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Abstract: We investigate the wave energy distribution in complex built-up structures 

with multiple interfaces at which the material properties change discontinuously. We 

formulate the transfer operator in such a way that it can in principle be made exact, and 

it is clear where the semiclassical approximations are made at each stage of the 

derivation. We reformulate the boundary integral equations for the Helmholtz equation 

in terms of incoming and outgoing boundary waves independently of the boundary 

conditions and decomposing the green functions into singular and regular components. 

For demonstration purposes, we apply a semiclassical form of the operator 

(corresponding to a high-frequency approximation) to polygonal coupled-cavity 

configurations with abrupt changes of the material properties (such as wave speed and 

absorption coefficients at the interfaces between the cavities). 

  
 

1. Introduction 
 
The transfer operator formalism proposed by 

Bogomolny [4] has offered a very powerful 

platform for the application of semiclassical 

methods to complex quantum and wave problems. 

Boasman [5] established the connection between 

the transfer and the boundary integral methods 

explicitly for quantum billiards, recasting the 

boundary integral equations as the application of a 

transfer operator to the wavefunction or its normal 

derivative on the boundary depending on the 

prescribed boundary conditions. Subsequent 

development using Fredholm theory can be found 

in [7, 8], particularly on the Dirichlet case. In this 

paper we propose that a decomposition of the 

wavefunction at the boundary into incoming and 

outgoing components, defined in detail following a 

separation of the Green function into its regular and 

singular parts, provides a natural means of 

establishing this connection beyond leading 

semiclassical approximations. Semiclassical 

methods originating in the field of quantum chaos 

have found widespread application in classical 

wave problems with complex or chaotic ray limits. 

A semiclassically-motivated decomposition such as 

proposed in this paper can then lead to an efficient 

implementation of fully wave-based calculations. 

Here we show how to decompose the wave solution 

at the boundary into a component approaching the 

boundary and a component leaving it. We propose 

that the outgoing wave 𝜓+(𝑠)  should be defined 

simply as the contribution to the boundary integral 

equation arising from an appropriately defined 

singular part of the Green function. The simplest 

definition having the correct semiclassical limit is 

to define the singular part to correspond to the 

Green function obtained by replacing the boundary 

locally by its tangent line or plane. It is referred to 

this approach as the primitive decomposition and 

elaborated in [6]. Prosen [9, 10] proposed a more 

general approach dealing also with smooth 

potentials, though our approach is more natural 

because we start from the boundary integral 

equations (BIEs) and more suitable to 

accommodate complex built-up structure with 

multiple interfaces. In this paper we apply the 

primitive decomposition for the semiclassical 

coupling of the transfer operator between multiple 

domains with different local wave number. The 

transfer operator is derived by combining two 

operators; the first one is obtained from the relevant 

BIEs and is called the shift operator. The second 

operator is obtained from the prescribed boundary 

conditions and is called the scattering operator. The 

derivation of the shift operator involves two levels 

of approximations; the first one is that the 

derivation of the singular part of the Green operator 
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Ĝ0 is built on the assumption that the boundary is 

locally flat. Thus it does not account for the corners 

of irregular geometries. The second level of 

approximation is using the asymptotic expansion of 

the boundary kernels. Having obtained both the 

shift and the scattering operators semiclassically, 

we combine them to form the semiclassical transfer 

operator. 

 

2. Applications to a Model Problem - 

Coupled Cavities 
As starting point, we consider a two-cavity 

configuration in two dimensions shown in Fig. 1. 

Our aim is a generalisation of the method to large 

scale, multi-component systems. The considered 

domain  Ω = Ω1 ∪ Ω2 is decomposed into two sub-

domains with different material properties. 

 

 

 
 

Figure 1. Sketch of the coupled-cavity configuration. 

 
 
The wavenumber may change discontinuously at 

the interface 𝐼 between the left sub-domain Ω1  and 

the right sub-domain Ω2 . We shall denote the 

external boundary for each sub-domain by, 

 

Γ𝑗 = 𝜕Ωj\𝐼,                𝐼 = 𝜕Ω1 ∩ 𝜕Ω2 .                  (1) 

                                                                            

We consider Dirichlet Boundary Conditions 

(DBCs) along the external boundary  Γ𝑗 . To 

guarantee continuity of the wavefunction and 

equilibrium of the energy flux across the interface, 

we impose the following conditions 

 

𝜓(𝑠) =  𝜙(𝑠), 𝜌2
𝜕𝜓(𝑠)

𝜕𝑛
= −𝜌1

𝜕𝜙(𝑠)

𝜕𝑛
,    𝑠 ∈ 𝐼 .  (2)                            

  

The operator 𝜕/𝜕𝑛  denotes outward-pointing 

normal derivative along the boundary of each 

subdomain. Next we start with the formulation of 

the transfer operator. 

 

2.1 The Shift Operator for Coupled-Cavity 

Configuration 

In higher-dimensional problems, we use a 

decomposition into singular (near-diagonal) and 

nonsingular (off-diagonal) parts, as described in 

[6]. This decomposition is not unique, as there is 

some freedom in defining the singular part of the 

Green function. Here we consider the simplest 

decomposition, first used in [2] and called the 

primitive decomposition in [6], which separates a 

singular component using a local Fourier transform 

along the boundary. In particular we use it to 

motivate a semiclassical transfer operator 

equivalent to the formalism used in [4], but which 

in principle allows systematic development into 

higher-order and even exact treatments by using 

more sophisticated developments if the underlying 

definitions. The Green operators in the BIE for the 

left sub-domain Ω1  can be written formally as 

 

Ĝ0μ(s) = lim
x→s

∫ G0(x, �́�; k1)μ(�́�)∂Ω1
d�́�,        (3) 

                        

 

Ĝ1ψ(s) = lim
𝐱→s

∫
∂G0(x,�́�;k1)

∂�́�
ψ(�́�)

∂Ω1
d�́�,        (4)   

                                     

 

in which x denotes a generic point in the interior of  

Ω1  and 𝑠 and 𝑠 ́ label points on its boundary. 

G0(x, 𝑥 ́ ; k) is the free-space Green function 

satisfying (−∇2 − k2)G0(x, 𝑥 ́ ; k) = δ(x − x ́ ) , 

while Ω1  is the whole boundary of the left sub-

domain including the interface. Analogous 

boundary integral equations are available for 𝜙 and 

it’s normal derivative on the boundary 𝜕Ω2 of the 

right sub-domain. We decompose the 

wavefunctions in the left and right sub-domains in 

terms of incoming and outgoing waves as, 

 

𝜓 =
𝐴

√�̂�
(𝜓− + 𝜓+),     𝜙 =

𝐵

√�̂�
(𝜙− +𝜙+).        (5)                                   

where A and B are constants,  𝜓−  and  𝜓+  are 

respectively the incoming and the outgoing wave 

components for the left sub-domain, and similarly 

𝜙− and 𝜙+ for the right sub-domain. The operator 

�̂� is defined formally by 

 

�̂� = √1 − �̂�2,            �̂� =
1

𝑖𝑘1

𝜕

𝜕𝑠
 ,          (6)  

 

denotes a tangential momentum operator on Ω1 . A 

more concrete definition in terms of a Fourier 

representation of boundary data on Ω1  is given in 

[6] but the formal definition above is sufficient for 

present purposes. In the ray dynamical limit, the 

operator �̂� corresponds to the cosine of the angle of 

incidence of a ray leaving the boundary, while �̂� 

corresponds to its sine. The operator �̂� is defined 

analogously on Ω2 . The significance of �̂� is that a 

natural decomposition of the Green operator into 
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singular and regular parts can be written in terms of 

it so that 

 

(𝐺0)
sing

=
𝑖

2𝑘1

1

�̂� 
,        (𝐺1)

sing
= −

1

2
 𝐼,           (7)                             

 

where 𝐼  denotes the identity operator. We 

furthermore let operators  �̂�0  and �̂�1 be defined so 

that 

 

�̂�0 =
𝑖

2𝑘1

1

 √�̂�
(𝐼 + �̂�0)

1

 √�̂�
, �̂�1 = −

1

2

1

 √�̂�
(𝐼 + �̂�1)√�̂�.   (8) 

 

That is, �̂�0  and �̂�1 denote rescaling using √�̂� of the 

regular parts of 𝐺0 and 𝐺1 that are left over once the 

singular parts defined in (7) are removed. The 

operators �̂�0   and �̂�1  differ slightly from 

analogously defined operators in [6]: different left 

and right scaling (by √�̂�) are used which simplify 

later calculations in the context of this paper. In the 

boundary equation for  𝜓 , we now let the wave 

component  𝜓+ leaving the boundary be defined by 

the contribution of the singular parts to the 

boundary integral equation as follows: 

 
𝐴

√�̂�
𝜓+ =

𝑖

2𝑘1

1

�̂� 
𝜇 +

1

2

𝐴

√�̂�
(𝜓− + 𝜓+),      

 

which leads to 

𝜇 ≡
𝜕𝜓

𝜕𝑛
= 𝐴𝑖𝑘1√�̂�(𝜓− − 𝜓+).              (9) 

 

An analogous calculation in Ω2  leads to 

 

𝜈 ≡
𝜕𝜙

𝜕𝑛
= 𝐵𝑖𝑘2√�̂�(𝜙− − 𝜙+).            (10) 

 

The complete boundary integral equation for Ω1  
can then be written 

 

 
1

√�̂�
(𝜓− + 𝜓+) =

𝑖

2𝑘1

1

 √�̂�
(𝐼 + �̂�0)

1

 √�̂�
[𝑖𝑘1√�̂�(𝜓− −

𝜓+)]  +
1

2

1

 √�̂�
(𝐼 + �̂�1)√�̂� [

1

√�̂�
(𝜓− + 𝜓+)],      (11) 

 

which can be rearranged to give 

 

 (2𝐼 + �̂�0 − �̂�1)𝜓− =  (�̂�0 + �̂�1)𝜓+ .         (12) 

 

We now multiply equation (12) from the left by the 

operator (2𝐼 + �̂�0 − �̂�1)
−1, to give 

 

𝜓− =   (2𝐼 + �̂�0 − �̂�1)
−1(�̂�0 + �̂�1)𝜓+ = �̂�

𝐿𝜓+ ,      (13) 

 

where �̂�𝐿  is the shift operator for the left domain 

Ω1 . A shift operator �̂�𝑅  for the right sub-domain 

Ω2  is defined similarly. The inverse operator 

 (2𝐼 + �̂�0 − �̂�1)
−1  may be difficult to evaluate in 

exact calculation. To facilitate the computations, 

we thus employ semiclassical approximations 

which lead to 

 

�̂�𝐿 ≈ �̂�0 ≈ �̂�1.                    (14) 

 

We now collect equation and its analogue for the 

right sub-domain to form the shift operator 

 

[
𝜓−
𝜙−
] = [�̂�

𝐿 𝟎
𝟎 �̂�𝑅

] [
𝜓+
𝜙+
] ,                (15) 

 

for the coupled-cavity configuration. Using the 

partition of the boundary of each sub-domain (1), 

equation (15) can be written as, 

 

(

 

𝜒Γ1𝜓−
𝜒𝐼𝜓−
𝜒𝐼𝜙−
𝜒Γ2𝜙−)

 =  

(

  
 

�̂�Γ1Γ1 �̂�Γ1𝐼 𝟎 𝟎

�̂�𝐼Γ1 �̂�𝐼𝐼
(1)

𝟎 𝟎

𝟎 𝟎 �̂�𝐼𝐼
(2)

�̂�𝐼Γ2
𝟎 𝟎 �̂�Γ2𝐼 �̂�Γ2Γ2)

  
 
 

(

 

𝜒Γ1𝜓+
𝜒𝐼𝜓+
𝜒𝐼𝜙+
𝜒Γ2𝜙+)

       (16) 

 

where 𝜒 is the characteristic function and defined 

by 

 

𝜒𝐷(𝑠) = {
1,       𝑖𝑓 𝑠 ∈ 𝐷,
0,       otherwise.

                  (17) 

 

We distinguish here between �̂�𝐼𝐼
(1)

 and �̂�𝐼𝐼
(2)

, the 

interface-to-interface blocks of the shift operator 

computed respectively from the left and right sides. 

Although they are constructed on the same 

boundary segment, the normal derivatives point in 

opposite directions in each case, so the 

corresponding blocks are not identical. Note, 

however, that for the examples used to illustrate the 

procedure in this paper, where the interface is 

planar, we will find that �̂�𝐼𝐼
(1)

 and �̂�𝐼𝐼
(2)

 II both vanish 

at leading order. Equation (16) can be cast as, 

 

Ψ− = �̂�Ψ+ ,                         (18) 

 

where �̂� is the shift operator for the coupled-cavity 

configuration. Hereafter, we use the following 

notation for the outgoing wave vector, 

  

Ψ+ =

(

 

𝜒Γ1𝜓+
𝜒𝐼𝜓+
𝜒𝐼𝜙+
𝜒Γ2𝜙+)

 =

(

 
 

𝜓+
𝐿

𝜓+
𝐼

𝜙+
𝐼

𝜙+
𝑅
)

 
 

                   (19) 

and similarly for the incoming wave vector Ψ−. The 

functions 𝜓+
𝐿  and 𝜓+

𝐼  are respectively the incoming 

wave sub-vector along the outer boundary of the 

left sub-domain and the interface, and similarly for 
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𝜙+
𝑅  and 𝜙+

𝐼  for the right sub-domain. Next we 

derive the operator which incorporates the 

boundary conditions. 
 
2.2 The Scattering Operator 

We next present a derivation of a scattering 

operator which encodes the boundary conditions for 

the coupled-cavity configuration. This operator tells 

us how an incoming wave is scattered once it hits 

any part of the boundary of the coupled cavities. 

We set DBCs along the external boundary 

(excluding the interface) of the coupled cavities. 

That is, 

 

𝜒Γ1𝜓(𝑠) = 0,               𝜒Γ2𝜙(𝑠) = 0 .         (20) 

 

The function 𝜒Γ1 denotes the characteristic function 

defined by Eq. (17). Further to the DBCs along the 

external boundary Γ𝑗  , one needs to impose the 

continuity conditions of the wavefunction and the 

equilibrium of the energy flux normal to the 

interface as given by the following equations, 

𝜒𝐼𝜓(𝑠) = 𝜒𝐼𝜙(𝑠), ρ2𝜒𝐼
𝜕ψ(s)

𝜕𝑛𝑠
= −ρ1𝜒𝐼

𝜕ϕ(s)

𝜕𝑛𝑠
 .  (21) 

 

The constants ρ1  and ρ2  are the material densities 

of the left and right sub-domains, respectively. 

Turning these boundary conditions into 

relationships between the incoming and outgoing 

wave components is nontrivial in exact calculation 

because the characteristic functions in equations 

(20) and (21) do not commute with the �̂�  and �̂� 

operators that appear in equations (5), (9) and (10). 

We overcome this by passing immediately to a 

semiclassical approximation in which diffraction 

effects arising from wave incidence on corners are 

ignored. Inserting the DBCs (20) into the 

decomposition relations given by equation (5) leads 

to the following relations, 

 

𝜒Γ1𝜓+ = −𝜒Γ1𝜓−,   𝜒Γ2𝜙+ = −𝜒Γ2𝜙− ,         (22) 

 

where at leading order in semiclassical 

approximation we have neglected the commutator 

between 𝜒𝐼  and the operators 1 √�̂�⁄  and 1 √�̂�⁄ . 

That is, we have neglected contributions from 

 

𝐶 = [𝜒𝐼 ,
1

 √�̂�
  ],                            (23) 

 

that in the exact calculation would contribute 

distributional terms corresponding to diffraction 

from the associated corners. It is shown in [2] that 

contributions from the commutator (23) decay in 

the semiclassical limit (𝑘1 → ∞)  and may be 

neglected at leading order. We should also 

incorporate the continuity conditions along the 

interface. We insert the decomposition relations 

given by equation (5) into the first line of the 

conditions described by equation (21). One then has 

 

𝐴𝜒𝐼
1

√�̂�
(𝜓− + 𝜓+) = 𝐵𝜒𝐼

1

√�̂�
(𝜙− + 𝜙+).         (24) 

 

The constants 𝐴 = √𝜌1 𝑘1⁄   and 𝐵 = √𝜌2 𝑘2⁄  are 

chosen to emphasise conservation of energy flux 

across the interface in the dissipationless limit: 

scattering into reflected and transmitted amplitudes 

in a ray limit is then described by a unitary matrix 

in semiclassical approximation. Similarly, the 

boundary conditions for the normal derivatives give 

𝐵𝜒𝐼√�̂�(𝜓− − 𝜓+) = 𝐴𝜒𝐼√�̂�(𝜙+ − 𝜙−). 
 

As with the boundary conditions placed on Γ1 and 

Γ2, an exact treatment requires us to account for the 

non-commutation of the operators �̂� and �̂� with 𝜒𝐼. 
At leading order in semiclassical approximation, 

however, and in particular neglecting diffractive 

effects associated with scattering from the 

endpoints of  𝐼 , we can represent these equations 

after some manipulation in the form 

 
𝜒𝐼𝜓+ ≈ �̂�𝜒𝐼𝜓− + �̂�𝜒𝐼𝜙−, 𝜒𝐼𝜙+ ≈ −�̂�𝜒𝐼𝜙− + �̂�𝜒𝐼𝜓−,         (25) 
 

where 

 

�̂� = 𝜒𝐼 (
𝐵2�̂�−𝐴2�̂�

𝐵2�̂�+𝐴2�̂�
)𝜒𝐼,                  (26) 

 

and 

 

�̂� = 𝜒𝐼 (
2𝐴𝐵√�̂��̂�

𝐵2�̂�+𝐴2�̂�
)𝜒𝐼,                  (27) 

 

represent projections onto the interval 𝐼  of 

reflection and transmission operators. We now 

combine equations (22), and (25) to form the 

scattering operator as the following, 

 

(

 
 

𝜓+
𝐿

𝜓+
𝐼

𝜙+
𝐼

𝜙+
𝑅
)

 
 
= (

−𝐼 𝟎 𝟎 𝟎
𝟎 �̂� �̂� 𝟎
𝟎 �̂� −�̂� 𝟎
𝟎 𝟎 𝟎 −𝐼

)

(

 
 

𝜓−
𝐿

𝜓−
𝐼

𝜙−
𝐼

𝜙−
𝑅
)

 
 
  .      (28) 

 

This equation can be cast in the form 

 

Ψ+ = �̂�Ψ− .                         (29) 

 

The map �̂�  will be referred to as the scattering 

operator representing reflection and transmission of 

wave incident on the boundary into waves moving 

away from it. Diagonal blocks correspond to 
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reflection while the offdiagonal blocks correspond 

to transmission across the interface 𝐼  from one 

domain into the other. 

 

2.3 The Semiclassical Transfer Operator 

To summarise, in the previous sections we obtained 

both the shift and the scattering operator 

semiclassically. We now combine them to construct 

the semiclassical transfer operator �̂�. Inserting the 

outgoing vector given by equation (29) into 

equation (18) and using equation (19), leads to 

 

 

(

 
 

𝜓−
𝐿

𝜓−
𝐼

𝜙−
𝐼

𝜙−
𝑅
)

 
 
=

 

(

  
 

�̂�Γ1Γ1 �̂�Γ1𝐼 𝟎 𝟎

�̂�𝐼Γ1 �̂�𝐼𝐼
(1)

𝟎 𝟎

𝟎 𝟎 �̂�𝐼𝐼
(2)

�̂�𝐼Γ2
𝟎 𝟎 �̂�Γ2𝐼 �̂�Γ2Γ2)

  
 
(

−𝐼 𝟎 𝟎 𝟎
𝟎 �̂� �̂� 𝟎
𝟎 �̂� −�̂� 𝟎
𝟎 𝟎 𝟎 −𝐼

) 

(

 
 

𝜓−
𝐿

𝜓−
𝐼

𝜙−
𝐼

𝜙−
𝑅
)

 
 
 .       

 

This equation can be rearranged as the following, 

 

(

 
 

𝜓−
𝐿

𝜓−
𝐼

𝜙−
𝐼

𝜙−
𝑅
)

 
 
=  

(

  
 

�̂�Γ1Γ1
𝑑 �̂�Γ1𝐼

𝑟 �̂�Γ1𝐼
𝑡 𝟎

�̂�𝐼Γ1
𝑑 �̂�𝐼𝐼

(1)𝑟
�̂�𝐼𝐼
(1)𝑡

𝟎

𝟎 �̂�𝐼𝐼
(2)𝑡

�̂�𝐼𝐼
(2)𝑟

�̂�𝐼Γ2
𝑑

𝟎 �̂�Γ2𝐼
𝑡 �̂�Γ2𝐼

𝑟 �̂�Γ2Γ2
𝑑
)

  
 
 

(

 
 

𝜓−
𝐿

𝜓−
𝐼

𝜙−
𝐼

𝜙−
𝑅
)

 
 

,         (30) 

 

where the superscripts 𝑑 , r and t refer to 

contributions to the transfer operator from crossings 

of the interior which follow reflection from  Γ𝑖 , 

reflection from 𝐼 and transmission across 𝐼 , 

respectively. This equation can be cast in the form 

 

Ψ− = �̂�Ψ− .                     (31) 

 

The map �̂�  will be referred to as semiclassical 

transfer operator. 

3. Conclusion 

In this paper we semiclassically formulated the 

transfer operator for coupled cavities with different 

local wavenumbers changing at the interfaces 

between them. We point out the semiclassical 

approximations which have been made at each 

stage of the derivation. The semiclassical transfer 

operator was derived where the physical solution is 

an eigenfunction, however an analogous 

formulation can be done for the Green function [2]. 

These results can be improved by considering the 

treatment of corners when defining the singular part 

of the Green function, that is, including the corners 

diffraction effects. Also it can be improved by 

considering the commutator contribution (23) in the 

derivation of the scattering operator and performing 

the operator inversion in equation (13) in the 

derivation of the shift operator. 

 

Acknowledgement 
HBH acknowledges support by the Libyan Ministry 

of Education. SCC acknowledges support from 

EPSRC under grant no. EP/F036574/1. Further 

support by the EU (FP7 IAPP grant MIDEA) is 

gratefully acknowledged. 

 

 

References 
 
[1] M. Abramowitz, I. A. Stegun “Handbook of 

Mathematical Functions” Dover, New York (1972) 

[2] H. Ben Hamdin “Boundary element and transfer 

operator methods for multi-component wave 

systems” PhD Thesis, School of Mathematical 

Sciences, Nottingham University, UK( 2012) 

[3] H. Ben Hamdin, G. Tanner “Multi-component BEM 

for the Helmholtz equation - A normal derivative 

method” IOS Press, Shock and Vibration, 19 

(2012) 957–967 

[4] E.B. Bogomolny “Semiclassical quantization of 

multidimensional systems” Nonlinearity, 5(1992) 

805–866 

[5] P. A. Boasman “Semiclassical Accuracy for 

Billiards”  Nonlinearity, 7 (1994) 485 

[6] S. C. Creagh, H. Ben Hamdin and G. Tanner “In-out 

decomposition of boundary integral equations”  

J.Phys. A: Math. Theor., 46(2013) 

[7] B. Georgeot, R. E. Prange “Exact and Quasiclassical 

Fredholm Solutions of Quantum Billiards” Phys. 

Rev. Lett.,74 (15) (1992) 2851–2854 

[8] B. Georgeot, R. E. Prange “Fredholm Theory for 

Quasiclassical Scattering” Phys. Rev. Lett.,74 (21) 

(1995) 4110–4113 

[9] T. Prosen “Exact quantum surface of section 

method” J. Phys. A:Math. Gen., 27(1994)L709–

L714 

[10] T. Prosen “General quantum surface-of-section 

method”  J. Phys. A:Math. Gen., 28(1995) 4133–4155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


