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Abstract. In this study, we derive Gelfand-Levitan-Marchenko type main

integral equation of the inverse problem for singular Sturm-Liouville equation

which has discontinuous coefficient. Then we prove the unique solvability of
the main integral equation.

1. Introduction

We consider boundary value problem L as follows:

− y′′ +

[
A

x
+ q(x)

]
y = λ2ρ(x)y, x ∈ I = (0, d) ∪ (d, π) , (1)

U (y) := y (0) = 0, V (y) := y (π) = 0 (2)

where λ is spectral parameter, A ∈ R+, ρ(x) =

{
1, 0 ≤ x ≤ d
α2, d < x ≤ π

, α ∈ R,

α ̸= 1, α > 0, d ∈
(π
2
, π
)
, q (x) is a real valued bounded function and q (x) ∈

L2 (0, π) .
Boundary value problems with discontinuous coefficient often appear in ap-

plied mathematics, geophysics, mechanics, electromagnetics, elasticity and other
branches of engineering and physics. The inverse problem of reconstructing the
material properties of a medium from data collected outside of the medium is of
central importance in disciplines ranging from engineering to the geosciences. For
example, torodial vibrations and free vibrations of the earth, reconstructing the
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discontinuous material properties of a nonabsorbing media, as a rule leads to di-
rect and inverse problems or the Sturm-Liouville equation which has discontinuous
coefficient. (see [1]- [7]) Discontinuous inverse problems appear in electronics for
constructing parameters of heterogeneous electronic lines with desirable technical
characteristics [6]. After reducing corresponding mathematical model we come to
boundary value problem L where q (x) must be constructed from the given spectral
information which describes desirable amplitude and phase characteristics. Spectral
information can be used to reconstruct the permittivity and conductivity profiles
of a one-dimensional discontinuous medium [7], [1]. Boundary value problems with
discontinuities in an interior point also appear in geophysical models for oscillations
of the Earth [2]. Here, the main discontinuity is cased by reflection of the shear
waves at the base of the crust. Further, it is known that inverse spectral prob-
lems play an important role for investigating some nonlinear evolution equations of
mathematical physics. Discontinuous inverse problems help to study the blow-up
behaviour of solutions for such nonlinear equations. We also note that inverse prob-
lem considered here appears in mathematics for investigating spectral properties of
some classes of differential, integrodifferential and integral operators.

Sturm-Liouville operators with singular potential were studied in [8]- [10]. In [10],
Sturm-Liouville operators generated by the differential expression −y′′+q (x) y were
considered. Here q (x) is a distribution of first order, i.e.,

∫
q (x) dx ∈ L2 [0, π] . The

minimal and maximal operators corresponding to potentials of this type on a finite
interval were constructed in [8]. All self-adjoint extensions of the minimal operator
were described and the asymptotics of the eigenvalues of these extensions were
found there.

The authors in [11]- [14] study asymptotics of eigenvalue, eigenfunctions and
normalizing numbers and solve the inverse spectral problems of recovering the sin-
gular potential q ∈ W−1

2 (0, 1) of Sturm-Liouville operators by two spectra. The
reconstruction algorithm is presented and necessary and sufficient conditions on
two sequences to be spectral data Sturm-Liouville operators under consideration
are given. Unlike these studies, the proposed method in our work is more practical
and more feasible.

In this study, we derive the Gelfand-Levitan-Marchenko type main integral equa-
tion of the inverse problem for singular Sturm-Liouville equation which has dis-
continuous coefficient. Then we prove the unique solvability of the main integral
equation.

In [15] and [16] , we defined y1 (x) = y (x) , y2 (x) = (Γy) (x) = y′ (x)−u (x) y (x) ,
u (x) = A lnx and got the expression of left hand side of the equation (1) as follows

ℓ (y) = − [(Γy) (x)]
′ − u (x) (Γy) (x)− u2 (x) y + q (x) y = λ2ρ(x)y, (3)

then the equation (1) reduced to the system;{
y′1 − y2 = u (x) y1

y′2 + λ2ρ(x)y1 = −u (x) y2 − u2 (x) y1 + q (x) y1
(4)
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with the boundary conditions

y1 (0) = 0, y1 (π) = 0. (5)

Matrix form of system (4)(
y1
y2

)′

=

(
u 1

−λ2ρ(x)− u2 + q − u

)(
y1
y2

)
(6)

or y′ = Ay such that A =

(
u (x) 1

−λ2ρ(x)− u2 (x) + q (x) − u (x)

)
, y :=

(
y1
y2

)
.

x = 0 is a regular-singular end point for equation (4) and Theorem 2 in [17]
(see Remark 1-2, p.56) extends to interval [0, π] . For this reason, by [17], there
exists only one solution of the system (2) which satisfies the initial conditions

y1 (ξ) = υ1, y2 (ξ) = υ2 for each ξ ∈ [0, π] , υ = (υ1, υ2)
T ∈ C2, especially the

initial conditions y1 (0) = 1, y2 (0) = iλ.

Definition 1. The first component of the solution of the system (4) which satisfies
the initial conditions y1 (ξ) = υ1, y2 (ξ) = (Γy) (ξ) = υ2 is called the solution of the
equation (1) which satisfies these same initial conditions.

It was obtained in [3] by the successive approximations method that (see [18],
[19]) the following theorem is true.

Theorem 1. [3] For each solution of system (6) satisfying the initial conditions(
y1
y2

)
(0) =

(
1
iλ

)
the following expression is true:

y1 = eiλx +

x∫
−x

K11 (x, t) e
iλtdt

y2 = iλeiλx + b (x) eiλx +

x∫
−x

K21 (x, t) e
iλtdt+ iλ

x∫
−x

K22 (x, t) e
iλtdt

, x < d



y1 = α+eiλµ
+(x) + α−eiλµ

−(x) +

µ+(x)∫
−µ+(x)

K11 (x, t) e
iλtdt

y2 = iλα
(
α+eiλµ

+(x) − α−eiλµ
−(x)

)
+b (x)

[
α+eiλµ

+(x) + α−eiλµ
−(x)

]
+

µ+(x)∫
−µ+(x)

K21 (x, t) e
iλtdt+ iλα

µ+(x)∫
−µ+(x)

K22 (x, t) e
iλtdt

, x > d
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where

b (x) = −1

2

x∫
0

[
u2 (s)− q (s)

]
e

−
1

2

x∫
s

u(t)dt

ds,

K11 (x, x) =
α+

2
u (x) ,

K21 (x, x) = b′ (x)− 1

2

x∫
0

[
u2 (s)− q (s)

]
K11 (s, s) ds−

1

2

x∫
0

u (s)K21 (s, s) ds,

K22 (x, x) = −α+

2
[u (x) + 2b (x)] ,

K11 (x, 2d− x+ 0)−K11 (x, 2d− x− 0) =
α−

2
u (x) ,

∂Kij (x, .)

∂x
,
∂Kij (x, .)

∂t
∈ L2 (0, π) , i, j = 1, 2,

α± (x) =
1

2

(
1± 1√

ρ (x)

)
, µ± (x) = ±x

√
ρ (x) + d

(
1±

√
ρ (x)

)
.

2. The Main Equation of the Inverse Problem

Assume that s(x, λ) is solution of the equation (1) with initial condition

s(0, λ) =

(
0
iλ

)
.

We have

s (x, λ) = s0 (x, λ) +

µ+(x)∫
µ−(x)

K11 (x, t) sinλtdt,

where

s0 (x, λ) = α+ (x) sinλµ+ (x) + α− (x) sinλµ− (x) .

Also, let us define αn, α
0
n and ΦN (x, t) as follows:

αn =

π∫
0

ρ (x) s2 (x, λn) dx,

α0
n =

π∫
0

ρ (x) s20
(
x, λ0

n

)
dx,

ΦN (x, t) = ΦN1
(x, t) + ΦN2

(x, t) + ΦN3
(x, t) + ΦN4

(x, t),
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ΦN (x, t) =

N∑
n=0

(
s (x, λn) s (t, λn)

αn
−

s0
(
x, λ0

n

)
s0
(
t, λ0

n

)
α0
n

)
,

ΦN1(x, t) =

N∑
n=0

(
s0 (x, λn) s0 (t, λn)

αn
−

s0
(
x, λ0

n

)
s0
(
t, λ0

n

)
α0
n

)
,

ΦN2
(x, t) =

µ+(x)∫
0

K11 (x, ξ)

N∑
n=0

s0
(
x, λ0

n

)
sinλ0

nξ

α0
n

dξ,

ΦN3
(x, t) =

µ+(x)∫
0

K11 (x, ξ)

N∑
n=0

(
s0 (x, λn) sinλnξ

αn
−

s0
(
x, λ0

n

)
sinλ0

nξ

α0
n

)
dξ,

ΦN4
(x, t) =

µ+(x)∫
0

K11 (x, ξ)

N∑
n=0

s (x, λn) sinλnξ

αn
dξ.

Here, using

s0 (ξ, λ) =

 sinλnξ, ξ ≤ d
1

2

(
1 +

1

α

)
sinλµ+ (ξ) +

1

2

(
1− 1

α

)
sinλµ+ (ξ) , ξ > d

,

we have

s0 (ξ, λ) = α+ sinλµ+ (ξ) + α−s0λ
(
2d− µ+ (ξ)

)
, ξ > d.

Also, since 2d− µ+ (ξ) < d we obtain

sinλµ+ (ξ) =
1

α+
s0 (ξ, λ)−

α−

α+
s0
(
2d− µ+ (ξ) , λ

)
.

Substituting µ+ (ξ) → ξ, we get

sinλnξ =

 s0 (ξ, λ) , ξ ≤ d
1

α+
s0 (ξ, λ)−

α−

α+
s0 (2d− µ+ (ξ) , λ) , ξ > d

. (7)

Now, define F0(x, t) and F (x, t) as follows:

F0(x, t) =

∞∑
n=0

[
s0 (t, λn) sinλnx

αn
−

s0
(
t, λ0

n

)
sinλ0

nx

α0
n

]
(8)

and

F (x, t) =
1

2

(
1 +

1√
ρ (x)

)
F0(µ

+ (x) , t) +
1

2

(
1− 1√

ρ (x)

)
F0(µ

− (x) , t). (9)
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We can write

F (x, t) =

∞∑
n=0

[
s0 (x, λn) s0 (t, λn)

αn
−

s0
(
x, λ0

n

)
s0
(
t, λ0

n

)
α0
n

]
. (10)

Let f ∈ AC[0, π], using Theorem 6 in [4],

f(x) =

∞∑
n=0

π∫
0

f(t)ρ (t)
s (x, λn) s (t, λn)

αn
dt (11)

and

f(x) =

∞∑
n=0

π∫
0

f(t)ρ (t)
s0
(
x, λ0

n

)
s0
(
t, λ0

n

)
α0
n

dt, (12)

we get

lim
N→∞

max
0≤x≤π

π∫
0

f(t)ρ (t) ΦN (x, t)dt

≤ lim
N→∞

max
0≤x≤π

∣∣∣∣∣∣
π∫

0

f(t)ρ (t)

∞∑
n=0

s (x, λn) s (t, λn)

αn
dt− f(x)

∣∣∣∣∣∣ ,
lim

N→∞
max

0≤x≤π

∣∣∣∣∣∣
π∫

0

f(t)ρ (t)

∞∑
n=0

s0
(
x, λ0

n

)
s0
(
t, λ0

n

)
α0
n

dt− f(x)

∣∣∣∣∣∣ = 0.

Furthermore, uniformly for x ∈ [0, π],

lim
N→∞

π∫
0

f(t)ρ (t) ΦN1
(x, t)dt =

π∫
0

f(t)ρ (t)F (x, t)dt. (13)

Similarly, we have

lim
N→∞

π∫
0

f(t)ρ (t) ΦN2
(x, t)dt =

d∫
0

f(t)K11(x, t)dt+

1

α+

x∫
d

f(t)K11(x, µ
+ (t))dt− α−

α+

x∫
d

f(t)K11(x, µ
+ (2d− t))dt.

Because for 2d− t > µ+ (x) , K(x, µ+ (2d− t) ≡ 0, we have
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lim
N→∞

π∫
0

f(t)ρ (t) ΦN2
(x, t)dt =

x∫
0

f(t)K11(x, µ
+ (t))

2
√

ρ (t)

1 +
√
ρ (t)

dt+

x∫
0

f(t)K11(x, µ
+ (2d− t))

2
√
ρ (2d− t)

1 +
√
ρ (2d− t)

dt

uniformly in x ∈ [0, π].

lim
N→∞

π∫
0

f(t)ρ (t) ΦN3(x, t)dt =

π∫
0

ρ (t) f (t)

 µ+(x)∫
0

K11 (x, ξ)F0(ξ, t)dξ

 dt.

Using residue theorem, we get

lim
N→∞

π∫
0

f(t)ρ (t) ΦN4
(x, t)dt =

= 2 lim
N→∞

π∫
0

f(t)ρ (t)
1

2πi

∮
Γn

 λ

∆(λ)

µ+(x)∫
0

K11 (x, ξ) sinλξ

 dλdt

here Γn = {λ : |λ| = N} .

s (x, λ) = O
(
e|Imλ|(µ+(π)−µ+(x))

)
and

|∆(λ)| ≥ Cδ |λ| e|Imλµ+(x)|, λ ∈ Gδ

where Cδ > 0, Gδ =
{
λ :
∣∣λ− λ0

n

∣∣ ≥ δ
}
, for all λ ∈ Gδ, we get∣∣∣∣ λ

∆(λ)

∣∣∣∣ ≤ C̃δe
−|Imλ|(µ+(x)−µ+(t))

where C̃δ > 0 is a constant. Using µ (t) < µ+ (x) , we have

lim
|λ|→∞

max
0≤x≤π

λ

∆(λ)
= 0.

By the way, due to Riemann-Lebesgue lemma, we can write

lim
N→∞

π∫
0

f(t)ρ (t) ΦN4
(x, t)dt = 0.
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If we use the last equations we obtain
π∫

0

f(t)ρ (t)F (x, t)dt+

x∫
0

f(t)K11(x, µ
+ (t))

2
√
ρ (t)

1 +
√

ρ (t)
dt+

x∫
0

f(t)K11(x, µ
+ (2d− t))

2
√
ρ (2d− t)

1 +
√
ρ (2d− t)

dt+

π∫
0

f(t)ρ (t)

µ+(x)∫
0

K11 (x, ξ)F0(ξ, t)dξdt = 0.

Since f ∈ AC[0, π] is arbitrary, the following theorem could be proved:

Theorem 2. For every fix x ∈ (0, π) , the kernel function K11(x, t) of the integral
representation of the solution φ(x, λ) satisfies the following linear-functional integral
equation.

2
√
ρ (t)

1 +
√
ρ (t)

K11(x, µ
+ (t)) +

2
√

ρ (2d− t)

1 +
√
ρ (2d− t)

K11(x, µ
+ (2d− t)) + F (x, t)+

+

µ+(x)∫
0

K11 (x, ξ)F0(ξ, t)dξdt = 0, (14)

where the functions F0(x, t) and F (x, t) are defined by the formulas (8) and (9)
respectively.

Theorem 3. For every fix x ∈ (0, π) , the equation (14) has a unique solution
K11(x, t),which belongs to L2 (0, π) .

Proof. For x ≤ d, equation (14) is written as follows:

K11(x, t) + F (x, t) +

x∫
0

K11 (x, ξ)F0(ξ, t)dξ = 0 (15)

which is a Fredholm integral equation and equivalent to the equation of type

(I +B) f = g (16)

where I is the unit operator, B is a compact operator in the space L2 (0, π) , f, g ∈
L2 (0, π) . Let us prove that in the case x > d the equation (14) is also equivalent
to an equation of type (16).

If x > d, the equation (14) can be written as

LxK11 (x, .) +MxK11 (x, .) = −F (x, .) ,

where

(Lxf) (t) =
2

1 +
√
ρ (t)

f
(
µ+ (t)

)
+

1−
√
ρ (2d− t)

1 +
√
ρ (2d− t)

f (2d− t) , 0 < t < x, (17)
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(Mxf) (t) =

µ+(x)∫
0

f(ξ)F0(ξ, t)dξ, 0 < t < x. (18)

It was shown in [5] that the operator Lx has a bounded inverse in the space L2 (0, π)
and

L−1
x f (t) =

{
f (t)− 1−α

2 f
(−t+αd+d

α

)
, t < d

1+α
2 f

(
t+αd−d

α

)
, t > d

(19)

Therefore the equation (14) is equivalent to the equation

K11 (x, .) + L−1
x MxK11 (x, .) = −L−1

x F (x, .) . (20)

Because L−1
x is a bounded and Mx is a compact operator in L2 (0, π) , then the

operator Bx = L−1
x Mx is compact in L2 (0, π) . The right hand side of (20) also

belongs to L2 (0, π) , since Mx is invertible in L2 (0, π) . Consequently, the equation
(20) is a Fredholm integral equation type (16) and it is sufficient to prove that the
homogeneous equation

LxK11 (x, .) +

µ+(x)∫
0

K11(x, ξ)F0(ξ, t)dξ = 0 (21)

has only trivial solutionK11(x, t) = 0. LetK (t) := K11(x, t) be solution of equation
(21). Then

x∫
0

ρ (t) [LxK (t)]
2
dt+

x∫
0

ρ (t)LxK (t) dt

µ+(x)∫
0

K(ξ)F0(ξ, t)dξdt = 0. (22)

Using for ξ < µ− (x) , K (2d− ξ) = 0 and the formulas (7) and (8), we have

LxK (t) =

µ+(x)∫
0

K(ξ)F0(ξ, t)dξ =

x∫
0

ρ (ξ)LxK(ξ)F (ξ, t)dξ.

Therefore (20) can be written as

x∫
0

ρ (t) [LxK (t)]
2
dt+

∞∑
n=0

1

αn

 x∫
0

ρ (t) s0 (t, λn)LxK (t) dt

2

(23)

−
∞∑

n=0

1

α0
n

 x∫
0

ρ (t) s0
(
t, λ0

n

)
LxK (t) dt

2

= 0. (24)

Now if we use Parseval’s equality [4],
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x∫
0

ρ (t) f2 (t) dt+

∞∑
n=0

1

α0
n

 x∫
0

ρ (t) f (t) s0
(
t, λ0

n

)
dt

2

,

for

f (t) =

{
LxK (t) , 0 < t < x,
0, t > x

which belongs to L2 (0, π) , we have
x∫

0

ρ (t) (LxK (t)) s0 (t, λn) dt = 0, n ≥ 0.

Since the system of function {s0 (t, λn)}n≥0 is complete in L2 (0, π) by the theorem

in [3], we get LxK (t) = 0. Since the operator Lx has inverse in the space L2 (0, π) ,
we obtain K (t) ≡ K (x, .) . It means that, the theorem is proved. □

Using Theorem 1 and the fact that the functions {s0 (t, λn)}n≥0 is a Riesz basis

of the space L2 (0, π) (see [3]), we get the following theorem:

Theorem 4. The spectral data
{
λ2
n, αn

}
n≥0

uniquely determines the boundary

value problem L.

The integral equation (14) is called main integral equation of GLM (Gelfand-
Levitan-Marchenko) type for the problem L.

3. Properties of the Functions F0(x, t), F (x, t), K11(x, t).

Lemma 1. Denote

B (x) =

∞∑
n=0

(
sinλnx

αn
− sinλ0

nx

α0
n

)
. (25)

Then, B (x) ∈ W 1
2 (0, 2π) , F0 (x, x) ∈ W 1

2 (0, 2π) , F (x, x) ∈ W 1
2 (0, 2π) .

Proof.
∞∑

n=0

(
sinλnx

αn
− sinλ0

nx

α0
n

)
=

∞∑
n=0

(
sinλnx− sinλ0

nx

αn
+

(
1

αn
− 1

α0
n

)
sinλ0

nx

)
(26)

If we denote εn := λn−λ0
n and using asymptotic formulas of λn as follows:(see [3])

λn = λ0
n +

dn

λ0
n

+
kn
n
, dn is a bounded squence, {kn} ∈ ℓ2, (27)

then

sinλnx−sinλ0
nx = εnx cosλ

0
nx+(sin εnx− εnx) cosλ

0
nx−2 sin2

εnx

2
sinλ0

nx. (28)

B (x) = B1 (x) +B2 (x) ,
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where

B1 (x) =

∞∑
n=0

dnx cosλ
0
nx

α0
nλ

0
n

(29)

B2 (x) =

∞∑
n=1

(
1

αn
− 1

α0
n

)
sinλ0

nx+

(
sinλ0x− sinλ0

0x

α0
n

)
(30)

−
∞∑

n=1

knx cosλ
0
nx

α0
nn

−
∞∑

n=1

cosλ0
nx

α0
nn

(sin εnx− εnx)

− 2

∞∑
n=1

sinλ0
nx

α0
n

sin2
εnx

2
.

Using

α0
n =

π∫
0

ρ(x)s20
(
x, λ0

n

)
dx, (31)

where

s0 (x, λn) =
1

2

(
1 +

1√
ρ (x)

)
sinλµ+ (x) +

1

2

(
1− 1√

ρ (x)

)
sinλµ+ (x) (32)

and asymptotic behaviour of αn we obtain B1 (x) , B2 (x) ∈ W 1
2 (0, 2π) i.e.,

B (x) ∈ W 1
2 (0, 2π) .

It is easy to verify that

F0(x, t) =
1

4

(
1 +

1√
ρ (t)

)[
B
(
x− µ+ (t)

)
+B

(
x+ µ+ (t)

)]
+

1

4

(
1− 1√

ρ (t)

)[
B
(
x− µ− (t)

)
+B

(
x+ µ− (t)

)]
. (33)

So, F0 (x, x) ∈ W 1
2 (0, 2π) and by formula (9) we have F (x, x) ∈ W 1

2 (0, 2π) . □

Now using the main integral equation (14), the formulas (15), (16), (18), (33)
and (9) we obtain the following theorem.

Theorem 5. The kernel function K (x, t) of the main integral equation and the
functions F0 (x, t) , F (x, t) satisfy the following relations:

ρ (t)
∂2F0(x, t)

∂t2
= ρ (x)

∂2F0(x, t)

∂x2
, ρ (t)

∂2F (x, t)

∂t2
= ρ (x)

∂2F (x, t)

∂x2
, (34)

F0(x, t) |t=0= B (x) ,

F (x, t) |t=0=
1

2

(
1 +

1√
ρ (t)

)
B
(
µ+ (t)

)
+

1

2

(
1− 1√

ρ (t)

)
B
(
µ+ (t)

)
, (35)



316 N. TOPSAKAL, R. AMİROV

∂F0(x, t)

∂t
|t=0= 0,

∂F (x, t)

∂t
|t=0= 0, (36)

∂F0(µ
± (x) , t)

∂x
= ±ρ (x)

∂F0(ξ, t)

∂ξ
|t=µ±(x), (37)

∂K(x, 0)

∂x
= 0, (38)√

ρ (x)− 1√
ρ (x) + 1

K11(x, µ
+ (x)) =

d

dx

[
K11(x, µ

− (x) + 0)−K11(x, µ
− (x)− 0)

]
. (39)

4. Solution of the Inverse Problem

In this section the following theorem has been proved for the necessary and
sufficient condition for solvability of the inverse problem with respect to the spectral
data.

The following asymptotic relations were obtained in [3]:
Let

{
λ2
n, αn

}
n≥0

to be the spectral data for a certain boundary value problem

L = L (q (x) , A) with q (x) ∈ L2 (0, π) , then

λn = λ0
n +

dn

λ0
n

+
kn
n
, (kn) ∈ ℓ2, (40)

αn = α0
n +

tn
n
, (tn) ∈ ℓ2, (41)

where λ0
n are zeros of the characteristic function ∆0 (λ) = s0 (π, λ) , (dn) is the

bounded sequence

dn =
α+ sinλ0

nµ
+ (π)− α− sinλ0

nµ
− (π)

.

∆0

(
λ0
n

)
α0
n =

π∫
0

ρ (x) s20 (x, λn) dx.

Let real numbers {λn, αn}n≥0 be given. We construct function F0(x, t), F (x, t)

by the formulas (8) and (9) of the section 2 and consider the main integral equation
(14). Let the function K11(x, t) is the solution of (14). We construct the function
φ (x, λ) by the formula

s (x, λ) = s0 (x, λ) +

µ+(x)∫
0

K11 (x, t) sinλtdt. (42)

To prove the theorem we need some lemmas.
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Lemma 2. The following relations hold:

− s′′ (x, λ) +

[
A

x
+ q(x)

]
s (x, λ) = λρ(x)s (x, λ) (43)

s (0, λ) = 0, s (π, λ) = 0. (44)

Proof. Assume that B (x) ∈ W 2
2 (0, π), where B (x) is defined in equation (25).

Differentiating the identity

G (x, t) :=
2

1 +
√
ρ (t)

K11

(
x, µ+ (x)

)
+

1−
√
ρ (2d− t)

1 +
√

ρ (2d− t)
+

F (x, t) +

µ+(x)∫
0

K11 (x, ξ)F0(ξ, t)dξ = 0, 0 < t < x (45)

we calculate

Gt (x, t) :=
2
√

ρ (t)

1 +
√
ρ (t)

∂K11 (x, µ
+ (t))

∂t
−

1−
√
ρ (2d− t)

1 +
√

ρ (2d− t)

∂K11 (x, µ
+ (2d− t))

∂t

+Ft (x, t) +

µ+(x)∫
0

K11 (x, ξ)
∂F0(ξ, t)

∂t
dξ = 0,

Gtt (x, t) :=
2
√
ρ (t)

1 +
√
ρ (t)

∂2K11 (x, µ
+ (t))

∂t2
+

1−
√
ρ (2d− t)

1 +
√

ρ (2d− t)

∂2K11 (x, µ
+ (2d− t))

∂t2

+
∂2F (x, t)

∂t2
+

µ+(x)∫
0

K11 (x, ξ)
∂2F0(ξ, t)

∂t2
dξ = 0, (46)

Gx (x, t) :=
2
√
ρ (t)

1 +
√
ρ (t)

∂K11 (x, µ
+ (t))

∂x
+

1−
√
ρ (2d− t)

1 +
√
ρ (2d− t)

∂K11 (x, µ
+ (2d− t))

∂x

+
∂F (x, t)

∂x
+
√
ρ (x)K11

(
x, µ+ (x)

)
F0(µ

+ (x) , t) +

µ+(x)∫
0

K11 (x, ξ)F0(ξ, t)dξ

+
√

ρ (x)
[
K11

(
x, µ− (x) + 0

)
−K11

(
x, µ− (x)− 0

)]
F0(µ

− (x) , t) = 0,

Gxx (x, t) :=
2

1 +
√
ρ (t)

∂2K11 (x, µ
+ (t))

∂x2
+

1−
√
ρ (2d− t)

1 +
√

ρ (2d− t)

∂2K11 (x, µ
+ (2d− t))

∂x2

+
∂2F (x, t)

∂x2
+

µ+(x)∫
0

∂2K11 (x, ξ)

∂x2
F0(ξ, t)dξ+

√
ρ (x)F0(µ

+ (x) , t)
∂K11 (x, ξ)

∂x
|ξ=µ+(x)

+
√
ρ (x)F0(µ

+ (x) , t)

[
∂K11 (x, ξ)

∂x
|ξ=µ+(x)+0 −∂K11 (x, ξ)

∂x
|ξ=µ+(x)−0

]
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+
√

ρ (x)F0(µ
+ (x) , t)

d

dx
K11

(
x, µ+ (x)

)
+
√
ρ (x)K11

(
x, µ+ (x)

) ∂F0 (µ
+ (x) , t)

∂x

+
√
ρ (x)

[
K11

(
x, µ− (x) + 0

)
−K11

(
x, µ− (x)− 0

)] ∂F0 (µ
− (x) , t)

∂x

+
√
ρ (x)F0(µ

− (x) , t)
d

dx

[
K11

(
x, µ− (x) + 0

)
−K11

(
x, µ− (x)− 0

)]
= 0. (47)

Using (34) we can write the last equation as follows:

Gtt (x, t) :=
2
√
ρ (t)

1 +
√
ρ (t)

Ktt

(
x, µ+ (t)

)
+

1−
√

ρ (2d− t)

1 +
√

ρ (2d− t)
Ktt

(
x, µ+ (2d− t)

)

+
∂2

∂t2
F (x, t) + ρ (t)

µ+(x)∫
0

K11 (x, ξ)
∂2F0(ξ, t)

∂ξ2
dξ = 0. (48)

Then using the formula(15) we have

1

ρ (t)

∂2

∂t2
G (x, t) :=

2ρ (t)

1 +
√

ρ (t)

∂2

∂t2
K11

(
x, µ+ (t)

)
+

1−
√

ρ (2d− t)

1 +
√

ρ (2d− t)

1

ρ (t)

× ∂2

∂t2
K11

(
x, µ+ (2d− t)

)
+

1

ρ (t)

∂2

∂t2
F (x, t) +

µ+(x)∫
0

K11 (x, ξ)
∂2F0(ξ, t)

∂ξ2
dξ = 0.

(49)
By integrating in parts we obtain

µ+(x)∫
0

K11 (x, ξ)
∂2F0(ξ,t)

∂ξ2
dξ = [K11 (x, µ

− (x) + 0)−K11 (x, µ
− (x)− 0)]

∂F0 (ξ, t)

∂ξ
|ξ=µ−(x)

+K11

(
x, µ+ (x)

) ∂

∂ξ
F0 (ξ, t) |ξ=µ+(x) −F0

(
x, µ− (x)

) ∂K11 (x, ξ)

∂ξ
|ξ=µ−(x)−0

+F0 (x, 0)
∂K11 (x, ξ)

∂ξ
|ξ=0 −F0

(
x, µ+ (x)

) ∂K11 (x, ξ)

∂ξ
|ξ=µ+(x)−0

+ F0

(
x, µ− (x)

) ∂K11 (x, ξ)

∂ξ
|ξ=µ−(x)+0 +

µ+(x)∫
0

∂2K11(x, ξ)

∂2ξ
F0(ξ, t)dξ. (50)

Therefore

Gtt (x, t) =
2

1 +
√
ρ (t)

∂2

∂t2
K11 (x, µ

+ (t)) +
1−

√
ρ (2d− t)

1 +
√

ρ (2d− t)

∂2

∂t2
K11 (x, 2d− t) +

1√
ρ (t)

∂2

∂t2
F (x, t)

+
[
K11

(
x, µ− (x)− 0

)
−K11

(
x, µ− (x) + 0

)] ∂

∂ξ
F0 (ξ, t) |ξ=µ−(x)
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+K11

(
x, µ+ (x)

) ∂

∂ξ
F0 (ξ, t) |ξ=µ+(x) −F0

(
x, µ− (x)

) ∂K11 (x, ξ)

∂ξ
|ξ=µ−(x)−0

+F0 (x, 0)
∂K11 (x, ξ)

∂ξ
|ξ=0 −F0

(
x, µ+ (x)

) ∂K11 (x, ξ)

∂ξ
|ξ=µ+(x)−0

+ F0

(
x, µ− (x)

) ∂K11 (x, ξ)

∂ξ
|ξ=µ−(x)+0 +

µ+(x)∫
0

∂2K11(x, ξ)

∂2ξ
F0(ξ, t)dξ. (51)

It follows from (45), (46), and (50), the identity

Gxx (x, t)− ρ (x)Gtt (x, t)−
[
A

x
+ q (x)

]
G (x, t) ≡ 0.

Using the identity acording to formulas (9),(16)- (22), we get

2

1 +
√
ρ (t)

∂2

∂x2
K11

(
x, µ+ (t)

)
+

1−
√

ρ (2d− t)

1 +
√

ρ (2d− t)

∂2

∂x2
K11 (x, 2d− t)

−ρ (x)

[
2

1 +
√
ρ (t)

∂2

∂t2
K11

(
x, µ+ (t)

)
+

1−
√
ρ (2d− t)

1 +
√
ρ (2d− t)

∂2

∂t2
K11 (2d− t)

]

−
[
A

x
+ q (x)

] [
2

1 +
√
ρ (t)

K11

(
x, µ+ (t)

)
+

1−
√
ρ (2d− t)

1 +
√
ρ (2d− t)

K11 (2d− t)

]
µ+(x)∫
0

{
K11xx (x, t)− ρ (x)K11tt (x, t)−

[
A

x
+ q (x)

]
K11 (x, t)

}
F0(ξ, t)dξ = 0.

(52)
By the Theorem 3 in the first section, the equation (52) has only trivial solution
i.e.,

K11xx (x, t)− ρ (x)K11tt (x, t)−
[
A

x
+ q (x)

]
K11 (x, t) ≡ 0, 0 < t < x. (53)

Now differentiating equation (42) twice, we have

s′ (x, λ) = s′0 (x, λ) +

µ+(x)∫
0

(K11)x (x, t) sinλtdt+
√
ρ (x)K11

(
x, µ+ (x)

)
sinλµ+ (x)

+
√

ρ (x)
[
K11

(
x, µ− (x) + 0

)
−K11

(
x, µ− (x)− 0

)]
sinλµ− (x)

s′′ (x, λ) = s′′0 (x, λ) +

µ+(x)∫
0

(K11)xx (x, t) sinλtdt
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+
√

ρ (x) sinλµ+ (x)

[
∂

∂x
K11

(
x, µ− (x)

)]
t=µ−(x)

+
√

ρ (x) sinλµ− (x)

[
∂

∂x
K11

(
x, µ− (x) + 0

)
|t=µ−(x)+0

− ∂

∂x
K11

(
x, µ− (x)− 0

)
|t=µ−(x)−0

]
+
√

ρ (x) sinλµ+ (x)
∂

∂x

[
K11

(
x, µ− (x)

)]
+
√
ρ (x) sinλµ− (x)

∂

∂x

[
K11

(
x, µ− (x) + 0

)
−K11

(
x, µ− (x)− 0

)]
+ λρ (x)K11

(
x, µ+ (x)

)
cosλµ+ (x)

+ λρ (x)
[
K11

(
x, µ− (x) + 0

)
−K11

(
x, µ− (x)− 0

)]
cosλµ− (x)

□

Lemma 3. For each function g(x) ∈ L2 (0, π) the following relation holds:

π∫
0

ρ (x) g2 (x) dx =

∞∑
n=0

1

αn

 π∫
0

ρ (t) s (t, λn) dt

2

(54)

Proof. Using the formulas (7), (8), (9) of the previous section it is easy to transform
solution

s (x, λ) = s0 (x, λ) +

x∫
0

ρ (x) s (x, t) s0 (t, λ) dt (55)

and the main integral equation (14) form the previous section to the form

w (x, t) + F (x, t) +

x∫
0

ρ (ξ)w (x, ξ)F (ξ, t) dξ = 0, (56)

where

w (x, t) =
2
√
ρ (t)

1 +
√
ρ (t)

K11(x, µ
+ (t)) +

2
√
ρ (2d− t)

1 +
√
ρ (2d− t)

K11(x, µ
+ (2d− t)).

Solving the equation (55) with respect to s0(x, λ) we obtain
For x < d

s0 (x, λ) = s (x, λ) +

x∫
0

ρ (t)H (x, t) s (x, λ) dt. (57)



GLM TYPE INTEGRAL EQUATION FOR SINGULAR S-L OPERATOR 321

By the standart method (see [20]) it can be proved that

H (x, t) = F (x, t) +

t∫
0

ρ (ξ)w (t, ξ)F (x, ξ) dξ, 0 ≤ t ≤ x. (58)

Denote Q (λ) =

π∫
0

ρ (t) g (t)φ (t, λ) dt. Then using (55) we have

Q (λ) =

π∫
0

ρ (t)h (t) s0 (t, λ) dt

where

h (t) = g (t) +

π∫
t

ρ (ξ) g (ξ)w (t, ξ) dξ. (59)

By the similar way, using the formula (57) we obtain

g (t) = h (t) +

π∫
t

ρ (ξ)h (ξ)H (ξ, t) dξ. (60)

Now according to equation (59) we have

π∫
0

ρ (t)h (t)F (x, t) dt

=

x∫
0

ρ (t) g (t)

F (x, t) +

t∫
0

ρ (ξ)W (ξ)F (x, ξ) dξ

 dt (61)

+

π∫
x

ρ (t) g (t)

F (x, t) +

t∫
0

ρ (ξ)W (ξ)F (x, ξ) dξ

 dt.

Consequently, by the formulas (56) and (58) we obtain

π∫
0

ρ (t)h (t)F (x, t) dt =

π∫
0

ρ (t) g (t)H (x, t) dt−
π∫

x

ρ (t) g (t)W (x, t) dt (62)

From the Parseval equality we have

π∫
0

ρ (t)h2 (t) dt+

π∫
0

ρ (t) ρ (x)h (t)h (x)F (x, t) dxdt
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=

∞∑
n=0

1

αn

 π∫
0

h (t) g (t) s0 (t, λn)φ (t, λn) dt

2

=

∞∑
n=0

Q (λn)
2

αn
.

Using (61) we get

∞∑
n=0

Q (λn)
2

αn
=

π∫
0

ρ (t)h2 (t) dt+

π∫
0

ρ (t) g (t)

 π∫
t

ρ (x)h (x)H (x, t) dx

 dt

−
π∫

0

ρ (x)h (x)

 π∫
x

ρ (t) g (t)W (t, x) dx

 dt.

Finally, from (59) and (60) we get

∞∑
n=0

Q (λn)
2

αn
=

π∫
0

ρ (t)h2 (t) dt+

π∫
0

ρ (t) g (t) (g (t)− h (t)) dt

−
π∫

0

ρ (x) g (x) (g (x)− h (x)) dx =

π∫
0

ρ (t) g2 (t) dt.

The lemma is proved. □

Corollary 1. For arbitrary functions f, g ∈ L2 (0, π) , the following relation holds:

π∫
0

ρ (x) f (x) g (x) dx =

∞∑
n=0

1

αn

π∫
0

f (t) s (t, λn) dt

π∫
0

g (t) s (t, λn) dt. (63)

Lemma 4. The following relations hold:
π∫

0

s (t, λk) s (t, λn) dt =

{
0, n ̸= k
αn, n = k

(64)

Proof. Let f (x) ∈ W 2
2 (0, π) , consider the series

f∗ (x) =

∞∑
n=0

cns (x, λn) , (65)

where

cn =
1

αn

π∫
0

f (x) s (x, λn) dx. (66)

Using Lemma 1 and integrating by parts we calculate:

cn =
1

αnλ
2
n

(
hf (0)− f ′ (0) + s (π, λn) f

′ (π)− φ (π, λn) f (π)
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+

π∫
0

s (x, λn) [−f ′′ (x) + g (x)] dx

)
From the asymptotic formulas for the φ (x, λ) and λn in [3], we get

cn = O

(
1

n2

)
, s (x, λn) = O (1)

uniformly for x ∈ [0, π] . Therefore the series (64) converges absolutely and uni-
formly on [0, π] . Using (62) and (65) we obtain

π∫
0

ρ (x) f (x) g (x) dx =

π∫
0

g (t)

∞∑
n=0

cns (x, λn) dt =

π∫
0

g (t) f∗ (t) dt.

Since g (x) is arbitrary, we get

f∗ (x) = f (x) =

∞∑
n=0

cns (x, λn) . (67)

Now, for fix k ≥ 0 and take f (x) = φ (x, λk) , then since (66)

s (x, λk) =

∞∑
n=0

cnk
s (x, λn) , cnk

=
1

αn

π∫
0

s (x, λk) s (x, λn) dx.

Moreover, the system {s0 (x, λn)}n≥0 is minimal in L2 (0, π) , (see theorem 2 of the

previous section), and consequently, in view of (42) the system {φ (x, λn)}n≥0 is

also minimal in L2 (0, π) . Therefore cnk
= δnk

(δnk
is a Kronecker symbol). The

lemma is proved. □

Now we can give the algorithm to construct the problem L (q (x)) using the
spectral data {λn, αn}n≥0 as follows:

1- Use formulas (8) and (9), to construct the functions F0(x, t) and F (x, t).
2- Construct the function K(x, t) as the unique solution of the main integral

equation.
3- Calculate the function q (x) and coefficient A by the formulas in Theorem 1.
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