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Abstract
The aim of this paper is to study infinitesimal deformations of a Malcev algebra with a
representation and introduce the notion of Nijenhuis pair, which gives a trivial deformation
of a Malcev algebra with a representation. We introduce the notion of Kupershmidt-(dual-
)Nijenhuis structure on a Malcev algebra with a representation. Furthermore, we show
that a Kupershmidt-(dual-)Nijenhuis structure gives rise to a hierarchy of Kupershmidt
operators. Finally, we establish a deformation theory of Kupershmidt operators in con-
sistence with the general principles of deformation theories and introduce the notion of
Nijenhuis elements.
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1. Introduction
Malcev algebras were introduced by Malcev [23], who called these objects Moufang-

Lie algebras. A Malcev algebra is a non-associative algebra A with an skew-symmetric
multiplication [ , ] that satisfies the Malcev identity

J(x, y, [x, z]) = [J(x, y, z), x] (1.1)
for all x, y, z ∈ A, where J(x, y, z) = [[x, y], z] + [[z, x], y] + [[y, z], x] is the Jacobiator.
In particular, Lie algebras are examples of Malcev algebras. Malcev algebras play an
important role in the geometry of smooth loops. Just as the tangent algebra of a Lie
group is a Lie algebra, the tangent algebra of a locally analytic Moufang loop is a Malcev
algebra [17, 20, 23, 25, 31]. The reader is referred to [16, 24, 29] for discussions about the
relationships between Malcev algebras, exceptional Lie algebras and physics.

Closely related to Malcev algebras are alternative algebras. An alternative algebra
is an algebra whose associator is an alternating function. In particular, all associative
algebras are alternative, but there are plenty of non-associative alternative algebras, such
as the octonions. Roughly speaking, alternative algebras are related to Malcev algebras as
associative algebras are related to Lie algebras. Indeed, as Malcev observed in [23], every
alternative algebra A is Malcev-admissible, i.e., the commutator algebra A− is a Malcev
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algebra. There are many Malcev-admissible algebras that are not alternative; see, e.g.,
[24].

The deformation of algebraic structures began with the seminal work of Gerstenhaber
[11–14] for associative algebras and followed by its extension to Lie algebras by Nijenhuis
and Richardson [26, 28]. Deformations of other algebraic structures such as pre-Lie and
Malcev algebras have also been developed in [6] and [27] respectively. In general, deforma-
tion theory was developed for binary quadratic operads by Balavoine [4]. For more general
operads we refer the reader to [10,18,21]. Nijenhuis operators also play an important role
in deformation theories due to their relationship with trivial infinitesimal deformations.
There are interesting applications of Nijenhuis operators such as constructing biHamilto-
nian systems to study the integrability of nonlinear evolution equations [7, 9].

Baxter introduced the concept of a Rota-Baxter algebra for associative algebras [5] in
his study of fluctuation theory in probability. There has been found many applications in
recent years, including the algebraic approach of Connes-Kreimer [8] to renormalization
of perturbative quantum field theory, tridendriform algebras [3], quantum analogue of
Poisson geometry [32], twisting on associative algebras [33]. In Lie algebra context, a
Rota-Baxter operator of weight zero was introduced independently in the 1980s as the
operator form of the classical Yang-Baxter equation, named after the physicists C.-N. Yang
and R. Baxter. See the book [15] for more details. Moreover, Kupershmidt restudied the
classical Yang-Baxter equation [19]. Note that a Rota-Baxter operator given by Semonov-
Tian-Shansky is just a Kupershmidt operator on a Lie algebra with respect to the adjoint
representation (g; ad) and an r-matrix is a Kupershmidt operator on a Lie algebra with
respect to the coadjoint representation (g∗; ad∗). Moreover, the notion of an extended
O-operator was introduced by Bai, Guo and Ni in [1, 2] and plays an important role in
the study of nonabelian generalized Lax pairs and the extended classical Yang-Baxter
equation.

Inspired by these works, we consider the Kupershmidt-(dual-)Nijenhuis structure on
Malcev algebras, characterize the relationships between Nijenhuis operators and Kuper-
shmidt operators and study deformations of Kupershmidt operators.

The paper is organized as follows. First, we recall some basic definitions about alterna-
tive and Malcev algebras. In Section 2, we study infinitesimal deformations of a Malcev
algebra with a representation, introduce the notion of Nijenhuis pair on a Malcev algebra
and show that it generates a trivial deformation of a Lie algebra with a representation.
We also introduce the notion of dual-Nijenhuis pair as the dual of a Nijenhuis pair. In
Section 3, we introduce the notions of Kupershmidt-Nijenhuis structure and Kupershmidt-
dual-Nijenhuis structure. Some properties of Kupershmidt-(dual-)Nijenhuis structures are
studied. In Section 4, we first give the relations between Nijenhuis operators and Kuper-
shmidt operators. Then, we prove that, on the one hand, Kupershmidt-(dual-)Nijenhuis
structures give rise to hierarchies of Kupershmidt operators, which are pairwise compat-
ible; on the other hand, compatible Kupershmidt operators with a condition can give a
Kupershmidt-dual-Nijenhuis structure. In Section 5, we study deformations of Kuperch-
midt operators and introduce the notion of Nijenhuis elements.

Throughout this paper K is a field of characteristic 0 and all vector spaces are over K.

2. Definitions and preliminary results
The purpose of this section is to recall the notions of alternative and Malcev algebras

and their general properties (see [23] for more details).

Definition 2.1. An alternative algebra (A, ◦) is a vector space A equipped with a bilinear
operation (x, y) → x ◦ y satisfying the following condition, for all x, y, z ∈ A

as(x, x, y) = as(y, x, x) = 0, (2.1)
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where as(x, y, z) = (x ◦ y) ◦ z − x ◦ (y ◦ z) is the associator.
Definition 2.2. [23] A Malcev algebra is a vector space A endowed with an skew-
symmetric bilinear product [ , ] satisfying the Malcev identity

J(x, y, [x, z]) = [J(x, y, z), x], (2.2)
for all x, y, z ∈ A, where J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y] is the Jacobiator of
x, y, z.

Remark 2.3. [30] The Malcev identity is equivalent to Sagle’s identity:
[[x, z], [y, t]] = [[[x, y], z], t] + [[[y, z], t], x] + [[[z, t], x], y] + [[[t, x], y], z] (2.3)

for all x, y, z, t ∈ A.
Let (A, [ , ]) and (A′, [ , ]′) be two Malcev algebras. A linear map f : A → A′ is said to

be a morphism of Malcev algebras if
[f(x), f(y)]′ = f([x, y]), for all x, y ∈ A.

Theorem 2.4. The alternative algebra is a Malcev-admissible algebra. That is, if (A, ◦)
is an alternative algebra, then (A, [ , ]) is a Malcev algebra, where

[x, y] = x ◦ y − y ◦ x, ∀x, y ∈ A.

Definition 2.5. [20] A representation of a Malcev algebra (A, [ , ]) on a vector space V
is a map ϱ : M −→ End(V ) such that

ϱ([[x, y], z]) = ϱ(x)ϱ(y)ϱ(z) − ϱ(z)ϱ(x)ϱ(y) + ϱ(y)ϱ([z, x]) − ϱ([y, z])ϱ(x) (2.4)
for all x, y, z ∈ A.

Example 2.6. Let (A, [ , ]) be a Malcev algebra. Then adx : A −→ End(A) defined by
adx(y) = [x, y], ∀x, y ∈ A,

is a representation of (A, [ , ]) on A, which is called the adjoint representation of A.
Proposition 2.7. Let (A, [ , ]) be a Malcev algebra, V a vector space and ϱ : A −→
End(V ) a linear map. Then (V, ϱ) is a representation of A if and only if (A⊕ V, [ , ]ϱ) is
a Malcev algebra, where [ , ]ϱ is defined by

[x+ a, y + b]ϱ = [x, y] + ϱ(x)a− ϱ(y)b
for all x, y ∈ A, a, b ∈ V. This Malcev algebra is called the semidirect product of (A, [ , ])
and V and denoted by Anϱ V .

Let (A, [ , ]) be a Malcev algebra and (V, ϱ) is a representation on A. Define the linear
map ϱ∗ : A −→ Al(V ∗) by

⟨ϱ∗(x)(α), v⟩ = −⟨α, ϱ(x)(v)⟩, ∀ x, y ∈ A, v ∈ V, α ∈ V ∗. (2.5)
Proposition 2.8. With the above notation, (V ∗, ϱ∗) is a representation on A.
Corollary 2.9. Let (A, [ , ]) be a Malcev algebra and (V, ϱ) is a representation on A.
Then, there exist a Malcev structure on A⊕ V ∗ denoted by Anϱ∗ V ∗ and given by

[x+ a, y + b]A⊕V ∗ = [x, y] + ϱ∗(x)ξ − ϱ∗(y)ζ
for all x, y ∈ A, ξ, ζ ∈ V ∗.

Now, we introduce the notion of Kupershmidt operator (also called an O-operator).
Definition 2.10. A Kupershmidt operator on a Malcev algebra (A, [ , ] with respect to
a representation (V ; ϱ) is a linear map T : V −→ A satisfying

[T (u), T (v)] = T
(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
, ∀ u, v ∈ V. (2.6)

Example 2.11. A Rota-Baxter operator R : A → A is a Kupershmidt operator on a
Malcev algebra (A, [ , ]) with respect to the adjoint representation (A; ad).



202 S. Mabrouk

3. Infinitesimal deformations of a Malcev algebra with a representation
Let (A, [ , ]) be a Malcev algebra and ϱ : A −→ End(V ) be a representation. Let

ω : ∧2A −→ A and θ : A −→ End(V ) be linear maps. Consider a t-parametrized family
of bracket operations and linear maps:

[x, y]t = [x, y] + tω(x, y),
ϱt(x) = ϱ(x) + tθ(x).

If (A, [ , ]t) are Malcev algebras and ϱt are representations of (A, [ , ]t) on V for all
t, we say that (ω, θ) generates a one-parameter infinitesimal deformation of the Malcev
algebra (A, [ , ]) with the representation (V ; ϱ). We denote a one-parameter infinitesimal
deformation of a Malcev algebra (A, [ , ]) with a representation (V ; ϱ) by (A, [ , ]t, ϱt).

By direct calculation, we can deduce that (A, [ , ]t, ϱt) is a one-parameter infinitesimal
deformation of the Malcev algebra (A, [ , ]) with the representation (V ; ϱ) if and only if

ω([x, z], [y, t]) − ω([[x, y], z], t) − ω([[y, z], t], x) − ω([[z, t], x], y) + ω([[t, x], y], z)
+ [ω(x, z), [y, t]] − [ω([x, y], z), t] − [ω([y, z], t), x] − [ω([z, t], x), y] − [ω([t, x], y), z]
+ [[x, z], ω(y, t)] − [[ω(x, y), z], t] − [[ω(y, z), t], x] − [[ω(z, t), x], y] − [[ω(t, x), y], z] = 0, (3.1)

ω(ω(x, z), [y, t]) − ω([ω(x, y), z], t) − ω([ω(y, z), t], x) − ω(ω([z, t], x), y) + ω(ω([t, x], y), z)
+ ω([x, z], ω(y, t)) − ω([ω(x, y), z], t) − ω([ω(y, z), t], x) − ω([ω(z, t), x], y) + ω([ω(t, x), y], z)
+ [ω(x, z), ω(y, t)] − [ω(ω(x, y), z), t] − [ω(ω(y, z), t), x] − [ω(ω(z, t), x), y] − [ω(ω(t, x), y), z]
= 0, (3.2)

ω(ω(x, z), ω(y, t)) − ω(ω(ω(x, y), z), t) − ω(ω(ω(y, z), t), x)
− ω(ω(ω(z, t), x), y) − ω(ω(ω(t, x), y), z) = 0, (3.3)

θ([[x, y], z]) − θ(x)ϱ(y)ϱ(z) + θ(z)ϱ(x)ϱ(y) − θ(y)ϱ([z, x]) + θ([y, z])ϱ(x)
+ ϱ(ω([x, y], z)) − ϱ(x)θ(y)ϱ(z) + ϱ(z)θ(x)ϱ(y) − ϱ(y)θ([z, x]) + ϱ(ω(y, z))ϱ(x)
ϱ([ω(x, y), z]) − ϱ(x)ϱ(y)θ(z) + ϱ(z)ϱ(x)θ(y) − ϱ(y)ϱ(ω(z, x)) + ϱ([y, z])θ(x) = 0, (3.4)

θ(ω([x, y], z)) − θ(x)θ(y)ϱ(z) + θ(z)θ(x)ϱ(y) − θ(y)θ([z, x]) + θ(ω(y, z))ϱ(x)
+ θ([ω(x, y), z]) − θ(x)ϱ(y)θ(z) + θ(z)ϱ(x)θ(y) − θ(y)ϱ(ω(z, x)) + θ([y, z])θ(x)
+ ϱ(ω(ω(x, y), z)) − ϱ(x)θ(y)θ(z) + ϱ(z)θ(x)θ(y) − ϱ(y)θ(ω(z, x)) + ϱ(ω(y, z))θ(x) = 0, (3.5)

θ(ω(ω(x, y), z)) − θ(x)θ(y)θ(z) + θ(z)θ(x)θ(y) − θ(y)θ(ω(z, x)) + θ(ω(y, z))θ(x) = 0. (3.6)

It is well-known that (6.3) means that ω is a 2-cocycle of the Malcev algebra A with the
coefficient in the adjoint representation and (3.3) means that (A,ω) is a Malcev algebra.
Furthermore, (3.6) means that θ is a representation of the Malcev algebra (A,ω) on V and
(3.4)-(3.5) means that ϱ+ θ is a representation of the Malcev algebra (A, [ , ] +ω( , )) on
V .

Definition 3.1. Two one-parameter infinitesimal deformations, (A, [ , ]t, ϱt) and
(A, [ , ]′t, ϱ′

t), of a Malcev algebra (A, [ , ]) with a representation (V ; ϱ) are equivalent if
there exists an isomorphism (Id + tN, IdV + tS) from (A, [ , ]′t, ϱ′

t) to (A, [ , ]t, ϱt), i.e.
(Id + tN)[x, y]′t = [(Id + tN)(x), (Id + tN)(y)]t,
(IdV + tS)ϱ′

t(x) = ϱt((Id + tN)(x))(IdV + tS).
A one-parameter infinitesimal deformation of a Malcev algebra (A, [ , ]) with a repre-

sentation (V ; ϱ) is said to be trivial if it is equivalent to (A, [ , ], ϱ).
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The deformation (A, [ , ]t, ϱt) is trivial if and only if
ω(x, y) = [N(x), y] + [x,N(y)] −N([x, y]), (3.7)

Nω(x, y) = [N(x), N(y)], (3.8)
θ(x) = ϱ(N(x)) + ϱ(x)S − Sϱ(x), (3.9)

ϱ(N(x))S = Sθ(x) (3.10)
for all x, y ∈ A. Using (3.7) and (3.8) that N must be a Nijenhuis operator on the Malcev
algebra (A, [ , ]). More precisely, A Nijenhuis operator on a Malcev algebra (A, [ , ])
is a linear map N : A −→ A satisfying

[N(x), N(y)] = N
(
[N(x), y] + [x,N(y)] −N [x, y]

)
, ∀ x, y ∈ A. (3.11)

Furthermore, define the bracket [ , ]N : ∧2A −→ A given by
[x, y]N = [N(x), y] + [x,N(y)] −N([x, y]). (3.12)

Proposition 3.2. With the above notation, (A, [ , ]N ) is a Malcev algebra and N is a
Malcev algebra morphism from (A, [ , ]N ) to (A, [ , ]).

It follows from (3.9) and (3.10) that N and S should satisfy the condition:
ϱ(N(x))(S(v)) = S(ϱ(Nx)(v)) + S(ϱ(x)S(v)) − S2(ϱ(x)(v)), ∀x ∈ A, v ∈ V. (3.13)

Definition 3.3. A pair (N,S), where N ∈ End(A) and S ∈ End(V ), is called a Nijen-
huis pair on a Malcev algebra (A, [ , ]) with a representation (V ; ϱ) if N is a Nijenhuis
operator on the Malcev algebra (A, [ , ]) and the condition (3.13) holds.

We have seen that a trivial deformation of a Malcev algebra with a representation could
give rise to a Nijenhuis pair. In fact, the converse is also true.
Theorem 3.4. Let (N,S) be a Nijenhuis pair on a Malcev algebra (A, [ , ]) with a
representation (V ; ϱ). Then a deformation of (A, [ , ], ϱ) can be obtained by putting

ω(x, y) = [N(x), y] + [x,N(y)] −N([x, y]); (3.14)
θ(x) = ϱ(N(x)) + ϱ(x)S − Sϱ(x). (3.15)

Furthermore, this deformation is trivial.
Proof. It is a straightforward computations. We omit the details. �

Now, we introduce the notion of a dual-Nijenhuis pair on a Malcev algebra with a
representation.
Definition 3.5. A pair (N,S), where N ∈ End(A) and S ∈ End(V ), is called a dual-
Nijenhuis pair on a Malcev algebra (A, [ , ]) with a representation (V ; ϱ) if N is a
Nijenhuis operator on the Malcev algebra (A, [ , ]) and S satisfies the following condition:

ϱ(N(x))(S(v)) = S(ϱ(N(x))(v)) + ϱ(x)(S2(v)) − S(ϱ(x)(S(v))). (3.16)
In fact, there is a close relationship between a Nijenhuis pair and a dual-Nijenhuis pair.

Proposition 3.6. Let (A, [ , ]) be a Malcev algebra. Then, (N,S) is a Nijenhuis pair on
A with a representation (V ; ϱ) if and only if (N,S∗) is a dual-Nijenhuis pair on A with
the representation (V ∗; ϱ∗).
Proof. For any x ∈ A, v ∈ V and ξ ∈ V ∗, we have

⟨ϱ(N(x))S(v) − Sϱ(N(x))(v) − Sϱ(x)S(v) + S2ϱ(x)(v), ξ⟩
=⟨ϱ(N(x))S(v), ξ⟩ − ⟨Sϱ(N(x))(v), ξ⟩ − ⟨Sϱ(x)S(v), ξ⟩ + ⟨S2ϱ(x)(v), ξ⟩
= − ⟨v, S∗ϱ∗(N(x))(ξ)⟩ + ⟨v, ϱ∗(N(x))(S∗(ξ))⟩ + ⟨v, S∗ϱ∗(x)(S∗(ξ))⟩ − ⟨v, ϱ∗(x)((S∗)2(ξ))⟩
= − ⟨v, S∗ϱ∗(N(x))(ξ) − ϱ∗(N(x))(S∗(ξ)) − S∗ϱ∗(x)(S∗(ξ)) + ϱ∗(x)((S∗)2(ξ))⟩.
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�
Definition 3.7. A Nijenhuis pair (N,S) on a Malcev algebra (A, [ , ]) with a representa-
tion (V ; ϱ) is called a perfect Nijenhuis pair if

S2(ϱ(x)(v)) + ϱ(x)(S2(v)) = 2S(ϱ(x)(S(v))), ∀ x ∈ A, v ∈ V. (3.17)

It is obvious that a perfect Nijenhuis pair is not only a Nijenhuis pair but also a dual-
Nijenhuis pair. A Nijenhuis pair gives rise to a Nijenhuis operator on the semidirect
product Malcev algebra.

Proposition 3.8. Let (N,S) be a Nijenhuis pair on a Malcev algebra (A, [ , ]) with a
representation (V ; ϱ). Then N + S is a Nijenhuis operator on the semidirect product
Malcev algebra Anϱ V. Furthermore, if (N,S) is a perfect Nijenhuis pair, then N + S∗ is
a also a Nijenhuis operator on the semidirect product Malcev algebra Anϱ∗ V ∗.

Proof. Let x, y ∈ A and u, v ∈ V . Using Eqs (3.11) and (3.13), we have
[(N + S)(x+ u), (N + S)(y + v)]ϱ − (N + S)

(
[(N + S)(x+ u), y + v]ϱ

+ [x+ u, (N + S)(y + v)]ϱ − (N + S)([x+ u, y + v])ϱ
)

=[(N(x), N(y)] − [N(x), y] − [x,N(y)] +N([x, y]) + ϱ(N(x))(S(v)) − S(ϱ(Nx)(v))
− S(ϱ(x)S(v)) + S2(ϱ(x)(v)) + ϱ(N(y))(S(u)) − S(ϱ(Ny)(u)) − S(ϱ(y)S(u))
+ S2(ϱ(y)(u))

=0.
Similarly, we can check that, if (N,S) is a perfect Nijenhuis pair, then N+S∗ is a Nijenhuis
operator on Anϱ∗ V ∗. �

We have the following straightforward proposition.

Proposition 3.9. Let (N,S) be a Nijenhuis operator on an alternative algebra (A, ◦).
Then N is a Nijenhuis operator on the Malcev algebra given in Theorem 2.4.

Now, let (A, [ , ]) be a Malcev algebra. Define ϱ̂ : A −→ End(V ) and ϱ̃ : A −→ End(V ),
respectively, by

ϱ̂(x) = ϱ(Nx) + [ϱ(x), S], (3.18)
ϱ̃(x) = ϱ(Nx) − [ϱ(x), S], ∀ x ∈ A. (3.19)
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Proposition 3.10.
(1) If (N,S) is a Nijenhuis pair on A with a representation ϱ, then ϱ̂ is a representation

of the Malcev algebra (A, [ , ]N ) on V ;
(2) If (N,S) is a dual-Nijenhuis pair on A with a representation ϱ, then ϱ̃ is a repre-

sentation of the Malcev algebra (A, [ , ]N ) on V ;

Proof. Item 1. By Proposition 3.8, N + S is a Nijenhuis operator on the semidirect
product Malcev algebra Anϱ V . The deformed bracket [ , ]N+S is given by

[x+ u, y + v]N+S = [(N + S)(x+ u), y + v]ϱ + [x+ u, (N + S)(y + v)]ϱ
−(N + S)[x+ u, y + v]ϱ

= [Nx, y] + [x,Ny] −N [x, y]
+ϱ(Nx)(v) + ϱ(x)S(v) − Sϱ(x)(v) − ϱ(y)S(u) − ϱ(Ny)(u)
+Sϱ(y)(u)

= [x, y]N + ϱ̂(x)(v) − ϱ̂(y)(u),

which implies that ϱ̂ is a representation of the Malcev algebra (A, [ , ]N ) on V .
Item 2. By direct calculation, the dual map ϱ̃∗ of ϱ̃ is given by

ϱ̃∗(x) = ϱ∗(Nx) + [ϱ∗(x), S∗], ∀x ∈ A. (3.20)

Since (N,S) is a dual-Nijenhuis pair with a representation ϱ, by Proposition 3.6, (N,S∗)
is a Nijenhuis pair with a representation ϱ∗. By (1), ϱ̃∗ is a representation of the Malcev
algebra (A, [ , ]N ) on V ∗ and thus ϱ̃ is a representation of the Lie algebra (A, [ , ]N ) on
V . �

4. Kupershmidt-(dual-)Nijenhuis structures
There is a close relationship between Kupershmidt operators and pre-Malcev algebras.

Definition 4.1. [22] A pre-Malcev algebra is a vector space A endowed with a bilinear
product ” · ”A×A → A satisfying the identity

([y, z]) · (x · t) + ([[x, y], z]) · t+ y · (([x, z]) · t) − x · (y · (z · t)) + z · (x · (y · t)) = 0 (4.1)

for all x, y, z, t ∈ A, where [x, y] = x · y − y · x.

The identity (4.2) is equivalent to

0 = (y · z) · (x · t) − (z · y) · (x · t)
+ ((x · y) · z) · t− ((y · x) · z) · t− (z · (x · y)) · t+ (z · (y · x)) · t
+ y · ((x · z) · t) − y · ((z · x) · t) − x · (y · (z · t)) + z · (x · (y · t))

(4.2)

for all x, y, z, t ∈ A.

Proposition 4.2. Let (A, ·) be a pre-Malcev algebra. Then The commutator [x, y] =
x · y − y · x defines a Malcev algebra A. which is called the sub-adjacent Malcev
algebra of (A, ·) and denoted by AC . Furthermore, L : A −→ Al(A) with x → Lx, where
Lxy = x · y, for all x, y ∈ A, gives a representation of the Malcev algebra AC on A.

The following result establishes the connection between Kupershmidt operators and
pre-Malcev algebras which generalize the construction with Rota-Baxter operators (see in
[22] for more details). A Kupershmidt operator on a Malcev algebra (A, [ , ]) with respect
to a representation (V ; ϱ) is a linear map T : V → A satisfying

[T (u), T (v)] = T (ϱ(T (u))(v) − ϱ(T (v))(u)), ∀ u, v ∈ V. (4.3)
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Theorem 4.3. Let T : V → A be a Kupershmidt operator on a Malcev algebra (A, [ , ])
with respect to a representation (V ; ϱ). Define a multiplication · on V by

u ·T v = ϱ(Tu)(v), ∀u, v ∈ V. (4.4)

Then (V, ·T ) is a pre-Malcev algebra.

Proof. Using the identity of Kupershmidt operator (2.6), we have

T ([u, v]T ) = T (u ·T v − v ·T u) = [T (u), T (v)].

Thanks to Eq. (2.4), for a, b, u, v,∈ V , we get

([[a, b]T , v]T ) ·T t+ ([b, u]T ) ·T (a ·T v) + b ·T (([a, u]T ) ·T v) − a ·T (b ·T (u ·T v))
+ u ·T (a ·T (b ·T v))

=ϱ(T ([[a, b]T , u]T ))v − ϱ(T (u))ϱ(T (b))ϱ(T (u))v
+ ϱ(T (u))ϱ(T (a))ϱ(T (b))v − ϱ(T (b))ϱ(T ([u, a]T ))v + ϱ(T ([b, u]T ))ϱ(T (a))v

=ϱ([[T (a), T (b)], T (u)])v − ϱ(T (u))ϱ(T (b))ϱ(T (u))v
+ ϱ(T (u))ϱ(T (a))ϱ(T (b))v − ϱ(T (b))ϱ([T (u), T (a)])v + ϱ([T (b), T (u)])ϱ(T (a))v

=0.

�

We denote by (V, [ , ]T ) the sub-adjacent Malcev algebra of the pre-Malcev algebra
(V, ·T ). More precisely,

[u, v]T = ϱ(Tu)(v) − ϱ(Tv)(u). (4.5)
Moreover, T is a Malcev algebra homomorphism from (V, [ , ]T ) to (A, [ , ]).

Now let T : V −→ A be a Kupershmidt operator and (N,S) a (dual-)Nijenhuis pair
on a Malcev algebra (A, [ , ]) with a representation (V ; ϱ). We define the bracket [ , ]TS :
∧2V −→ V to be the deformed bracket of [ , ]T by S, i.e.

[u, v]TS = [S(u), v]T + [u, S(v)]T − S([u, v]T ), ∀ u, v ∈ V.

Define the bracket { , }T
ϱ̂ : ∧2V −→ V and { , }T

ϱ̃ : ∧2V −→ V similar as (4.5) using the
representation ϱ̂ and ϱ̃, respectively:

{u, v}T
ϱ̂ = ϱ̂(Tu)(v) − ϱ̂(Tv)(u), (4.6)

{u, v}T
ϱ̃ = ϱ̃(Tu)(v) − ϱ̃(Tv)(u), ∀ u, v ∈ V. (4.7)

It is not true in general that the brackets [ , ]TS , { , }T
ϱ̂ and { , }T

ϱ̃ satisfy the Malcev
identity.

Definition 4.4. A Kupershmidt operator T : V −→ A on a Malcev algebra (A, [ , ]) with
respect to a representation (V ; ϱ) and a (dual-)Nijenhuis pair (N,S) are called compatible
if they satisfy the following conditions

NT = TS, (4.8)
[u, v]NT = [u, v]TS (4.9)

for all u, v ∈ V . The triple (T, S,N) is called a Kupershmidt-(dual-)Nijenhuis struc-
ture on the Malcev algebra (A, [ , ]) with respect to the representation (V ; ϱ) if T and
(N,S) are compatible.

Note that if (N,S) is a perfect Nijenhuis pair on a Malcev algebra (A, [ , ]), then a
Kupershmidt-Nijenhuis structure on A is also a Kupershmidt-dual-Nijenhuis structure on
A.
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Lemma 4.5. Let (T, S,N) be a Kupershmidt-Nijenhuis structure on a Malcev algebra
(A, [ , ]) with respect to the representation (V ; ϱ). Then we have

[u, v]TS = {u, v}T
ϱ̂ and [u, v]TS = {u, v}T

ϱ̃

for all u, v ∈ V.

Proof. It easy to check, from (4.8) and for all u, v ∈ V , [u, v]TS = {u, v}T
ϱ̂ .

By (4.8), we have
[u, v]TS + {u, v}T

ϱ̃ = 2[u, v]NT .

Then by (4.9), we obtain [u, v]TS = {u, v}T
ϱ̃ .

�
Thus, if (T, S,N) is a Kupershmidt-(dual-)Nijenhuis structure, then the three brackets

[ , ]TS , { , }T
ϱ̂ and [ , ]NT are the same. Moreover, we will see that they satisfy the Jacobi

identity.

Proposition 4.6. Let (T, S,N) be a Kupershmidt-(dual-)Nijenhuis structure on a Malcev
algebra (A, [ , ]) with respect to the representation (V ; ϱ). Then S is a Nijenhuis operator
on the sub-adjacent Malcev algebra (V, [ , ]T ). Thus, the brackets [ , ]TS , { , }T

ϱ̂ ({ , }T
ϱ̃ )

and [ , ]NT are all Malcev brackets.

Proof. For the Kupershmidt-Nijenhuis structure (T, S,N), by (3.13) and substituting x
by T (u), we get

0 = ϱ(NT (u))S(v) − S(ϱ(NT (u))(v) + Sϱ(T (u))S(v) − Sϱ(T (u))(v))
= ϱ(TS(u))S(v) − S(ϱ(TS(u))(v) + Sϱ(Tu)S(v) − Sϱ(Tu)(v))
= S(u) · S(v) − S(S(u) · v + u · S(v) − S(u · v)),

which implies that S is a Nijenhuis operator on the pre-Malcev algebra (V, ·) ([22]). Thus
S is a Nijenhuis operator on the sub-adjacent Malcev algebra (V, [ , ]T ).

For the Kupershmidt-dual-Nijenhuis structure (T, S,N), the proof is not direct. In fact,
by the relation [u, v]T S = [u, v]TS , one has

S(ϱ(TS(u))(v)) − S(ϱ(T (v))(S(u))) = ϱ(TS(u))(S(v)) − ϱ(T (v))(S2(u)); (4.10)
S2(ϱ(T (u))(v)) − S2(ϱ(T (v))(u)) = S(ϱ(T (u))(S(v))) − S(ϱ(T (v))(S(u))).(4.11)

By the condition (3.16), we have
ϱ(T (v))(S2(u)) − ϱ(TS(v))(S(u)) = S(ϱ(T (v))(S(u))) − S(ϱ(TS(v))(u)). (4.12)

By (4.10)-(4.12), we have
[S(u), S(v)]T − S([u, v]TS )

= ϱ(TS(u))(S(v)) − ϱ(TS(v))(S(u)) + S2(ϱ(T (u))(v)) − S2(ϱ(T (v))(u))
−S(ϱ(T (u))(S(v))) + S(ϱ(TS(v))(u)) − S(ϱ(TS(u))(v)) + S(ϱ(T (v))(S(u)))

= ϱ(TS(u))(S(v)) − ϱ(TS(v))(S(u)) − S2(ϱ(T (v))(u)) + S2(ϱ(T (u))(v))
−S(ϱ(T (u))(S(v))) + S(ϱ(TS(v))(u)) − ϱ(TS(u))(S(v)) + S(ϱ(T (v))(S2(u)))

= ϱ(TS(u))(S(v)) − ϱ(TS(v))(S(u)) + S(ϱ(T (u))(S(v))) − ϱ(T (v))(S(u))
−S(ϱ(T (u))(S(v))) + S(ϱ(TS(v))(u)) − ϱ(TS(u))(S(v)) + ϱ(T (v))(S2(u))

= ϱ(T (v))(S2(u)) − ϱ(TS(v))(S(u)) − S(ϱ(T (v))(S(u))) + S(ϱ(TS(v))(u))
= 0.

Thus S is a Nijenhuis operator on the Malcev algebra (V, [ , ]T ). �
Theorem 4.7. Let (T, S,N) be a Kupershmidt-(dual-)Nijenhuis structure on a Malcev
algebra (A, [ , ]) with respect to the representation (V ; ϱ). Then we have



208 S. Mabrouk

(1) T is a Kupershmidt operator on the deformed Malcev algebra (A, [ , ]N ) with respect
to the representation (V ; ϱ̂) ((V ; ϱ̃));

(2) NT is a Kupershmidt operator on the Malcev algebra (A, [ , ]A) with respect to the
representation (V ; ϱ).

Proof. We only prove the theorem for the Kupershmidt-Nijenhuis structure. The other
one can be proved similarly.

Item 1. Since T is a Kupershmidt operator on the Malcev algebra (A, [ , ]) with respect
to the representation (V ; ϱ) and TS = NT , we have, for u, v ∈ V

T{u, v}T
ϱ̂ = T ([u, v]TS ) = T ([S(u), v]T + [u, S(v)]T − S[u, v]T )

= [TS(u), T (v)] + [T (u), TS(v)] − TS[u, v]T

= [NT (u), T (v)] + [T (u), NT (v)] −NT [u, v]T

= [T (u), T (v)]N .
Thus, T is a Kupershmidt operator on the deformed Malcev algebra (A, [ , ]N ) with respect
to the representation (V ; ϱ̂).

Item 2. By (4.9), we have

NT ([u, v]NT ) = NT ([u, v]TS ) = N [T (u), T (v)]N = [NT (u), NT (v)],
which implies that NT is a Kupershmidt operator on the Malcev algebra (A, [ , ]) with
respect to the representation (V ; ϱ).

�
The following theorem demonstrates that the Kupershmidt-Nijenhuis operator can give

a Kupershmidt-dual-Nijenhuis operator with a condition.

Theorem 4.8. Let (T, S,N) be a Kupershmidt-Nijenhuis structure on a Malcev algebra
(A, [ , ]) with respect to the representation (V ; ϱ). If T is invertible, then (T, S,N) is a
Kupershmidt-dual-Nijenhuis structure.

Proof. We only need to prove that the Nijenhuis pair (S,N) is also a dual-Nijenhuis pair.
By (4.9), we have

[u, v]TS − [u, v]T S = ϱ(T (u))(S(v)) − ϱ(T (v))(S(u)) − S
(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
,

which impMalcevs that

ϱ(T (u))(S(v)) − ϱ(T (v))(S(u)) = S
(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
. (4.13)

Since S is a Nijenhuis operator on the Malcev algebra (V, [ , ]T ) and [u, v]TS = [u, v]T S , we
have

S([u, v]T S) = [S(u), S(v)]T ,
which means that

S
(
ϱ(TS(u))(v) − ϱ(TS(v))(u)

)
= ϱ(TS(u))(S(v)) − ϱ(TS(v))(S(u)). (4.14)

By (4.13), we have
S

(
ϱ(TS(u))(v)

)
− ϱ(TS(u))(S(v)) = S

(
ϱ(T (v))(S(u))

)
− ϱ(T (v))(S2(u)).

Thus (4.14) implies that
0 = S

(
ϱ(T (v))(S(u))

)
− ϱ(T (v))(S2(u)) − S

(
ϱ(TS(v))(u)

)
+ ϱ(TS(v))(S(u))

= S
(
ϱ(T (v))(S(u))

)
− ϱ(T (v))(S2(u)) − S

(
ϱ(NT (v))(u)

)
+ ϱ(NT (v))(S(u)).

Since T is invertible and let x = T (v), we have
S

(
ϱ(x)(S(u))

)
− ϱ(x)(S2(u)) − S

(
ϱ(N(x))(u)

)
+ ϱ(N(x))(S(u)) = 0.
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Thus the Nijenhuis pair (S,N) is a dual-Nijenhuis pair. We finish the proof. �

5. Hierarchy of Kupershmidt operators
5.1. Compatible Kupershmidt operators on Malcev algebras
Definition 5.1. Let T1, T2 : V −→ A be two Kupershmidt operators on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ). If for all k1, k2 ∈ K, k1T1 + k2T2 is still
a Kupershmidt operator on A, then T1 and T2 are called compatible.

Proposition 5.2. Let T1, T2 : V −→ A be two Kupershmidt operators on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ). Then T1 and T2 are compatible if and
only if the following equation holds:

[T1(u), T2(v)] + [T2(u), T1(v)] = T1
(
ϱ(T2(u))(v) − ϱ(T2(v))(u)

)
+T2

(
ϱ(T1(u))(v) − ϱ(T1(v))(u)

)
, ∀u, v ∈ V.(5.1)

Proof. Let k1, k2 ∈ K and u, v ∈ A. Then, using (4.3), we have
[(k1T1 + k2T2)(u), (k1T1 + k2T2)(v)] − (k1T1 + k2T2)(ϱ((k1T1 + k2T2)(u))(v)
+ ϱ((k1T1 + k2T2))(v)(u))
= k2

1
(
[T1(u), T1(v)] − T1(ϱ(T1(u))(v) + ϱ(T1(v))(u))

)
+ k2

2
(
[T2(u), T2(v)] − T2(ϱ(T2(u))(v)

+ ϱ(T2(v))(u))
)

+ k1k2

(
[T1(u), T2(v)] + [T2(u), T1(v)] − T1

(
ϱ(T2(u))(v) − ϱ(T2(v))(u)

)
− T2

(
ϱ(T1(u))(v) − ϱ(T1(v))(u)

))
= k1k2

(
[T1(u), T2(v)] + [T2(u), T1(v)] − T1

(
ϱ(T2(u))(v) − ϱ(T2(v))(u)

)
− T2

(
ϱ(T1(u))(v)

− ϱ(T1(v))(u)
))

Thus, T1 and T2 are compatible if and only if the equation (5.1) holds. �

Using a Kupershmidt operator and a Nijenhuis operator, we can construct a pair of
compatible Kupershmidt operators .

Proposition 5.3. Let T : V −→ A be a Kupershmidt operator on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ) and N a Nijenhuis operator on (A, [ , ]).
Then NT is a Kupershmidt operator on the Malcev algebra (A, [ , ]) with respect to the
representation (V ; ϱ) if and only if for all u, v ∈ V , the following equation holds:

N
(
[NT (u), T (v)] + [T (u), NT (v)]

)
= N

(
T

(
ϱ(NT (u))(v) − ϱ(NT (v))(u)

)
+NT

(
ϱ(T (u))(v) − ϱ(T (v))(u)

))
. (5.2)

In this case, if in addition N is invertible, then T and NT are compatible. More explicitly,
for any Kupershmidt operator T , if there exists an invertible Nijenhuis operator N such
that NT is also a Kupershmidt operator, then T and NT are compatible.

Proof. For any u, v ∈ V and since N is a Nijenhuis operator, we have

[NT (u), NT (v)] = N
(
[NT (u), T (v)] + [T (u), NT (v)]

)
−N2([T (u), T (v)]).

Then
[NT (u), NT (v)] = NT

(
ϱ(NT (u))(v) − ϱ(NT (v))(u)

)
if and only if (5.2) holds.
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If NT is a Kupershmidt operator and N is invertible, then we have

[NT (u), T (v)] + [T (u), NT (v)] = T
(
ϱ(NT (u))(v) − ϱ(NT (v))(u)

)
+NT

(
ϱ(T (u))(v)

− ϱ(T (v))(u)
)
,

which is exactly the condition that NT and T are compatible. �

A pair of compatible Kupershmidt operators can also give rise to a Nijenhuis operator
under some conditions.

Proposition 5.4. Let T1, T2 : V −→ A be two Kupershmidt operators on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ). Suppose that T2 is invertible. If T1 and T2
are compatible, then N = T1T

−1
2 is a Nijenhuis operator on the Malcev algebra (A, [ , ]).

Proof. For all x, y ∈ A, there exist u, v ∈ V such that T2(u) = x, T2(v) = y. Hence
N = T1T

−1
2 is a Nijenhuis operator if and only if the following equation holds:

[NT2(u), NT2(v)] = N([NT2(u), T2(v)] + [T2(u), NT2(v)]) −N2([T2(u), T2(v)]).

Since T1 = NT2 is an Kupershmidt operator, the left hand side of the above equation is

NT2(ϱ(NT2(u))(v) − ϱ(NT2(v))(u)).

Since T2 is a Kupershmidt operator which is compatible with T1 = NT2, we have

[NT2(u), T2(v)] + [T2(u), NT2(v)]
= T2(ϱ(NT2(u))(v) − ϱ(NT2(v))(u)) +NT2(ϱ(T2(u))(v) − ϱ(T2(v))(u))
= T2(ϱ(NT2(u))(v) − ϱ(NT2(v))(u)) +N([T2(u), T2(v)]).

Let N act on both sides, we get the conclusion. �

By Proposition 5.3 and 5.4, we have

Corollary 5.5. Let T1, T2 : V −→ A be two Kupershmidt operators on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ). Suppose that T1 and T2 are invertible.
Then T1 and T2 are compatible if and only if N = T1T

−1
2 is a Nijenhuis operator.

In particular, as a direct application, we have the following conclusion.

Corollary 5.6. Let (A, [ , ]) be a Malcev algebra. Suppose that R1 and R2 are two
invertible Rota-Baxter operators. Then R1 and R2 are compatible in the sense that any
linear combination of R1 and R2 is still a Rota-Baxter operator if and only if N = R1R

−1
2

is a Nijenhuis operator.

5.2. Hierarchy of Kupershmidt operators
In the following, first we construct compatible Kupershmidt operators from Kupershmidt-

(dual-)Nijenhuis structures. Given a Kupershmidt-(dual-)Nijenhuis structure (T, S,N), by
Theorem 4.7, T and TS are Kupershmidt operators. In fact, they are compatible.

Proposition 5.7. Let (T, S,N) be a Kupershmidt-(dual-)Nijenhuis structure on a Malcev
algebra (A, [ , ]) with respect to a representation (V ; ϱ). Then T and TS are compatible
Kupershmidt operators.

Proof. We only prove the conclusion for the Kupershmidt-Nijenhuis structure. The other
one can be proved similarly. It is sufficient to prove that T+TS is a Kupershmidt operator.
It is obvious that

[u, v]T +T S = [u, v]T + [u, v]T S = [u, v]T + [u, v]TS .
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Thus, we have
(T + TS)([u, v]T +T S)

= T ([u, v]T ) + TS([u, v]TS ) + TS([u, v]T ) + T ([u, v]TS )
= T ([u, v]T ) + TS([u, v]TS ) + TS([u, v]T )

+T ([S(u), v]T + [u, S(v)]T − S[u, v]T )
= T ([u, v]T ) + TS([u, v]TS ) + T ([S(u), v]T + [u, S(v)]T )
= [T (u), T (v)] + [TS(u), TS(v)] + [TS(u), T (v)] + [T (u), TS(v)]
= [(T + TS)(u), (T + TS)(v)],

which means that T +TS is a Kupershmidt operator on the Malcev algebra (A, [ , ]) with
respect to a representation (V ; ϱ). �
Lemma 5.8. Let (T, S,N) be a Kupershmidt-(dual-)Nijenhuis structure on a Malcev al-
gebra (A, [ , ]) with respect to a representation (V ; ϱ). Then for all k, i ∈ N, we have

Tk[u, v]TSk+i = [Tk(u), Tk(v)]N i . (5.3)

Proof. Since T is a Kupershmidt operator and TS = NT , we have
T ([u, v]TSi) = T

(
[Si(u), v]T + [u, Si(v)]T − Si([u, v]T )

)
= [N i(T (u)), T (v)] + [T (u), N i(T (v))] −N i([T (u), T (v)])
= [T (u), T (v)]N i . (5.4)

Since S is a Nijenhuis operator on the Malcev algebra (V, [ , ]T ), we have

Sk([u, v]TSk+i) = [Sk(u), Sk(v)]TSi . (5.5)
Then, by (5.4) and (5.5), we have

Tk([u, v]TSk+i = TSk([u, v]TSk+i) = T ([Sk(u), Sk(v)]TSi) = [T (Sk(u)), T (Sk(v))]N i .

The proof is finished. �
Lemma 5.9. Let (T, S,N) be a Kupershmidt-(dual-)Nijenhuis structure on a Malcev al-
gebra (A, [ , ]) with respect to a representation (V ; ϱ). Then for all k, i ∈ N such that
i ≤ k,

[u, v]Tk = [u, v]TSk = Sk−i[u, v]Ti , (5.6)
where Tk = TSk = NkT and set T0 = T .

Proof. Straightforward. �
Proposition 5.10. Let (T, S,N) be a Kupershmidt-(dual-)Nijenhuis structure on a Mal-
cev algebra (A, [ , ]) with respect to a representation (V ; ϱ). Then all Tk = NkT are
Kupershmidt operators with respect to the representation (V ; ϱ) and for all k, l ∈ N, Tk

and Tl are compatible.

Proof. We only prove the conclusion for the Kupershmidt-Nijenhuis structure. The other
one can be proved similarly.

By (5.3) and (5.6) with i = 0, we have

Tk[u, v]Tk = [Tk(u), Tk(v)],
which implies that Tk is a Kupershmidt operator on A with respect to a representation
(V ; ϱ).

For the second conclusion, we need to prove that T k + T k+i is a Kupershmidt operator
for all k, i ∈ N. By (5.6), we have

[u, v]Tk+Tk+i = [u, v]Tk + [u, v]Tk+i = [u, v]Tk + [u, v]Tk

Si .
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Furthermore, we have

(Tk + Tk+i)([u, v]Tk+Tk+i)
= Tk([u, v]Tk) + Tk([u, v]Tk

Si ) + Tk+i([u, v]Tk) + Tk+i([u, v]Tk

Si )

= Tk([u, v]Tk) + Tk+i([u, v]Tk

Si ) + Tk+i([u, v]Tk

Si )
+Tk([Si(u), v]Tk + [u, Si(v)]Tk − Si[u, v]Tk)

= Tk([u, v]Tk) + Tk+i([u, v]Tk

Si ) + T k([Si(u), v]Tk) + T k([u, Si(v)]Tk)
= [Tk(u), Tk(v)] + [Tk+i(u), Tk+i(v)] + [Tk+i(u), Tk(v)] + [Tk(u), Tk+i(v)]
= [(Tk + Tk+i)(u), (Tk + Tk+i)(v)].

Thus T k + T k+i is a Kupershmidt operator.The proof is finished. �

Compatible Kupershmidt operators can give rise to Kupershmidt-dual-Nijenhuis struc-
tures.

Proposition 5.11. Let T, T1 : V −→ A be two Kupershmidt operators on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ). Suppose that T is invertible. If T and T1
are compatible, then

(1) (T, S = T−1T1, N = T1T
−1) is a Kupershmidt-dual-Nijenhuis structure;

(2) (T1, S = T−1T1, N = T1T
−1) is a Kupershmidt-dual-Nijenhuis structure.

Proof. Item 1. The proof of (N,S) being a dual-Nijenhuis pair is similar to the proof of
Theorem 4.8. We omit the details. It is obvious that TS = NT . Thus we only need to
prove that the compatibility condition (4.9) holds. By the compatibility condition of T
and T1 and Proposition 5.4, N = T1T

−1 is a Nijenhuis operator on the Malcev algebra A.
By Proposition 5.2, we also have

[T (u), T1(v)] + [T1(u), T (v)] = T
(
ϱ(T1(u))(v) − ϱ(T1(v))(u)

)
+T1

(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
, ∀u, v ∈ V.

Substituting T1 with TS, then we have

[T (u), TS(v)] + [TS(u), T (v)] = T
(
ϱ(TS(u))(v) − ϱ(TS(v))(u)

)
+TS

(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
. (5.7)

Since T is a Kupershmidt operator on A with respect to a representation (V ; ϱ), we have

[T (u), TS(v)] + [TS(u), T (v)] = T
(
ϱ(T (u))(S(v)) − ϱ(TS(v))(u)

+ϱ(TS(u))(v) − ϱ(T (v))(S(u))
)
.

Since T is invertible, (5.7) is equivalent to

S
(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
= ϱ(T (u))(S(v)) − ϱ(T (v))(S(u)). (5.8)

On the other hand, we have

[u, v]TS − [u, v]T S = ϱ(T (u))(S(v)) − ϱ(T (v))(S(u)) − S
(
ϱ(T (u))(v) − ϱ(T (v))(u)

)
.

Thus, (5.8) implies that [u, v]TS = [u, v]T S . Therefore, (T, S = T−1T1, N = T1T
−1) is a

Kupershmidt-dual-Nijenhuis structure.
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Item 2. By direct calculation, we have
[u, v]T1

S − [u, v]T1S

= ϱ(T1(u))(S(v)) − ϱ(T1(v))(S(u)) − S
(
ϱ(T1(u))(v) − ϱ(T1(v))(u)

)
= ϱ(TS(u))(S(v)) − ϱ(TS(v))(S(u)) − S

(
ϱ(TS(u))(v) − ϱ(TS(v))(u)

)
= [S(u), S(v)]T − S[u, v]T S = 0.

Thus, (T1, S = T−1T1, N = T1T
−1) is also a Kupershmidt-dual-Nijenhuis structure on A

with respect to a representation (V ; ϱ). �

6. Infinitesimal deformations of a Kupershmidt operator of Malcev alge-
bra

In this section, we study infinitesimal deformations of a Kupershmidt operator of Mal-
cev algebras. In particular, we introduce the notion of a Nijenhuis element associated to a
Kupershmidt operator, which gives rise to a trivial infinitesimal deformation of the Kuper-
shmidt operator. Their relationship with the infinitesimal deformations of the associated
pre-Malcev algebra is also studied.

Definition 6.1. Let T and T ′ be a two Kupershmidt operators on a Malcev algebra
(A, [ , ]) with respect to a representation (V ; ϱ). A morphism from T ′ to T consists of a
Malcev algebra morphism ϕA : A −→ A and a linear map φV : V −→ V such that

T ◦ φV = φA ◦ T ′, (6.1)
φV ϱ(x)(u) = ϱ(φA(x))(φV (u)), ∀x ∈ A, u ∈ V. (6.2)

In particular, if both φA and φV are invertible, (φA, φV ) is called an isomorphism from
T ′ to T .

Proposition 6.2. Let T and T ′ be two Kupershmidt operators on a Malcev algebra (A, [ , ])
with respect to a representation (V ; ϱ) and (φA, φV ) a morphism from T ′ to T . Then φV

is a morphism of pre-Malcev algebras from (V, ·T ′) to (V, ·T ) defined in Theorem 4.3.

Proof. According to Eqs (6.1) and (6.2), for any u, v ∈ V , we have
φV (u ·T ′ v) = φV ϱ(T ′u)(v) = ϱ(φA(T ′u))(φV (v))

= ϱ(T (φV (u)))(φV (v)) = φV (u) ·T φV (v).
�

Definition 6.3. Let T be a Kupershmidt operator on a Malcev algebra (A, [ , ]) with
respect to a representation (V ; ϱ) and T : V −→ A a linear map. If Tt = T + tT is
still a Kupershmidt operator on the Malcev algebra A with respect to the representation
(V ; ϱ) for all t, we say that T generates a one-parameter infinitesimal deformation of the
Kupershmidt operator T .

By direct computation, we can check that Tt = T + tT is a one-parameter infinitesimal
deformation of a Kupershmidt operator T if and only if for any u, v ∈ V ,

[Tu,Tv] + [Tu, Tv] = T (ϱ(Tu)(v) − ϱ(Tv)(u)) + T(ϱ(Tu)(v) − ϱ(Tv)(u)), (6.3)
[Tu,Tv] = T(ϱ(Tu)(v) − ϱ(Tv)(u)). (6.4)

Note that Eq. (6.4) means that T is a Kupershmidt operator on the Malcev algebra A
associated to the representation (V ; ϱ).

Now turning to a pre-Malcev algebra (V, ·) given in Theorem 4.3, let ψ : ⊗2V −→ V be
a linear map. If for any t ∈ K, the multiplication ·t defined by

u ·t v := u · v + tψ(u, v), ∀u, v ∈ V,
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also gives a pre-Malcev algebra structure, we say that ψ generates a one-parameter infin-
itesimal deformation of the pre-Malcev algebra (V, ·).

The two types of infinitesimal deformations are related as follows.

Proposition 6.4. If T generates a one-parameter infinitesimal deformation of a Kuper-
shmidt operator T on a Malcev algebra (A, [ , ]) with respect to a representation (V ; ϱ),
then the product ψT on V defined by

ψT(u, v) := ϱ(Tu)(v), ∀u, v ∈ V,

generates a one-parameter infinitesimal deformation of the associated pre-Malcev algebra
(V, ·T ).

Proof. Denote by ·t the corresponding pre-Malcev algebra structure associated to the
Kupershmidt operator T + tT. Then we have

u ·t v = ϱ((T + tT)(u))(v) = ϱ(Tu)(v) + tϱ(Tu)(v) = u ·T v + tψT(u, v),∀u, v ∈ V,

which implies that ψT generates a one-parameter infinitesimal deformation of (V, ·T ). �

Corollary 6.5. If T generates a one-parameter infinitesimal deformation of a Kupersh-
midt operator T on a Malcev algebra (A, [ , ]) with respect to a representation (V ; ϱ). Then
the product ψT on V defined by

ωT(u, v) := ϱ(Tu)(v) − ϱ(Tv)(u), ∀u, v ∈ V,

generates a one-parameter infinitesimal deformation of the sub-adjacent Malcev algebra
(V, [·, ·]T ) of the associated pre-Malcev algebra (V, ·T ).

Definition 6.6. Let T be a Kupershmidt operator on a Malcev algebra (A, [ , ]) with
respect to a representation (V ; ϱ). Two one-parameter infinitesimal deformations T 1

t =
T + tT1 and T 2

t = T + tT2 are said to be equivalent if there exists an x ∈ A such that
(IdA+tadx, IdV +tϱ(x)) is a homomorphism from T 2

t to T 1
t . In particular, a one-parameter

infinitesimal deformation Tt = T + tT of an Kupershmidt operator T is said to be trivial
if there exists an x ∈ A such that (IdA + tadx, IdV + tϱ(x)) is a homomorphism from Tt

to T .

Let (IdA + tadx, IdV + tϱ(x)) be a homomorphism from T 2
t to T 1

t . Then IdA + tadx is
a Malcev algebra endomorphism of A. Thus, we have

(IdA + tadx)[y, z] = [(IdA + tadx)(y), (IdA + tadx)(z)], ∀y, z ∈ A,

which implies that x satisfies

[[x, y], [x, z]] = 0, ∀y, z ∈ A. (6.5)

Then by Eq. (6.1), we get

(T + tT1)(IdV + tϱ(x))(u) = (IdA + tadx)(T + tT2)(u), ∀u ∈ V,

which implies

(T2 − T1)(u) = Tϱ(x)(u) + [Tu, x], (6.6)
T1ϱ(x)(u) = [x,T2u], ∀u ∈ V. (6.7)

Finally, Eq. (6.2) gives

(IdV + tϱ(x))ϱ(y)(u) = ϱ((IdA + tadx)(y))(IdV + tϱ(x))(u), ∀y ∈ A, u ∈ V,

which implies that x satisfies

ϱ([x, y])ϱ(x) = 0, ∀y ∈ A. (6.8)



Deformation of Kupershmidt operators of a Malcev algebra 215

Definition 6.7. Let T be a Kupershmidt operator on a Malcev algebra A with respect
to a representation (V ; ϱ). An element x ∈ A is called a Nijenhuis element associated
to T if x satisfies Eqs. (6.5), (6.8) and the equation

[x, [Tu, x] + Tϱ(x)(u)] = 0, ∀u ∈ V. (6.9)
Denote by Nij(T ) the set of Nijenhuis elements associated to a Kupershmidt operator T .

By Eqs. (6.5)-(6.8), it is obvious that a trivial one-parameter infinitesimal deforma-
tion gives rise to a Nijenhuis element. The following result is in close analogue to the
fact that the differential of a Nijenhuis operator on a Malcev algebra generates a trivial
one-parameter infinitesimal deformation of the Malcev algebra, justifying the notion of
Nijenhuis elements.

Theorem 6.8. Let T be a Kupershmidt operator on a Malcev algebra A with respect
to a representation (V ; ϱ). Then for any x ∈ Nij(T ), Tt := T + tT with T(u) =
Tϱ(x)(u) + [Tu, x], for all u ∈ V , is a trivial one-parameter infinitesimal deformation
of the Kupershmidt operator T .

Proof. First T is closed since T(u) = Tϱ(x)(u) + [Tu, x]. To show that T generates a
trivial one-parameter infinitesimal deformation of the Kupershmidt operator T , we only
need to verify that Eq. (6.4) holds. By Eq. (6.5), we have, for any u, v ∈ V ,

[Tu,Tv] − T(ϱ(Tu)(v) − ϱ(Tv)(u))
= [[Tu, x], [Tv, x]] + [[Tu, x], Tϱ(x)(v)] + [Tϱ(x)(u), [Tv, x]] + [Tϱ(x)(u), Tϱ(x)(v)]

−[Tϱ([Tu, x])(v), x] − [Tϱ(Tϱ(x)(u))(v), x] + [Tϱ([Tv, x])(u), x]
+[Tϱ(Tϱ(x)(v))(u), x] − Tϱ(x)ϱ([Tu, x])(v) − Tϱ(x)ϱ(Tϱ(x)(u))(v)
+Tϱ(x)ϱ([Tv, x])(u) + Tϱ(x)ϱ(Tϱ(x)(v))(u)

= [[Tu, x], Tϱ(x)(v)] + [Tϱ(x)(u), [Tv, x]] + Tϱ(Tϱ(x)(u))ϱ(x)(v)
−Tϱ(Tϱ(x)(v))ϱ(x)(u)︸ ︷︷ ︸ −[Tϱ([Tu, x])(v), x] − [Tϱ(Tϱ(x)(u))(v), x]

+[Tϱ([Tv, x])(u), x] + [Tϱ(Tϱ(x)(v))(u), x]
−Tϱ(x)ϱ([Tu, x])(v) − Tϱ(x)ϱ(Tϱ(x)(u))(v)
+Tϱ(x)ϱ([Tv, x])(u) + Tϱ(x)ϱ(Tϱ(x)(v))(u)︸ ︷︷ ︸ .

By Eqs. (6.8) and (6.9), the under-braced terms add to zero. Similarly, the underlined
terms add to zero. For the other terms, by Eqs. (6.5) and (6.9), we have

[[Tu, x], Tϱ(x)(v)] − [Tϱ([Tu, x])(v), x] + [Tϱ(Tϱ(x)(v))(u), x]
= [Tu, [x, Tϱ(x)(v)]] + [[Tu, Tϱ(x)(v)], x] − [Tϱ([Tu, x])(v), x] + [Tϱ(Tϱ(x)(v))(u), x]
= −[Tu, [x, [Tv, x]]] + [Tϱ(Tu)ϱ(x)(v), x] − [Tϱ([Tu, x])(v), x]
= −[x, [Tu, [Tv, x]]] + [Tϱ(x)ϱ(Tu)(v), x] − [x, [Tu, [Tv, x]]]
= +[x, [Tϱ(Tu)(v), x]].

Similarly, we have
[Tϱ(x)(u), [Tv, x]] − [Tϱ(Tϱ(x)(u))(v), x] + [Tϱ([Tv, x])(u), x]

= [x, [Tv, [Tu, x]]] − [x, [Tϱ(Tv)(u), x]].
Therefore,

[Tu,Tv] − T(ϱ(Tu)(v) − ϱ(Tv)(u))
= −[x, [Tu, [Tv, x]]] + [x, [Tv, [Tu, x]]] + [x, [Tϱ(Tu)(v), x]] − [x, [Tϱ(Tv)(u), x]]
= −[x, [[Tu, Tv], x]] + [x, [[Tu, Tv], x]] = 0,

which means that T generates a one-parameter infinitesimal deformation of T .
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Further, since x is a Nijenhuis element, it is straightforward to deduce that (IdA +
tadx, IdV + tϱ(x)) gives the desired homomorphism between Tt and T . Thus, the defor-
mation is trivial. �

Now we introduce the notion of a Nijenhuis operator on a pre-Malcev algebra.

Definition 6.9. A linear map N : A −→ A on a pre-Malcev algebra (A, ·) is called a
Nijenhuis operator if

(Nx) · (Ny) = N((Nx) · y + x · (Ny) −N(x · y)), ∀x, y ∈ A. (6.10)

For its connection with a Nijenhuis element associated to a Kupershmidt operator, we
have the following proposition.

Proposition 6.10. Let x ∈ A be a Nijenhuis element associated to an Kupershmidt
operator T on a Malcev algebra A with respect to a representation (V ; ϱ). Then ϱ(x) is a
Nijenhuis operator on the associated pre-Malcev algebra (V, ·T ).

Proof. For the proof, we just need to check, by Eq. (6.8), for all u, v ∈ V ,
ϱ(x)(ϱ(x)(u) ·T v + u ·T ϱ(x)(v) − ϱ(x)(u ·T v)) − ϱ(x)(u) ·T ϱ(x)(v)

= ϱ(x)
(
ϱ(Tϱ(x)(u))(v) + ϱ(Tu)ϱ(x)(v) − ϱ(x)ϱ(Tu)(v)

)
− ϱ(Tϱ(x)(u))ϱ(x)(v)

= [ϱ(x), ϱ(Tϱ(x)(u))] + [ϱ(x), ϱ([Tu, x])](v)
= ϱ([x, Tϱ(x)(u) + [Tu, x]])(v) = 0.

�
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