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Abstract
In this paper, we introduce a new subclass of harmonic functions f = s + t in the open
unit disk U = {z ∈ C : |z| < 1} satisfying
Re
[
γs′(z) + δzs′′(z) +

(
δ−γ

2

)
z2s′′′ (z) − λ

]
>
∣∣∣γt′(z) + δzt′′(z) +

(
δ−γ

2

)
z2t′′′ (z)

∣∣∣ ,
where 0 ≤ λ < γ ≤ δ, z ∈ U. We determine several properties of this class such as close-to-
convexity, coefficient bounds, and growth estimates. We also prove that this class is closed
under convex combination and convolution of its members. Furthermore, we investigate
the properties of fully starlikeness and fully convexity of the class.
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1. Introduction

Let H denote the class of complex-valued harmonic functions f = s + t defined in the
open unit disk U = {z ∈ C : |z| < 1} , and normalized by f(0) = fz(0) − 1 = 0. Also, let
H0 = {f ∈ H : fz(0) = 0}. Each function f ∈ H0 can be expressed as f = s + t, where

s(z) = z +
∞∑
m=2

amz
m, t(z) =

∞∑
m=2

bmz
m (1.1)

are analytic in U. A necessary and sufficient condition for f to be locally univalent and
sense-preserving in U is that |s′(z)| > |t′(z)| in U. See [5, 8].

Denote by SH the class of functions f = s + t that are harmonic, univalent and sense-
preserving in the unit disk U. Further, let S0

H = {f ∈ SH : fz(0) = 0} . Note that, with
t(z) = 0, the classical family S of analytic univalent and normalized functions in U is a
subclass of S0

H , just as the family A of analytic and normalized functions in U is a subclass
of H0. A simply connected subdomain of C is said to be close-to-convex if its complement
in C can be written as the union of non-crossing half-lines.
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Let K, S∗ and C be the subclasses of S mapping U onto convex, starlike and close-to-
convex domains, respectively, just as K0

H , S
∗,0
H and C0

H are the subclasses of S0
H mapping

U onto their respective domains.
In [13], Hernandez and Martin introduced the notion of stable harmonic mappings. A

sense-preserving harmonic mapping f = s+ t is said to be stable harmonic univalent (resp.
stable harmonic convex, stable harmonic starlike, or stable harmonic close-to-convex) in
U, if all functions fϵ = s + ϵt with |ϵ| = 1 are univalent (resp. convex, starlike, or close-
to-convex) in U. It is proved that f = s+t is stable harmonic univalent (resp. convex,
starlike, or close-to-convex) if and only if Fϵ= s + ϵt are univalent (resp. convex, starlike,
or close-to-convex) in U for each |ϵ| = 1.

Recall that, convexity and starlikeness are hereditary properties for conformal mappings
and they do not extend to harmonic functions [8]. The failure of hereditary properties leads
to the notion of fully starlike and fully convex functions which introduced by Chuaqui,
Duren and Osgood [4]. A harmonic function f of the unit disk is said to be fully convex,
if it maps every circle |z| = r < 1 in a one-to-one manner onto a convex curve. Such a
harmonic mapping f with f(0) = 0 is fully starlike if it maps every circle |z| = r < 1 in a
one-to-one manner onto a curve that bounds a domain starlike with respect to the origin.
Denote by FK0

H and FS
∗,0
H the subclasses of K0

H and S
∗,0
H consisting of fully convex and

fully starlike functions, respectively. In 2013, Nagpal and Ravichandran [16] introduced
the concept of fully starlike functions of order α (0 ≤ α < 1) and fully convex functions
of order α for certain families of univalent harmonic mappings. In 2019, Ghosh and
Vasudevarao [11] considered the particular case of generalized Bernardi integral operator
of harmonic functions that satisfy the conditions of the harmonic Bieberbach coefficient
conjecture and obtained the radius of fully starlikeness and the radius of fully convexity of
that harmonic operator. In [13,16,17], it is proved that stable harmonic convex (or stable
harmonic starlike) mappings in U are fully convex (or fully starlike) in U.

In 2014, Nagpal and Ravichandran [17] studied a class W 0
H of functions f ∈ H0 satisfying

the condition Re [s′(z) + zs′′(z)] > |t′(z) + zt′′(z)| for z ∈ U which is harmonic analogue
of the class W defined by Chichra [3] consisting of functions f ∈ A satisfying the condition
Re [f′(z) + zf′′(z)] > 0 for z ∈ U . It is stated that W 0

H ⊂ S
∗,0
H and in particular, the

members of the class are fully starlike in U.
Ghosh and Vasudevarao [10] investigated radius of convexity for the partial sums of

members of the class W 0
H (δ) of functions f ∈ H0 satisfying the condition

Re [s′(z) + δzs′′(z)] > |t′(z) + δzt′′(z)| for δ ≥ 0, and z ∈ U.
Further, Rajbala and Prajapat [18] studied the class W 0

H (δ, λ) of functions f ∈ H0

satisfying the condition Re [s′(z) + δzs′′(z) − λ] > |t′(z) + δzt′′(z)| for δ ≥ 0, 0 ≤ λ < 1,
and z ∈ U. They constructed harmonic polynomials involving Gaussian hypergeometric
function which belong to the class W 0

H (δ, λ) .
Very recently, Yaşar and Yalçın [23] introduced the class R0

H (δ, γ) of functions f ∈ H0

satisfying the condition

Re
[
s′(z) + δzs′′(z) + γz2s′′′ (z)

]
>
∣∣∣t′(z) + δzt′′(z) + γz2t′′′ (z)

∣∣∣
for δ ≥ γ ≥ 0, z ∈ U.

In all studies mentioned above [10, 17, 18, 23], it is proved that the functions in cor-
responding classes are close-to-convex. Also, coefficient bounds, growth estimates, and
convolution properties of the classes are obtained.

Denote by R0
H(γ, δ, λ), the class of functions f = s + t ∈ H0 and satisfy

Re
[
γs′(z) + δzs′′(z) +

(
δ − γ

2

)
z2s′′′ (z) − λ

]
>

∣∣∣∣γt′(z) + δzt′′(z) +
(
δ − γ

2

)
z2t′′′ (z)

∣∣∣∣
(1.2)
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where 0 ≤ λ < γ ≤ δ.

It is evident that W 0
H ≡ W 0

H (1) ≡ R0
H(1, 1, 0), W 0

H (1, λ) ≡ R0
H(1, 1, λ), R0

H

(
δ, δ−1

2

)
≡

R0
H(1, δ, 0).
Let R(γ, δ, λ) denote a class of functions f ∈ A such that

Re
{
γf′(z) + δzf′′(z) +

(
δ − γ

2

)
z2f′′′ (z)

}
> λ (0 ≤ λ < γ ≤ δ) . (1.3)

The class R(γ, δ, λ) is a particular case of the class which is studied by Al-Refai [19]. The
starlikeness and convexity of the class R(1, δ, λ) are studied in [2, 20].

In this paper, we mainly deal with the functions f = s + t ∈ H0 of the class R0
H(γ, δ, λ)

which is defined by the third-order differential inequality (1.2). In the second section,
we prove that the members of the class R0

H(γ, δ, λ) are close-to-convex. We also obtain
coefficient bounds, growth estimates, and sufficient coefficient condition of this class. In the
third section, we prove that this class is closed under convex combination and convolution
of its members. In the last section, we investigate the radii of fully starlikeness and fully
convexity of the class R0

H(γ, δ, λ), and we give a result due to the class R0
H(1, δ, λ) using

previous works [2] and [17].

2. Close-to-convexity, coefficient bounds, growth estimates
First, we give a result of Clunie and Sheil-Small [5] which derives a sufficient condition

for f ∈ H to be close-to-convex.

Lemma 2.1. Suppose s and t are analytic in U with |t′(0)| < |s′(0)| and Fϵ = s + ϵt is
close-to-convex for each ϵ (|ϵ| = 1) , then f = s + t is close-to-convex in U.

Theorem 2.2. The harmonic mapping f = s+ t ∈ R0
H(γ, δ, λ) if and only if Fϵ = s+ ϵt ∈

R(γ, δ, λ) for each ϵ (|ϵ| = 1) .

Proof. Suppose f = s + t ∈ R0
H(γ, δ, λ). For each |ϵ| = 1,

Re
{
γF ′

ϵ(z) + δzF ′′
ϵ (z) +

(
δ − γ

2

)
z2F ′′′

ϵ (z)
}

= Re
{
γs′(z) + δzs′′(z) +

(
δ − γ

2

)
z2s′′′ (z)

+ ϵ

(
γt′(z) + δzt′′(z) +

(
δ − γ

2

)
z2t′′′ (z)

)}
> Re

{
γs′(z) + δzs′′(z) +

(
δ − γ

2

)
z2s′′′ (z)

}
−
∣∣∣∣γt′(z) + δzt′′(z) +

(
δ − γ

2

)
z2t′′′ (z)

∣∣∣∣
> λ (z ∈ U) .

Thus, Fϵ ∈ R(γ, δ, λ) for each ϵ (|ϵ| = 1) . Conversely, let Fϵ = s + ϵt ∈ R(γ, δ, λ) then

Re
{
γs′(z) + δzs′′(z) +

(
δ − γ

2

)
z2s′′′ (z)

}
> Re

{
−ϵ
(
γt′(z) + δzt′′(z) +

(
δ − γ

2

)
z2t′′′ (z)

)}
+ λ (z ∈ U) .

With appropriate choice of ϵ (|ϵ| = 1) , it follows that

Re
{
γs′(z) + δzs′′(z) +

(
δ − γ

2

)
z2s′′′ (z) − λ

}
>

∣∣∣∣γt′(z) + δzt′′(z) +
(
δ − γ

2

)
z2t′′′ (z)

∣∣∣∣ (z ∈ U) ,
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and hence f ∈ R0
H(γ, δ, λ). �

Lemma 2.3. (Jack-Miller-Mocanu Lemma [14, 15]) Let w defined by w(z) = cnz
n +

cn+1z
n+1 + ... be analytic in U, with cn ̸= 0, and let z0 ̸= 0, z0 = r0e

iθ0(0 < r0 < 1) be a
point of U such that

|w(z0)| = max
|z|≤|z0|

|w(z)|

then there is a real number k, k ≥ n ≥ 1, such that

z0w
′(z0)

w(z0)
= k and Re

{
1 + z0w

′′(z0)
w′(z0)

}
≥ k.

Lemma 2.4. If F ∈ R(γ, δ, λ) then Re{F ′(z)} > 0, and hence F is close-to-convex in U.

Proof. Suppose F ∈ R(γ, δ, λ) and 2γF ′(z)+2δzF ′′(z)+(δ−γ)z2F ′′′(z)−2λ
2(γ−λ) =: Ψ(z). Then

Re{Ψ(z)} > 0 for z ∈ U. Consider an analytic function w in U with w(0) = 0 and

F ′(z) = 1 + w(z)
1 − w(z)

, w(z) ̸= 1.

We need to prove that |w(z)| < 1 for all z ∈ U. Then we have

Ψ(z) = 2γF ′(z) + 2δzF ′′(z) + (δ − γ) z2F ′′′(z) − 2λ
2 (γ − λ)

= γ

γ − λ

1 + w(z)
1 − w(z)

+ 2δ
γ − λ

zw′(z)
(1 − w(z))2

+ δ − γ

γ − λ

z2
[
w′′ (z) (1 − w(z)) + 2 (w′ (z))2

]
(1 − w(z))3 − λ

γ − λ

= 1
γ − λ

(
γ

1 + w(z)
1 − w(z)

+ 2δ zw′(z)
(1 − w(z))2

+ (δ − γ) zw′(z)
(1 − w(z))2

zw′′ (z)
w′(z)

+ 2 (δ − γ) (zw′(z))2

(1 − w(z))3 − λ

)
.

Since w is analytic in U and w(0) = 0, if there is z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

then by Lemma 2.3, we can write

w(z0) = eiθ, z0w
′(z0) = kw(z0) = keiθ, (k ≥ 1, 0 < θ < 2π).

and

Re
{
z0w

′′(z0)
w′(z0)

}
≥ k − 1.
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For such a point z0 ∈ U, we obtain

Re{Ψ(z0)} = 1
γ − λ

Re
(
γ

1 + w(z0)
1 − w(z0)

+ 2δ z0w
′(z0)

(1 − w(z0))2

+ (δ − γ) z0w
′(z0)

(1 − w(z0))2
z0w

′′ (z0)
w′(z0)

+ 2 (δ − γ) (z0w
′(z0))2

(1 − w(z0))3 − λ

)

= 1
γ − λ

[
− δk

1 − cos θ
− (δ − γ) k

2 (1 − cos θ)
Re
{
zw′′ (z0)
w′(z0)

}
+ (δ − γ) k2

2 (1 − cos θ)
− λ

]

≤ 1
γ − λ

[
− δk

1 − cos θ
+ (δ − γ) k

2 (1 − cos θ)
(1 − k) + (δ − γ) k2

2 (1 − cos θ)
− λ

]

= − 1
γ − λ

[ (δ + γ) k
2 (1 − cos θ)

+ λ

]
< 0,

which contradicts our assumption. Hence, there is no z0 ∈ U such that |w(z0)| = 1, which
means that |w(z)| < 1 for all z ∈ U. Therefore, we obtain that Re{F ′(z)} > 0. �

Theorem 2.5. The functions in the class R0
H(γ, δ, λ) are close-to-convex in U.

Proof. Referring to Lemma 2.4, we derive that functions Fϵ = s + ϵt ∈ R(γ, δ, λ) are
close-to-convex in U for each ϵ(|ϵ| = 1). Now in view of Lemma 2.1 and Theorem 2.2, we
obtain that functions in R0

H(γ, δ, λ) are close-to-convex in U. �

Theorem 2.6. Let f = s + t ∈ R0
H(γ, δ, λ) then for m ≥ 2,

|bm| ≤ 2 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

. (2.1)

The result is sharp and equality holds for the function f(z) = z + 2(γ−λ)
m2[2γ+(δ−γ)(m−1)] z̄

m.

Proof. Suppose that f = s + t ∈ R0
H(γ, δ, λ). Using the series representation of t(z), we

derive

rm−1m2
[
γ + δ − γ

2
(m− 1)

]
|bm|

≤ 1
2π

2π∫
0

∣∣∣∣γt′(reiθ) + δreiθt′′(reiθ) +
(
δ − γ

2

)
r2e2iθt′′′(reiθ)

∣∣∣∣ dθ
<

1
2π

2π∫
0

Re
{
γs′(reiθ) + δreiθs′′(reiθ) +

(
δ − γ

2

)
r2e2iθs′′′(reiθ) − λ

}
dθ

= 1
2π

2π∫
0

Re
{
γ − λ+

∞∑
m=2

m2
[
γ + δ − γ

2
(m− 1)

]
amr

m−1ei(m−1)θ
}
dθ

= γ − λ.

Allowing r → 1− gives the desired bound. Moreover, it is easy to verify that the equality
holds for the function f(z) = z + 2(γ−λ)

m2[2γ+(δ−γ)(m−1)] z̄
m. �
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Theorem 2.7. Let f = s + t ∈ R0
H(γ, δ, λ). Then for m ≥ 2, we have

(i) |am| + |bm| ≤ 4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

,

(ii) ||am| − |bm|| ≤ 4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

,

(iii) |am| ≤ 4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

.

All these results are sharp and all equalities hold for the function

f(z) = z +
∞∑
m=2

4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

zm.

Proof. (i) Suppose that f = s + t ∈ R0
H(γ, δ, λ), then from Theorem 2.2, Fϵ = s + ϵt ∈

R(γ, δ, λ) for ϵ (|ϵ| = 1) . Thus for each |ϵ| = 1, we have

Re
{
γ(s + ϵt)′ + δz(s + ϵt)′′ +

(
δ − γ

2

)
z2(s + ϵt)′′′

}
> λ

for z ∈ U. This implies that there exists an analytic function p of the form p(z) = 1 +
∞∑
m=1

pmz
m, with Re[p(z)] > 0 in U such that

γs′(z) + δzs′′(z) +
(
δ − γ

2

)
z2s′′′ (z) + ϵ

(
γt′(z) + δzt′′(z) +

(
δ − γ

2

)
z2t′′′ (z)

)
= λ+ (γ − λ) p(z). (2.2)

Comparing coefficients on both sides of (2.2) we have

m2
[
γ + δ − γ

2
(m− 1)

]
(am + ϵbm) = (γ − λ) pm−1 for m ≥ 2.

Since |pm| ≤ 2 for m ≥ 1, and ϵ (|ϵ| = 1) is arbitrary, proof of (i) is complete. Proofs of
(ii) and (iii) follows from (i). The function f(z) = z+

∞∑
m=2

4(γ−λ)
m2[2γ+(δ−γ)(m−1)]z

m, shows that
all inequalities are sharp. �

The following result gives a sufficient condition for a function to be in the class R0
H(γ, δ, λ).

Theorem 2.8. Let f = s + t ∈ H0 with

∞∑
m=2

m2 [2γ + (δ − γ) (m− 1)] (|am| + |bm|) ≤ 2 (γ − λ) , (2.3)

then f ∈ R0
H(γ, δ, λ).

Proof. Suppose that f = s + t ∈ H0. Then using (2.3),
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Re
{
γs′(z) + δzs′′(z) +

(
δ − γ

2

)
z2s′′′ (z) − λ

}
= Re

{
γ − λ+

∞∑
m=2

m2
[
γ + δ − γ

2
(m− 1)

]
amz

m−1
}

> γ − λ−
∞∑
m=2

m2
[
γ + δ − γ

2
(m− 1)

]
|am|

≥
∞∑
m=2

m2
[
γ + δ − γ

2
(m− 1)

]
|bm|

>

∣∣∣∣∣
∞∑
m=2

m2
[
γ + δ − γ

2
(m− 1)

]
bmz

m−1
∣∣∣∣∣

=
∣∣∣∣γt′(z) + δzt′′(z) +

(
δ − γ

2

)
z2t′′′ (z)

∣∣∣∣ .
Hence, f ∈ R0

H(γ, δ, λ). �

Corollary 2.9. Let f = s+ t ∈ H0 satisfies the inequality (2.3), then f is stable harmonic
close-to-convex in U.

Theorem 2.10. Let f = s + t ∈ R0
H(γ, δ, λ). Then

|z| + 4 (γ − λ)
∞∑
m=2

(−1)m−1 |z|m

m2 [2γ + (δ − γ) (m− 1)]
≤ |f(z)| ,

|f(z)| ≤ |z| + 4 (γ − λ)
∞∑
m=2

|z|m

m2 [2γ + (δ − γ) (m− 1)]
.

Inequalities are sharp for the function f(z) = z +
∞∑
m=2

4(γ−λ)
m2[2γ+(δ−γ)(m−1)]z

m.

Proof. Let f = s + t ∈ R0
H(γ, δ, λ). Then using Theorem 2.2, Fϵ ∈ R(γ, δ, λ) and for each

|ϵ| = 1 we have Re {ψ(z)} > λ where

ψ(z) = γF ′
ϵ(z) + δzF ′′

ϵ (z) + δ − γ

2
z2F ′′′

ϵ (z).

Then, we have

ψ(z) =
(
δ − γ

2

)[ 2γ
δ − γ

F ′
ϵ(z) +

( 2γ
δ − γ

+ 2
)
zF ′′

ϵ (z) + z2F ′′′
ϵ (z)

]
=

(
δ − γ

2

)[ 2γ
δ − γ

(
zF ′

ϵ(z)
)′ +

(
z2F ′′

ϵ (z)
)′
]

=
(
δ − γ

2

)[ 2γ
δ − γ

(
zF ′

ϵ(z)
)

+
(
z2F ′′

ϵ (z)
)]′

=
(
δ − γ

2

)[
z

2− 2γ
δ−γ

(
z

2γ
δ−γF ′

ϵ(z)
)′]′

.

Then integrating from 0 to z gives( 2
δ − γ

)
z

2γ
δ−γ

−2
z∫

0

ψ(ω)dω =
(
z

2γ
δ−γF ′

ϵ(z)
)′
.
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Making the substitution ω = r
δ−γ

2 z in the above integral and integrating again, change of
variables gives

F ′
ϵ(z) = 1

γ

1∫
0

1∫
0

ψ(v
δ−γ
2γ uz)dudv. (2.4)

On the other hand, since Re
{
ψ(z)−λ
γ−λ

}
> 0 then ψ(z) ≺ γ+(γ−2λ)z

1−z where ≺ denotes the
subordination [7]. Let

ϕ(z) =
1∫

0

1∫
0

dudv

1 − uv
δ−γ
2γ z

= 1 +
∞∑
m=1

zm

(1 +m)
(
1 + δ−γ

2γ m
)

and

h(z) = 1
γ

(
γ + (γ − 2λ) z

1 − z

)
= 1 +

∞∑
m=1

2 (γ − λ)
γ

zm.

Then, from (2.4) we have

F ′
ϵ(z) ≺ (ϕ ∗ h)(z)

=

1 +
∞∑
m=1

zm

(1 +m)
(
1 + δ−γ

2γ m
)
 ∗

(
1 +

∞∑
m=1

2 (γ − λ)
γ

zm
)

= 1 +
∞∑
m=1

4 (γ − λ)
m2 (δ − γ) +m (δ + γ) + 2γ

zm.

Since

∣∣F ′
ϵ(z)

∣∣ =
∣∣s′(z) + ϵt′(z)

∣∣
≤ 1 + 4 (γ − λ)

∞∑
m=1

|z|m

m2 (δ − γ) +m (δ + γ) + 2γ

and

∣∣F ′
ϵ(z)

∣∣ =
∣∣s′(z) + ϵt′(z)

∣∣
≥ 1 + 4 (γ − λ)

∞∑
m=1

(−1)m |z|m

m2 (δ − γ) +m (δ + γ) + 2γ
,

in particular we have

∣∣s′(z)
∣∣+ ∣∣t′(z)∣∣ ≤ 1 + 4 (γ − λ)

∞∑
m=1

|z|m

m2 (δ − γ) +m (δ + γ) + 2γ

and

∣∣s′(z)
∣∣− ∣∣t′(z)∣∣ ≥ 1 + 4 (γ − λ)

∞∑
m=1

(−1)m |z|m

m2 (δ − γ) +m (δ + γ) + 2γ
.
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Let Γ be the radial segment from 0 to z, then

|f(z)| =

∣∣∣∣∣∣
∫
Γ

∂f

∂ζ
dζ + ∂f

∂ζ̄
dζ̄

∣∣∣∣∣∣ ≤
∫
Γ

(∣∣s′(ζ)
∣∣+ ∣∣t′(ζ)∣∣) |dζ|

≤
|z|∫
0

(
1 + 4 (γ − λ)

∞∑
m=1

|τ |m

m2 (δ − γ) +m (δ + γ) + 2γ

)
dτ

= |z| + 4 (γ − λ)
∞∑
m=1

|z|m+1

(m+ 1) [m2 (δ − γ) +m (δ + γ) + 2γ]

= |z| + 4 (γ − λ)
∞∑
m=2

|z|m

m
[
(m− 1)2 (δ − γ) + (m− 1) (δ + γ) + 2γ

]
= |z| + 4 (γ − λ)

∞∑
m=2

|z|m

m2 [2γ + (δ − γ) (m− 1)]

and

|f(z)| ≥
∫
Γ

(∣∣s′(ζ)
∣∣− ∣∣t′(ζ)∣∣) |dζ|

≥
|z|∫
0

(
1 + 4 (γ − λ)

∞∑
m=1

(−1)m |τ |m

m2 (δ − γ) +m (δ + γ) + 2γ

)
dτ

= |z| + 4 (γ − λ)
∞∑
m=2

(−1)m−1 |z|m

m2 [2γ + (δ − γ) (m− 1)]
.

�

3. Convex combinations and convolutions
In this section, we prove that the class R0

H(γ, δ, λ) is closed under convex combinations
and convolutions of its members.

Theorem 3.1. The class R0
H(γ, δ, λ) is closed under convex combinations.

Proof. Suppose fi = si + ti ∈ R0
H(γ, δ, λ) for i = 1, 2, ..., n and

n∑
i=1

ϱi = 1 (0 ≤ ϱi ≤ 1).

The convex combination of functions fi (i = 1, 2, ..., n) may be written as

f(z) =
n∑
i=1

ϱifi(z) = s(z) + t(z),

where

s(z) =
n∑
i=1

ϱisi (z) and t(z) =
n∑
i=1

ϱiti (z) .
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Then both s and t are analytic in U with s(0) = t(0) = s′(0) − 1 = t′(0) = 0 and

Re{γs′(z) + δzs′′(z) +
(
δ − γ

2

)
z2s′′′ (z) − λ}

= Re
{

n∑
i=1

ϱi

(
γs′

i(z) + δzs′′
i (z) +

(
δ − γ

2

)
z2s′′′

i (z) − λ

)}

>
n∑
i=1

ϱi

∣∣∣∣γt′i(z) + δzt′′i (z) +
(
δ − γ

2

)
z2t′′′i (z)

∣∣∣∣
≥

∣∣∣∣γt′(z) + δzt′′(z) +
(
δ − γ

2

)
z2t′′′ (z)

∣∣∣∣
showing that f ∈ R0

H(γ, δ, λ). �
A sequence {cm}∞

m=0 of non-negative real numbers is said to be a convex null sequence,
if cm → 0 as m → ∞, and c0 − c1 ≥ c1 − c2 ≥ c2 − c3 ≥ ... ≥ cm−1 − cm ≥ ... ≥ 0. To prove
results for convolution, we shall need the following Lemma 3.2 and Lemma 3.3.

Lemma 3.2 ([9]). If {cm}∞
m=0 be a convex null sequence, then function

q(z) = c0
2

+
∞∑
m=1

cmz
m

is analytic and Re{q(z)} > 0 in U.

Lemma 3.3 ([22]). Let the function p be analytic in U with p(0) = 1 and Re{p(z)} > 1/2
in U. Then for any analytic function F in U, the function p ∗F takes values in the convex
hull of the image of U under F.

Lemma 3.4. Let F ∈ R(γ, δ, λ), then Re
{
F (z)
z

}
>

1
2
.

Proof. Suppose F ∈ R(γ, δ, λ) be given by F (z) = z +
∑∞
m=2Amz

m, then

Re
{
γ +

∞∑
m=2

m2
[
γ + δ − γ

2
(m− 1)

]
Amz

m−1
}
> λ (z ∈ U),

which is equivalent to Re{p(z)} > 1
2 in U, where

p(z) = 1 + 1
4 (γ − λ)

∞∑
m=2

m2 [2γ + (δ − γ) (m− 1)]Amzm−1.

Now consider a sequence {cm}∞
m=0 defined by

c0 = 1 and cm−1 = 4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

for m ≥ 2.

It can be easily seen that the sequence {cm}∞
m=0 is a convex null sequence. Using Lemma

3.2, this implies that the function

q(z) = 1
2

+
∞∑
m=2

4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

zm−1

is analytic and Re{q(z)} > 0 in U. Writing
F (z)
z

= p(z) ∗
(

1 +
∞∑
m=2

4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

zm−1
)
,

and making use of Lemma 3.3 gives that Re
{
F (z)
z

}
>

1
2

for z ∈ U. �

Lemma 3.5. Let Fi ∈ R(γ, δ, λ) for i = 1, 2. Then F1 ∗ F2 ∈ R(γ, δ, λ).
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Proof. Suppose F1(z) = z +
∑∞
m=2Amz

m and F2(z) = z +
∑∞
m=2Bmz

m. Then the
convolution of F1(z) and F2(z) is defined by

F (z) = (F1 ∗ F2)(z) = z +
∞∑
m=2

AmBmz
m.

Since F ′(z) = F ′
1(z) ∗ F2(z)

z , zF ′′(z) = zF ′′
1 (z) ∗ F2(z)

z and zF ′′′(z) = zF ′′′
1 (z) ∗ F2(z)

z then
we have

2γF ′(z) + 2δzF ′′(z) + (δ − γ) z2F ′′′ (z) − 2λ
2 (γ − λ)

=
(

2γF ′
1(z) + 2δzF ′′

1 (z) + (δ − γ) z2F ′′′
1 (z) − 2λ

2 (γ − λ)

)
∗ F2(z)

z
. (3.1)

Since F1 ∈ R(γ, δ, λ),

Re
{

2γF ′
1(z) + 2δzF ′′

1 (z) + (δ − γ) z2F ′′′
1 (z) − 2λ

2 (γ − λ)

}
> 0 (z ∈ U)

and using Lemma 3.4, Re
{
F2(z)
z

}
>

1
2

in U. Now applying Lemma 3.3 to (3.1) yields

Re
(

2γF ′(z)+2δzF ′′(z)+(δ−γ)z2F ′′′(z)−2λ
2(γ−λ)

)
> 0 in U. Thus, F = F1 ∗ F2 ∈ R(γ, δ, λ). �

Now using Lemma 3.5, we prove that the class R0
H(γ, δ, λ) is closed under convolutions

of its members. We make use of the techniques and methodology introduced by Dorff [6]
for convolution.

Theorem 3.6. Let fi ∈ R0
H(γ, δ, λ) for i = 1, 2. Then f1 ∗ f2 ∈ R0

H(γ, δ, λ).

Proof. Suppose fi = si + ti ∈ R0
H(γ, δ, λ) (i = 1, 2). Then the convolution of f1 and f2 is

defined as f1 ∗ f2 = s1 ∗ s2 + t1 ∗ t2. In order to prove that f1 ∗ f2 ∈ R0
H(γ, δ, λ), we need to

prove that Fϵ = s1 ∗ s2 + ϵ(t1 ∗ t2) ∈ R(γ, δ, λ) for each ϵ (|ϵ| = 1). By Lemma 3.5, the class
R(γ, δ, λ) is closed under convolutions for each ϵ (|ϵ| = 1), si + ϵti ∈ R(γ, δ, λ) for i = 1, 2.
Then both F1 and F2 given by

F1 = (s1 − t1) ∗ (s2 − ϵt2) and F2 = (s1 + t1) ∗ (s2 + ϵt2),

belong to R(γ, δ, λ). Since R(γ, δ, λ) is closed under convex combinations, then the function

Fϵ = 1
2

(F1 + F2) = s1 ∗ s2 + ϵ(t1 ∗ t2)

belongs to R(γ, δ, λ). Hence R0
H(γ, δ, λ) is closed under convolution. �

Now we consider the Hadamard product of a harmonic function with an analytic func-
tion which is defined by Goodloe [12] as

f∗̃φ = s ∗ φ+ t ∗ φ,

where f = s + t is harmonic function and φ is an analytic function in U.

Theorem 3.7. Let f ∈ R0
H(γ, δ, λ) and φ ∈ A be such that Re

(
φ(z)
z

)
>

1
2

for z ∈ U,

then f∗̃φ ∈ R0
H(γ, δ, λ).

Proof. Suppose that f = s + t ∈ R0
H(γ, δ, λ), then Fϵ = s + ϵt ∈ R(γ, δ, λ) for each ϵ

(|ϵ| = 1). By Theorem 2.2, in order to show that f∗̃φ ∈ R0
H(γ, δ, λ), we need to show that
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G = s ∗ φ+ ϵ(t ∗ φ) ∈ R(γ, δ, λ) for each ϵ (|ϵ| = 1). Write G as G = Fϵ ∗ φ, and
1

2 (γ − λ)

(
2γG′(z) + 2δzG′′(z) + (δ − γ) z2G′′′ (z) − 2λ

)
= 1

2 (γ − λ)

(
2γF ′

ϵ(z) + 2δzF ′′
ϵ (z) + (δ − γ) z2F ′′′

ϵ (z) − 2λ
)

∗ φ(z)
z

.

Since Re
(
φ(z)
z

)
>

1
2

and Re{2γF ′
ϵ(z) + 2δzF ′′

ϵ (z) + (δ − γ) z2F ′′′
ϵ (z) − 2λ} > 0 in U,

Lemma 3.3 proves that G ∈ R(γ, δ, λ). �
Corollary 3.8. Let f ∈ R0

H(γ, δ, λ) and φ ∈ K, then f ∗̃φ ∈ R0
H(γ, δ, λ).

Proof. Suppose φ ∈ K, then Re
(
φ(z)
z

)
>

1
2

for z ∈ U. As a corollary of Theorem 3.7,

f ∗̃φ ∈ R0
H(γ, δ, λ). �

4. Radii of fully convexity and starlikeness
In this section, we obtain the radii of fully convexity and starlikeness of the class

R0
H(γ, δ, λ).Also, estimates on λ that would ensure fully convexity of functions of R0

H(1, δ, λ)
are found.

First, we state the following lemmas give sufficient conditions for functions f in H0 to
belong to FK0

H and FS
∗,0
H respectively.

Lemma 4.1 ([21], Corollary 1). Let f = s+t, where s and t are given by (1.1). Further,
let

∞∑
m=2

m2 [|am| + |bm|] ≤ 1. (4.1)

Then f is harmonic univalent in U, and f ∈ FK0
H .

Lemma 4.2 ([21], Theorem 1). Let f = s+t, where s and t are given by (1.1). Further,
let

∞∑
m=2

m [|am| + |bm|] ≤ 1. (4.2)

Then f is harmonic univalent in U, and f ∈ FS
∗,0
H .

The following lemma are useful in the proof of the theorems:

Lemma 4.3 ([11,16]). We have

(i)
∞∑
m=2

mrm−1 = r (2 − r)
(1 − r)2 , (4.3)

(ii)
∞∑
m=2

m2rm−1 = r
(
4 − 3r + r2)
(1 − r)3 . (4.4)

Theorem 4.4. Let f = s + t ∈ R0
H(γ, δ, λ). Then f is fully convex in |z| < rc, where rc is

the unique real root of pc(r) = 0 in (0, 1), and where
pc(r) = (−δ − 2γ + λ) r3 + (3δ + 6γ − 3λ) r2 + (−3δ − 7γ + 4λ) r + δ + γ. (4.5)

Proof. Let f = s+ t ∈ R0
H(γ, δ, λ) where s (z) = z +

∞∑
m=2

amz
m and t (z) =

∞∑
m=2

bmz
m. For

r ∈ (0, 1), it is sufficient to show that fr ∈ FK0
H where

fr (z) = f (rz)
r

= z +
∞∑
m=2

amr
m−1zm +

∞∑
m=2

bmrm−1zm.
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Consider the sum
S =

∞∑
m=2

m2 (|am| + |bm|) rm−1. (4.6)

In view of Theorem 2.7 (i) and (4.4), (4.6) gives

S ≤
∞∑
m=2

m2
( 4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

)
rm−1

≤ γ − λ

δ + γ

∞∑
m=2

m2rm−1

= γ − λ

δ + γ

r
(
4 − 3r + r2)
(1 − r)3 =: X1.

Lemma 4.1 implies that in order to show that fr ∈ FK0
H , it is sufficient to show that

X1 ≤ 1. A simple computation shows that X1 ≤ 1 whenever pc(r) ≥ 0 where pc(r) is
defined by (4.5). It is easy to observe that pc(0) = δ + γ > 0 and pc(1) = 2 (λ− γ) < 0,
and hence pc(r) has at least one root in (0, 1) .

To show that pc(r) has exactly one root in (0, 1) , it is sufficient to prove that pc(r) is
monotonic function on (0, 1) . A simple computation shows that

pc′(r) = (−6γ + 3λ− 3δ) r2 + (12γ − 6λ+ 6δ) r − 3δ − 7γ + 4λ
pc′(0) = −3δ − 7γ + 4λ = −3 (γ + δ) − 4 (γ − λ) < 0
pc′(1) = λ− γ < 0
pc′′(r) = (−6δ − 12γ + 6λ) r + 6δ + 12γ − 6λ

= [−6 (γ + δ) − 6 (δ − λ)] r − [−6 (γ + δ) − 6 (δ − λ)]
= [−6 (γ + δ) − 6 (δ − λ)] (r − 1) > 0 for r ∈ (0, 1) .

Hence pc′(r) is a strictly monotonic increasing function on (0, 1). Since pc′(1) < 0, we
conclude that pc′(r) < 0 on (0, 1). This shows that pc(r) is strictly monotonically de-
creasing on (0, 1). Thus pc(r) = 0 has exactly one root in (0, 1). Since pc(r) is strictly
monotonically decreasing on (0, 1) with pc(0) > 0 and pc(rc) = 0, it is easy to see that
pc(r) ≥ 0 for 0 < r ≤ rc. Hence f is fully convex in |z| < rc. �
Theorem 4.5. Let f = s+ t ∈ R0

H(γ, δ, λ). Then f is fully starlike in |z| < rs, where rs is
the unique real root of ps(r) = 0 in (0, 1), and where

ps(r) = (δ + 2γ − λ) r2 + (−2δ − 4γ + 2λ) r + δ + γ. (4.7)

Proof. Let f = s + t ∈ R0
H(γ, δ, λ). For r ∈ (0, 1), let

fr (z) = f (rz)
r

= z +
∞∑
m=2

amr
m−1zm +

∞∑
m=2

bmrm−1zm

Consider the sum
S =

∞∑
m=2

m (|am| + |bm|) rm−1 (4.8)

Using Theorem 2.7(i) and (4.3), (4.8) gives

S ≤
∞∑
m=2

m

( 4 (γ − λ)
m2 [2γ + (δ − γ) (m− 1)]

)
rm−1

≤ γ − λ

δ + γ

∞∑
m=2

mrm−1

= γ − λ

δ + γ

r (2 − r)
(1 − r)2 =: X2.
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In view of Lemma 4.2 in order to prove that fr ∈ FSH∗,0, it is sufficient to show that
X2 ≤ 1. A simple computation shows that X2 ≤ 1 whenever ps(r) ≥ 0 where ps(r) is
defined by (4.7). It is easy to observe that ps(0) = δ + γ > 0 and ps(1) = λ− γ < 0, and
hence ps(r) has a real root in (0, 1) .

To show that ps(r) has exactly one root in (0, 1) , it is sufficient to prove that ps(r) is
monotonic function on (0, 1) . A simple computation shows that

ps′(r) = 2 (δ + 2γ − λ) (r − 1) < 0, for r ∈ (0, 1)
ps′(0) = 2 (λ− δ − 2γ) ,
ps′(1) = 0,
ps′′(r) = 2 (δ + 2γ − λ) > 0.

Hence ps′(r) is a strictly monotonically increasing function on (0, 1). Since ps′(1) = 0,
we conclude that ps′(r) < 0 on (0, 1). This shows that ps(r) is strictly monotonically
decreasing on (0, 1). Thus ps(r) has exactly one root in (0, 1). Since ps(r) is strictly
monotonically decreasing on (0, 1) with ps(0) > 0 and ps(rs) = 0, it is easy to see that
ps(r) ≥ 0 for 0 < r ≤ rs. Hence f is fully starlike in |z| < rs. �
Lemma 4.6 ([2], Corollary 3.2). Let λ < 1, δ ≥ 1, and f ∈ R(1, δ, λ). If λ satisfies

7 − 3δ = 4λ+ 4(1 − λ)
∞∑
m=1

2m(3 − δ) + (δ − 5)
(m+ 1) (m (δ − 1) + 2)

, (4.9)

then f is convex in U.

Theorem 4.7. Suppose f ∈ R0
H(1, δ, λ) with λ < 1, δ ≥ 1. If λ satisfies (4.9), then f is

fully convex in U.

Proof. Let λ < 1, δ ≥ 1 and f ∈ R0
H(1, δ, λ). Then Fϵ = s + ϵt ∈ R(1, δ, λ) for each

ϵ (|ϵ| = 1) . If λ satisfies (4.9), then Fϵ is convex in U. In view of [17, Corollary 2.4], it
follows that f is fully convex in U. �

In [2, Example 3.1], it is stated that if f ∈ R(1, 3, λ) then f is convex in U whenever λ
satisfies λ = π2−9

π ≈ 0.088843. However [1, Theorem 5.3] through the use of techniques in
duality, obtained the sharp estimate λ = 1−ln 2

2(1−ln 2) ≡ −0, 629445. Thus, Rosihan et al. [2]
motivated the following problem:

Problem 4.8 ([2], Problem 3.1). Find γ, δ and λ so that functions f ∈ R(γ, δ, λ) are
convex in U.

Now, we extend this problem to

Problem 4.9. Find γ, δ and λ so that functions f ∈ R0
H(γ, δ, λ) are fully convex in U.
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