.42-1.54 Ghz. 

 

 

(a)   

 

(b) 

Figure 2. a) Experimental setup, b) Schematic view of the 

patch antenna 

There were 56 S11 values for each liquid. Then, these 

values were divided into two classes as alcoholic and 

non-alcoholic liquids by using KNN algorithm. The 

liquids used in the study were non-alcoholic liquids such 

as cola, soap, shampoo, water, milk, bath cream, shower 

gel, ice-tea (peach), cherry juice, ayran and alcoholic 

liquids such as cologne, whiskey, white wine, raki. 
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Apart from these liquids, Ethanol, Methanol, 1-

Propanol, Isopropanol and their aqueous solutions with 

different volume concentrations were used. The total 

number of liquids used was 54, including 44 alcoholic 

and 10 non-alcoholic. In analyzing the effect of the type 

of container in which the liquid is on the measurement 

result in liquid measurements, measurements were taken 

by placing the liquids in glass and plastic bottles and the 

measurement results were compared. The aim of the 

experiments was to determine the factors affecting S 

parameter measurements and to examine the effects of 

KNN parameters on classification performance in order 

to characterize the liquid with high accuracy in 

measurements. In determining the factors affecting the 

measurements in the experiments, the effect of the 

distance of the bottle to the antenna and the effect of the 

container that the liquid is in were analyzed. The 

parameters used to examine the effects of KNN 

parameters on classification performance are k value, 

distance metric and weighting application. In order to 

examine the classification parameters, a separate 

classification was made for each parameter in the 

classification of alcoholic and non-alcoholic liquids 

using microwave data. The best values were tried to be 

determined by comparing the classification results. 

3.1. Results and Discussion 

     In order to find out whether the distance between the 

antenna and the liquid affects the microwave 

measurement data, measurements were taken by leaving 

different distances between the antenna and the liquid. 

The measurement of liquids in pet bottles was made by 

leaving 5 mm, 1 mm and 25 mm between antenna and 

liquid. The results of alcohol measurements taken for 

three different distances are given in Figure 3. This step 

was repeated for non-alcoholic liquids to examine the 

effect of measurement distance, and the results are given 

in Figure 4. As it can be seen in the figures, it is seen 

that the resonance peak increases with the increase of the 

distance between the antenna and the liquid in the 

measurements of all liquids. Since the resonance peak 

gives its highest value in the air environment, an 

increase in the value of the peak as it moves away from 

the antenna in liquid measurements indicates that the 

sensitivity of the antenna decreases. In other words, as 

the liquid moves away from the antenna, the sensitivity 

of the antenna to detect the liquid decreases. In order to 

measure the liquid accurately, the distance between the 

liquid and the antenna should be as small as possible. 

Another parameter whose effect on measurement data is 

examined is the container effect. For this, measurements 

were taken using different containers and the results are 

given in Figure 5 and Figure 6. Glass bottles and plastic 

bottles were used as container types in the 

measurements. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. S parameter measurements of alcohols at different 

antenna-bottle distances a) Isopropyl (1-propanol) b)Ethanol 

c)Isopropanol (2-propanol) d)Methanol 
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(a)                                                                                           (b) 

 
(c)                                                                                           (d) 

 
(e)                                                                                               (f) 

Figure 4. S parameter measurements of everyday liquids at different antenna-bottle distances a) Buttermilk b) Peach juice c) Apricot 

juice d) Water e) Cola f) Liquid soap 
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(a)                                                                                                    (b) 

Figure 5. S parameter measurements of everyday liquids in different bottles a) Water b) Cola 

 

Figure 6. S parameter measurements of alcohols in different bottles 

 

The measurement results taken using different 

containers show us that the resonance peak gives a 

higher value in the measurements taken using the glass 

container (bottle). S11 parameter measurements of the 

liquids were used in the study and S11 parameter is the 

reflection coefficient. Signals reflected from the object 

to be measured are detected by the antenna. Therefore, 

taking measurements in (using) a highly reflective 

container like glass will suppress the reflected signals 

from the liquid. Therefore, since the signals reflected 

from the liquid are important for us, it is more 

appropriate to use pet bottles with low reflectivity in 

liquid measurements. It was understood that the 

measurement results, the distance and the type of 

container used in microwave measurements affect the 

results. Classifications were made using different 

parameters to investigate the KNN parameters affecting 

the classification. The dataset used in the classification 

studies is given in Figure 7.
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(a)                                                                                          (b) 

 
(c) 

Figure 7. S parameter measurement results used in classification 

 

For each liquid, the measurements were repeated 

twice and a dataset was created. The dataset was created 

from 108 measurement data belonging to 54 different 

liquids. Then, using WEKA, 10-fold cross-validation 

was applied. As shown in Figure 8, the dataset was 

divided into 10 parts, 9 parts were used for the training 

and 1 part was used as the test data.  

 
Cross 

Validation 
1st 

group 

2nd 

group 

3rd 

group 

4th 

group 

5th 

group 

6th 

group 

7th 

group 

8th 

group 

9th 

group 

10th 

group 
1st  Test Train Train Train Train Train Train Train Train Train 
2nd Train  Test Train Train Train Train Train Train Train Train 
3rd Train Train  Test Train Train Train Train Train Train Train 
4th Train Train Train  Test Train Train Train Train Train Train 
5th Train Train Train Train  Test Train Train Train Train Train 
6th Train Train Train Train Train  Test Train Train Train Train 
7th Train Train Train Train Train Train  Test Train Train Train 
8th Train Train Train Train Train Train Train Test Train Train 
9tn Train Train Train Train Train Train Train Train  Test Train 

10th Train Train Train Train Train Train Train Train Train  Test 

Figure 8. 10-fold cross-validation 

 

 After the cross-validation, tradeoff between k value 

and the accuracy rate of the classifier for different 

distance metrics is shown in Figure 9. As can be seen, 

the accuracy rate of the classifier mostly decreased as 

the number of neighbors increased for all the distance 

metrics. The highest accuracy rate was 100% and the 

lowest accuracy rate was 90%. As can be seen in Figure 

10 and Figure 11, the number of correctly classified 

liquids was 108 when k was set to 1 for different distance 

metrics, while the number of correctly classified liquids 

decreased to 97 when Chebyshev distance metric was 

used and k was set to 7. Likewise, although there was no 

misclassified liquid when k was set to 1, it was seen that 

a total of 11 liquids were misclassified when k was set 

to 7. After the classification experiments with these 

neighbor numbers and distance metrics, weighting was 

applied. As a result of this, for all the k values and 

distance metrics 100% accuracy was obtained and all the 

liquids were classified correctly. The confusion matrices 

obtained for different k values and the distance metrics 

are given in Figure 12. When the confusion matrix is 

analyzed, it can be seen that all the liquids were correctly 

classified when k was set to 1 and Euclidean distance 

metric was preferred. However, when k was set to 2 and 

Euclidean distance metric was preferred, 2 alcoholic 

liquids were incorrectly classified as non-alcoholic 

liquids and 6 non-alcoholic liquids were incorrectly 

classified as alcoholic liquids. 

When the confusion matrix is analyzed, it can be 

seen that the average number of alcoholic liquids that 

was predicted incorrectly for different k values was 6.8 

when Euclidean distance metric was preferred, was 6.8 

when Chebyshev distance metric was preferred, was 7.2 

when Manhattan distance metric was preferred, and 

finally it was 6.8 when Minkowski distance metric was 

preferred. This reveals that the distance measure which 

is the least affected by the change of k value in the 

detection of alcoholic liquid is Manhattan distance.  
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(a)                                                                                             (b) 

  
(c)                                                                                                 (d) 

Figure 9. Tradeoff between k value and accuracy rate when the distance metric was a) Euclidean, b) Chebyshev, c) Manhattan, d) 

Minkowski 

 
Figure 10. Tradeoff between k value and the number of correctly classified instances 

 
Figure 11. Tradeoff between k value and the number of incorrectly classified instances 
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TN 0 20 TN 6 14 TN 8 12 TN 5 15 TN 3 17 
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 TP TN  TP TN  TP TN  TP TN  TP TN 

TP 83 5 TP 85 3 TP 86 2 TP 86 2 TP 86 2 

TN 4 16 TN 5 15 TN 5 15 TN 4 16 TN 4 16 
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Figure 12. Confusion matrix for different k values and different distance metrics 

 

When the confusion matrix is considered to examine 

the average number of non-alcoholic liquids predicted 

correctly, it can be seen that the results were different. 

The average number of non-alcoholic liquids that was 

predicted correctly for different k values was 15.6 when 

Euclidean distance metric was preferred, was 16.5 when 

Chebyshev distance metric was preferred, was 15.2 

when Manhattan distance metric was preferred, and 

finally it was 15.6 when Minkowski distance metric was 

preferred.  

Performance metrics obtained from classifications 

using different k values and different distance metrics 

are given in Table 1. When k was set to 1, all the 

performance metrics reached the maximum value and 

RMS was at the minimum value. With the increase in k 

value, there was a decrease in the performance metrics. 

When k was set to 7, the highest decrease was seen in 

Precision and Recall values when using Chebyshev 

distance metric. In the classifications made, an increase 

in RMS was observed with the increase of the k value. 
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For Chebyshev distance metric, RMS became 0.09 when 

k was set to 1 and it became 0.22 when k was set to 10. 

The lowest Kappa value was 0.65 and it was obtained 

when k was set to 3 for Euclidean, Manthattan and 

Minkowski distance metrics and when k was set to 7 for 

Chebyshev distance metric.  

Since the number of alcoholic and non-alcoholic 

data used in this classification study was not equal, the 

dataset was an unbalanced dataset. For unbalanced 

datasets, the use of MCC values is recommended 

(Chicco & Jurman, 2020). When MCC values obtained 

for different k values were examined, the average MCC 

values were computed as 0.78 (for Euclidean), 0.78 (for 

Chebyshev), 0.76 (for Manhattan) and 0.78 (for 

Minkowski). This result shows that the distance metric 

most sensitive to the value of k was Manhattan. 
 

Table 1. Performance metrics for different distance metrics 
Distance 

metric 
Metric  k=1 k=2 k=3  k=4 k=5 k=6 k=7 k=8 k=9 k=10 

  Precision 1 0.92 0.90 0.93 0.93 0.91 0.92 0.93 0.94  0.94 

 Recall 1 0.92 0.90 0.93 0.93 0.91 0.92 0.93 0.94  0.94 

Euclidean F-measure 1 0.92 0.90 0.93 0.93 0.91 0.92 0.93 0.94  0.94 

 MCC 1 0.74 0.66 0.77 0.79 0.72 0.74 0.77 0.81  0.81 

 AUC 1 0.99 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 

 KAPPA 1 0.73 0.65 0.77 0.78 0.72 0.74 0.77 0.80 0.80 

 RMS 0.09 0.17 0.20 0.21 0.22 0.22 0.22 0.21 0.18 0.18 

 Precision 1 0.94 0.93 0.96 0.94 0.91 0.89 0.91 0.93 0.91 

 Recall 1 0.94 0.93 0.96 0.94 0.91 0.89 0.91 0.93 0.91 

Chebyshev F-measure 1 0.94 0.93 0.96 0.94 0.91 0.89 0.91 0.93 0.91 

 MCC 1 0.81 0.77 0.87 0.82 0.72 0.65 0.71 0.79 0.72 

 AUC 1 0.99 0.98 0.99 0.98 0.98 0.97 0.97 0.98 0.97 

 KAPPA 1 0.80 0.77 0.87 0.82 0.72 0.65 0.71 0.78 0.72 

 RMS 0.09 0.15 0.17 0.17 0.19 0.20 0.22 0.21 0.19 0.21 

 Precision 1 0.92 0.90 0.93 0.92 0.91 0.92 0.93 0.93 0.92 

 Recall 1 0.92 0.90 0.93 0.92 0.91 0.92 0.93 0.93 0.92 

Manhattan F-measure 1 0.92 0.90 0.93 0.92 0.91 0.92 0.93 0.93 0.92 

 MCC 1 0.74 0.66 0.77 0.75 0.72 0.74 0.77 0.77 0.74 

 AUC 1 0.99 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 

 KAPPA 1 0.73 0.65 0.77 0.75 0.72 0.74 0.77 0.77 0.73 

 RMS 0.09 0.17 0.20 0.20 0.22 0.22 0.22 0.21 0.19 0.19 

 Precision 1 0.92 0.90 0.93 0.93 0.91 0.92 0.93 0.94 0.94 

 Recall 1 0.92 0.90 0.93 0.93 0.91 0.92 0.93 0.94 0.94 

Minkowski F-measure 1 0.92 0.90 0.93 0.93 0.91 0.92 0.93 0.94 0.94 

 MCC 1 0.74 0.66 0.77 0.79 0.72 0.74 0.77 0.81 0.81 

 AUC 1 0.99 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 

 KAPPA 1 0.73 0.65 0.77 0.78 0.72 0.74 0.77 0.80 0.80 

 RMS 0.09 0.17 0.20 0.21 0.22 0.22 0.22 0.21 0.18 0.18 

 

4. Conclusion 

The classification of liquids, which is important to 

manage the hazards of chemicals, is an interesting 

research topic in recent years. Therefore, various 

methods were proposed for liquid classification. As it is 

easier to implement than other algorithms, KNN 

algorithm was often preferred for classification 

problems. However, the use of KNN algorithm for 

classifying liquids that contain alcohol is still limited. In 

this study, the parameters affecting S11 parameter 

measurements were analyzed in order to characterize the 

liquid in the most appropriate way. In addition, the 

application of weighting in the performance of KNN 

algorithm for classification, the use of different number 

of nearest neighbors and different distance metrics was 

examined. 

It was observed that the increase in the number of the 

nearest neighbors reduced the classification 

performance. Although generally reducing the value of 

the nearest neighbor number increases the algorithm's 

sensitivity to noisy data, the low number of nearest 

neighbors led to the better results due to the very low 

noise in the S11 parameters. Considering the effect of 

distance metrics, when the nearest neighbor number 

value was 1, all the distance metrics led to the same 

result.  

After weighting was applied, all the liquids were 

classified correctly with 100% accuracy. By applying 

weighting, the performance of the classification can be 

made independent of distance metrics and k values. 

Therefore, it is recommended to apply weighting to 

KNN algorithm in the classification made with S11 data. 

Moreover, the results obtained in this study made it clear 

that in order to increase the sensitivity of the 

measurements, it is recommended to make liquid 

measurements in pet bottles with low reflective 
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properties and to take measurements by keeping the 

liquid as close to the antenna as possible.  
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