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Laws of Heat Conduction Equation Arising Laser
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Abstract
In this study, based on the continuous transformations of Lie groups, the exact analytic solutions of the
laser heating carbon nanotubes formulated by using the classical heat conduction equation with various
physical properties were constructed. These solutions are the type of group invariant solutions. The
constructed solutions have expanded and enriched the solution forms of this new model existing in the
literature. With the help of the Maple package program, 3D, density, and contour graphs were drawn
for the special values of the parameters in the solutions, and the physical structures of the solutions
obtained in this way were also observed. The solutions obtained can be used in the explanation of
physical phenomena occurring in cancer investigations.
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1. Introduction
It is well known that the evolution differential equations (EDEs) mathematically model many physical phe-

nomena that occur in nature. Many analytical and numerical solution techniques such as Hirota bilinear method,
Backlund transformations, Darboux transformations, Painleve property, variational iteration method, tanh method,
invariant subspace method, Lie symmetry groups etc. have been developed over time to solve those equations
[1–14]. Among the methods listed above, the Lie symmetry groups method is an effective approach in obtaining
exact solutions (special group invariant solutions) of the considered differential equations (systems), regardless of
the order, degree and linearity types [14, 15].

Carbon nanotubes (CNTs) have an important place in nanomaterials science due to their mechanical, electrical,
optical and magnetic properties. CNTs have effective applications in the field of medicine, drug distribution,
and contrast agents. One of the physical applications that these EDEs address is cancer disease. We know from
experimental studies that CNTs are promising nanomaterials for warming agents in photothermal therapy (PTT)
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and contrast agents in photoacoustic (PA) imaging. In the experiments, the temperature of the agents used in both
PTT and PA imaging during laser irradiation was examined in the tissue. It is also known from experimental studies
that cancer cells can be destroyed by increasing the temperature in the tissue (with the help of the agents in PTT) to
41-47 ◦ C. Thus, cancer cells become hyperthermic and suffer significant damage [16].

When we look at the studies in the literature, in the study [17], the heat analysis of multi-walled CNTs during
pulsed laser heating was investigated using the finite element method (FEM) for the classical heat conduction
equation. The dynamics of pulsed nanosecond laser heating process was simulated by the solution of the heat
conduction equation. In addition, the FEM is applied to compute the temperature profiles as a function of depth x
and time t in the sample (multi-walled CNT) [18]. Also, in the literature optical soliton-like solutions for the system
of ring-cavity fiber laser using carbon nanotubes for passive mode locking have also been studied [19]. In [20], the
authors investigated more information on the system of carbon nanotubes conveying fluid by using Lie symmetry
groups.

In this study, we examine the temperature profiles using the Lie symmetry groups method and obtain analytical
solutions, based on the classical heat conduction equation that explains the laser-heated CNT model previously
discussed in the study [16]. In the study [16], the authors considered the temperature function as dependent only
on the radial variable and treated the model as a simple ordinary differential equation (ODE). Besides, we will try
to obtain the conservation laws of the model.

The study is organized as follows: The laser heated governing model discussed in Section 2 is presented. The
solution of the model will be explored in Section 3. Section 4 is devoted to the conservation laws of the model
through the multiplier method. The results and remarks are presented in Section 5.

2. Governing equation

We will examine the CNT, which is exposed to laser heating and has a cylindrical structure. Here we will
assume that there are cancerous tissues around the CNT. Besides, it will be assumed that the length of the CNT
is greater than its radius, and the temperature Tb is 37 degrees at a unit distance b from the center. Considering
the above-mentioned assumptions, CNTs exposed to laser heating can be formulated with the heat conduction
equation given below:

k1k2ut = k3
1

x
(xux)x + f(x, t), 0 < x < a, (2.1)

where k1 is the density of CNT, k2 is the concentration of CNT, k3 is the thermal conductivity of CNTs and u(x, t)
and f(x, t) denote the temperature function and source term respectively, where x is the distance measured from
the center of the cylinder and t is the time variable. In our work we will assume that f(x, t) is a constant let say
f (in fact, we learn from [16] that based on the physical meaning of f(x, t), its mathematical formulation is in the
form of f(x, t) = (1−R)I0α where R denotes reflectivity, I0 is the laser intensity, α is optical absorption coefficient
of CNTs) (see, [16] for further details).

3. Lie point symmetries of Eq.(2.1)

Now consider the continuous Lie transformations with one small parameter given below:

x̄ = x+ µξ (t, x, u) +O(µ)2,

t̄ = t+ µτ (t, x, u) +O(µ)2,

ū = u+ µη (t, x, u) +O(µ)2. (3.1)

In this case, the Lie point symmetry generator of Eq. (2.1) associated with (3.1) is generated by the vector field of the
form

X = τ (t, x, u)
∂

∂t
+ ξ (t, x, u)

∂

∂x
+ η (t, x, u)

∂

∂u
, (3.2)

where τ, ξ and η depend on only t, x and u. Applying the second prolongation pr(2)X

pr(2)X = X + ηt
∂

∂ut
+ ηx

∂

∂ux
+ ηxx

∂

∂uxx
, (3.3)

to Eq. (2.1), i.e,

pr(2)X

[
k1k2ut − k3

1

x
(xux)x − f

]
|k1k2ut=k3 1

x (xux)x+f
= 0, (3.4)
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we find that the coefficient functions ξ(x, t, u), τ(x, t, u) and η(x, t, u) must satisfy the following linearized symmetry
condition

k1k2η
t + k3

1

x2
uxξ − k3

1

x
ηx − k3ηxx = 0, (3.5)

where ηt, ηx, and ηxx are the extended coefficients of pr(2)X . In a simplified form these coefficients can be written
in the following format:

ηt = Dtη − uxDtξ − utDtτ,

ηx = Dxη − uxDxξ − utDxτ,

ηxx = D2
xη − uxD2

xξ − utD2
t τ − 2uxxDxξ − 2uxtDxτ, (3.6)

where Dx, Dt are the total derivatives with respect to x and t, respectively and are given as follows:

Dx =
∂

∂x
+ ux

∂

∂u
+ uxt

∂

∂ut
+ uxx

∂

∂ux
+ ....,

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ ..... (3.7)

Here, we would like to point out that, for a differential equation (or system) of order n, the coefficient functions of
pr(n) (X) prolongation is given as the follows:

ηαi1...is = Dis(η
α
i1...is−1

)− uji1...is−1
Dis(ξ

j), s > 1. (3.8)

If we write the prolonged coefficients (3.6) in the linearized invariance condition (3.5) and equal the coefficients of
the derivatives of u with respect to x to zero, we arrive at the following linear over-determined partial differential
equation system:

ηuu = 0,

ηxu = −τttk1k2x
4k3

,

ηxx =
xk2k1ηt − fxηu + fxτt − k3ηx

k3x
,

ηtu = −τtt
2
,

τu = 0,

τx = 0,

τttt = 0,

ξ =
xτt
2
. (3.9)

If the above over-determined system of equations is solved for ξ(x, t), τ(t) and η(x, t, u), the following useful and
important Lie vector fields are obtained (in fact, 6 dimensional Lie vector algebras are obtained but some trivial
vector fields are omitted). Hence, the point symmetry generators admitted by the heat equation (2.1) are given by

X =
∂

∂t
+

(
x2

4
+

k3t

k1k2

)
∂

∂u
,

Y = t
∂

∂t
+
x

2

∂

∂x
+

(
x2

4
+

k3t

k1k2

)
∂

∂u
,

Z =

(
u+

x2

4
+

k3t

k1k2

)
∂

∂u
. (3.10)

Consider the infinitesimal generator Y in (3.10). The corresponding one-parameter Lie group of point transforma-
tions is obtained by solving the initial value problem for the first order system of ODEs,

dx∗

dε
=
x∗

2
, (3.11)
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dt∗

dε
= t∗, (3.12)

du∗

dε
=

(x∗)
2

4
+
k3t
∗

k1k2
, (3.13)

with u∗ = u, x∗ = x, t∗ = t at ε = 0. This yields

x∗ = X (x, t, u; ε) = C3 exp
(ε

2

)
, (3.14)

t∗ = T (x, t, u; ε) = C2 exp (ε) , (3.15)

u∗ = U (x, t, u; ε) =

(
C2

3

4
+
C2k3
k1k2

)
exp (ε) + C1. (3.16)

Now we find the invariant solutions u(x, t) of the model (2.1).

4. Exact solutions
The group invariant solutions of the laser heating CNTs formulated by using the classical heat conduction

equation with various physical properties are constructed with the help of the invariant form method, direct
substitution method, λ-symmetry reductions and first integrals.

4.1 Invariant form method
The required invariant surface condition [10, 15] η − ξux − τut = 0 for X vector field becomes

ut = (
x2

4
+

k3t

k1k2
). (4.1)

The corresponding characteristic equations of Eq. (2.1) are given by

dx

0
=
dt

1
=

du
x2

4 + k3t
k1k2

. (4.2)

We yield two invariants of X by solving above the characteristic equations:

ζ = x, v = u− k3t
2

2k1k2
−x

2

4
t. (4.3)

Hence, the solution of the invariant surface condition (4.1) is represented by the invariant form

u− k3t
2

2k1k2
−x

2

4
t = φ(x), (4.4)

or

u = Θ(x, t) =
k3t

2

2k1k2
+
x2

4
t+ φ(ζ), (4.5)

in terms of the similarity variable (one of the invariants) ζ = x. Plugging of (4.5) into the classical heat conduction
equation (2.1) leads to φ(ζ) satisfying the reduced ODE which converts Eq.(2.1) to the second-order variable
coefficient ODE

k3φ
′′(ζ) +

k3
ζ
φ′(ζ)− 1

4
k1k2ζ

2 + f = 0. (4.6)

Thus, the invariant solution of PDE (2.1), resulting from its invariance under X, is presented by

u = Θ(x, t) =
k3t

2

2k1k2
+
x2

4
t+

1

64

x4k1k2
k3

− 1

4

x2f

k3
+ C1 ln(x) + C2, (4.7)

where C1 and C2 are arbitrary constants.
At this point, we also note that if ξux + τut − η = 0 invariant surface condition is used for the Z Lie vector field,

then it is readily seen that u = −x
2

4 −
k3t
k1k2

group invariant solution is obtained.



106 E. Yaşar & Y. Yıldırım

4.2 Direct substitution method
In this alternative way [10, 15], we first express the invariant surface condition in a solved form ut (we consider

the case of Y Lie vector field):

ut = − x
2t
ux +

x2

4t
+

k3
k1k2

. (4.8)

After plugging (4.8) into heat equation (2.1), we obtain the following ODE with t playing the role of a parameter:

k3uxx + (k3
1

x
+ k1k2

x

2t
)ux − (

x2

4t
k1k2 + k3) + f = 0. (4.9)

The general solution of the parametric ODE (4.9) is given by

u =
1

4
x2 − 2ftln(x)

k1k2
− 1

2
A(t)Ei(1,

x2k1k2
4k3t

) +B(t), (4.10)

where A(t) and B(t) are arbitrary functions. Substitution of (4.10) into the invariant surface condition (4.8) yields

−A′(t)Ei(1, x
2k1k2
4k3t

)k1k2 + 2B′(t)k1k2 − 4fln(x)− 2f − 2k3 = 0, (4.11)

where the exponential integrals, Ei(a, z), are defined for 0 < R(z) by

Ei(a, z) =

∫ ∞
1

e−k1zk−a1 dk1. (4.12)

We now find the one-parameter (ε) family of solutions u = Θ(x, t; ε), resulting from the invariance of the model
equation (2.1) under the point symmetry X , obtained from any solution u(x, t) that is not of the form (4.7). Let

x̂ = X (x, t, u; ε) = C3 exp
(ε

2

)
, (4.13)

t̂ = T (x, t, u; ε) = C2 exp (ε) , (4.14)

û = Θ(x̂, t̂). (4.15)

Then

u = Φ (x, t; ε) = U
(
x̂, t̂, û;−ε

)
=

exp (ε)
C2

3

4 + C2k3
k1k2

Θ(C3 exp
(ε

2

)
, C2 exp (ε)). (4.16)

4.3 λ-Symmetry Reductions and First Integrals Using Lie Symmetry
In this case, the Lie point symmetry generators of Eq.(4.6) are generated by the vector field of the form (see,

[21, 22])

V = ξ (ζ, φ)
∂

∂ζ
+ η (ζ, φ)

∂

∂φ
, (4.17)

where ξ and η depend on ζ and φ. Applying the second prolongation pr(2)V

pr(2)V = X + ηζ
∂

∂φζ
+ ηζζ

∂

∂φζζ
, (4.18)

to Eq. (4.6), i.e,

pr(2)V

(
k3φ
′′(ζ) +

k3
ζ
φ′(ζ)− 1

4
k1k2ζ

2 + f

)∣∣∣∣
φ′′(ζ)=−φ

′(ζ)
ζ +

k1k2ζ
2

4k3
− f
k3

= 0, (4.19)

we get that the coefficient functions ξ (ζ, φ) and η (ζ, φ) should fulfill the following linearized symmetry equation

ξ

(
−k3
ζ2
φζ −

1

2
k1k2ζ

)
+
k3η

ζ

ζ
+ k3η

ζζ = 0, (4.20)
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where ηζ and ηζζ are the coefficients of pr(2)V . In a simplified form these coefficients can be written in the following
format:

ηζ = Dζη − φζDζξ,

ηζζ = D2
ζη − φζD2

ζξ − 2φζζDζξ, (4.21)

where Dζ is the total derivatives with respect to ζ and is given as follows:

Dζ =
∂

∂ζ
+ φζ

∂

∂φ
+ φζζ

∂

∂φζ
+ .... (4.22)

If we write the prolonged coefficients (4.21) in the linearized invariance condition (4.20) and equal the coefficients of
the derivatives of φ with respect to ζ to zero, we arrive at the following linear over-determined PDE system:

ηφ,φ,φ = 0,

ηφ,φ,ζ = 0,

ξφ,φ = 0,

ξφ,ζ =
ζηφ,φ + 2ξφ

2ζ
,

ξζ,ζ =
−3ζ4k1k2ξφ + 12fζ2ξφ + 8k3ζ

2ηφ,ζ + 4ζk3ξζ − 4k3ξζ
4ζ2k3

,

ηζ,ζ =
−k1k2ζ3ηφ + 2ζ3k1k2ξζ + 2ζ2k1k2ξζ + 4fζηφ − 8fζξζ − 4k3ηζ

4ζk3
. (4.23)

If the above over-determined system of equations is solved for ξ (ζ, φ) and η (ζ, φ), the following useful and
important Lie vector fields are obtained (in fact, 6 dimensional Lie vector algebras are obtained). Hence, the point
symmetry generators admitted by the equation (4.6) are given by

V1 =
∂

∂φ
,

V2 = ln (ζ)
∂

∂φ
,

V3 = 4k3ζ
∂

∂ζ
− ζ2(−k1k22ζ + 8f)

4

∂

∂φ
,

V4 = (16ζ ln(ζ)− 8ζ)k1k2k3
∂

∂ζ
+ (k21k

2
2ζ

4 ln(ζ)

−k
2
1k

2
2ζ

4

2
− 8k1k2fζ

2 ln(ζ) + 4fk1k2ζ
2 + 8f2 ln(ζ))

∂

∂φ
. (4.24)

Now we use the relationship between Lie point symmetries and λ-symmetries to get λ-symmetries of Equation
(4.6). Let us consider X3. Then we have

ξ = 4k3ζ, (4.25)

η = −ζ
2(−k1k22ζ + 8f)

4
, (4.26)
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and the characteristic function of V3

Q = η − ξφζ

= −ζ
2(−k1k22ζ + 8f)

4
− 4k3ζφζ , (4.27)

and the total derivative operator

Dζ =
∂

∂ζ
+ φζ

∂

∂φ
+ φζζ

∂

∂φζ
=

∂

∂ζ
+ φζ

∂

∂φ
+

(
−φζ
ζ

+
k1k2ζ

2

4k3
− f

k3

)
∂

∂φζ
. (4.28)

The symmetry υ =
∂

∂φ
is the λ-symmetry when

λ =
Dζ (Q)

Q
= − ζk1k2(−3k2 + 4ζ)

ζ2k1k22 − 8ζf − 16k3φζ
. (4.29)

In this stage, we wish to calculate a first integral from λ. Plugging Eq. (4.29) into

ωφ + λωφζ = 0, (4.30)

we obtain

ωφ −
ζk1k2(−3k2 + 4ζ)

ζ2k1k22 − 8ζf − 16k3φζ
ωφζ = 0. (4.31)

Integrating the characteristic equation of (4.31)

dφ

1
= −

(
ζ2k1k

2
2 − 8ζf − 16k3φζ

)
dφζ

ζk1k2(−3k2 + 4ζ)
, (4.32)

we deduce a special solution

ω (ζ, φ, φζ) =
−ζ2φζk1k22 − 4ζ2φk1k2 + 3ζφk1k2

2 + 8ζφζf + 8φ2ζk3

ζk1k2 (−3k2 + 4ζ)
. (4.33)

Secondly, calculating function D[ω], one can get

D[ω] =
∂ω

∂ζ
+ φζ

∂ω

∂φ
+

(
−φζ
ζ

+
k1k2ζ

2

4k3
− f

k3

)
∂ω

∂φζ
(4.34)

= − 1

4ζ2k1k2 (−3k2 + 4ζ)
2
k3

(4ζ6k1
2k2

3 − 3ζ5k1
2k2

4

−32ζ5fk1k2 + 8ζ4fk1k2
2 − 64ζ3φζk1k2

2k3 + 12ζ3fk1k2
3

+36ζ2φζk1k2
3k3 + 128ζ3f2 + 512ζ2φζfk3 − 96ζ2f2k2

+512ζφ2ζk3
2 − 288ζφζfk2k3 − 288φ2ζk2k3

2) (4.35)

= − 1

4ζk3 (−3k2 + 4ζ) k1k2
(k1

2k2
3ζ4 − 8fk1k2ζ

3 − 4ζ2fk1k2
2

+64ζφk1k2k3 + 64ζωk1k2k3 − 36φk1k2
2k3 − 36ωk1k2

2k3 + 32ζf2) (4.36)

= F (ζ,φ, ω) . (4.37)
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Next, calculating the first-order partial differential equation

Gζ + φζGφ −

(
k1

2k2
3ζ4 − 8fk1k2ζ

3 − 4ζ2fk1k2
2 + 64ζφk1k2k3

+64ζωk1k2k3 − 36φk1k2
2k3 − 36ωk1k2

2k3 + 32ζf2

)
Gω

4ζk3 (−3k2 + 4ζ) k1k2
= 0, (4.38)

and solving the corresponding characteristic equation, we get a special solution

G (ζ,φ, φζ , ω) =
ζ3

420k1k2k3
(15k1

2k2
3ζ4 + 1344φζζ

2k1k2k3 − 945φζζ k1k2
2k3

−140 fk1k2ζ
3 − 84 ζ2fk1k2

2 + 1680 (−ζ φζ + φ) ζ k1k2k3

−1260 (−ζ φζ + φ) k1k2
2k3 + 1680 ζ wk1k2k3 − 1260wk1k2

2k3 + 840 ζ f2). (4.39)

Finally, substituting (4.33) into (4.39), we get the first integral

I =

ζ2
(

15ζ5k1
2k2

3 − 140ζ4fk1k2 − 336φζζ
3k1k2k3 − 84ζ3fk1k2

2

−105φζζ
2k1k2

2k3 + 840ζ2f2 + 3360φζfk3ζ + 3360φ2ζk3
2

)
420k1k2k3

. (4.40)

We get the invariant solution of Eq. (4.6) by integrating Eq. (4.40) as follows

φ (ζ) =

∫
P (ζ)

6720k3
dζ + C1, (4.41)

where

P (ζ) = 336ζ3k1k2 + 105ζ2k1k2
2 − 3360fζ

±ζ
√
−21ζk1k2

(
−5376ζ3k1k2 + 6240ζ2k1k2

2 − 525ζk1k2
3 + 17920fζ − 20160fk2

)
. (4.42)

Similarly, we get the invariant solution of Eq. (2.1) by using Eq. (4.5) as follows

u(x, t) =
k3t

2

2k1k2
+
x2

4
t+

∫
P (x)

6720k3
dx+ C1, (4.43)

where

P (x) = 336x3k1k2 + 105x2k1k2
2 − 3360fx

±x
√
−21xk1k2

(
−5376x3k1k2 + 6240x2k1k2

2 − 525xk1k2
3 + 17920fx− 20160fk2

)
. (4.44)

5. Conservation laws of Eq.(2.1)

In order to produce conserved vectors, we perform multiplier approach [14], [23] depend upon on the famous
result that the Euler–Lagrange operator annihilates a total divergence. Firstly, if (T t, T x) is a conserved vector
related with a conservation law, then

DtT
t +DxT

x = 0, (5.1)

on the solutions of Eq. (2.1). Furthermore, if there exists a nontrivial differential function Λ, defined a multiplier
or characteristic function such that Eu (ΛG) = 0, then ΛG is a total divergence, i.e., ΛG = DtT

t +DxT
x for some

(conserved) vector (T t, T x) and Eu is the respective Euler–Lagrange operator. Thus, knowledge of each multiplier
Λ(x, t, u, ux) leads to conserved vectors computed by a homotopy operator [14, 15, 23]. For Eq. (2.1), we obtain the
multipliers, Λ1,Λ2, that are given by

Λ1(x, t, u, ux, ut) =
xJ0 (

√
−c1x)

e
k3c1t
k1k2

, (5.2)
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Figure 1. Three-dimensional plots of the solution (4.7) setting all arbitrary parameters to unity.

Figure 2. Contour plots of the solution (4.7) setting all arbitrary parameters to unity.

Λ2(x, t, u, ux, ut) =
xY0 (

√
−c1x)

e
k3c1t
k1k2

, (5.3)

where J0 and Y0 are the first and second kind Bessel functions, respectively. Thus, corresponding to the above
multipliers we have the following conservation laws of Eq. (2.1):

T x =
1

f

(
−f (C2u+ xC4 + C3 t+ C13)ut − 2xux

(
C10 + C6

2

)
k3

+
(
−uC3 + C10 x

2 + (−2C5 t− C14)x+ C11 t
3 + C9 t

2 + C8 t+ C1

)
f

)
, (5.4)

T t =
1

f

(
f (C2 u+ xC4 + C3 t+ C13)ux +

(
C4 f + 2 k1xk2

(
C10 + C6

2

))
u

+
(
C7 x

2 + (C6 t+ C15)x+ C6 t
2 + C14 t+ C12

)
f

)
. (5.5)

6. Conclusion
In this study, laser heated CNT equation used in cancer research has been discussed and Lie group analysis has

been applied in detail. In this sense, group-invariant solutions i.e, Eqs. (4.7), (4.10) and (4.43) were obtained. The
accuracy of the solutions obtained has been tested and verified in Maple program. The obtained analytical solutions
have been established for the first time in the literature and can be used in experimental research for cancer studies.
It may also be useful in the production of suitable carbon nanotubes that can be used in later stages. Besides, local

Figure 3. Density plots of the solution (4.7) setting all arbitrary parameters to unity.
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Figure 4. Three-dimensional plots of the solution (4.43) setting all arbitrary parameters to unity.

Figure 5. Contour plots of the solution (4.43) setting all arbitrary parameters to unity.

Figure 6. Density plots of the solution (4.43) setting all arbitrary parameters to unity.
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conservation laws of the model were obtained. In addition, an open problem for the model is the µ-symmetry
concept [24], which is a new type of symmetry, and these open questions will be addressed in future studies.
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[5] Yaşar, E., Yıldırım, Y., & Adem, A. R.: Extended transformed rational function method to nonlinear evolution equations.
International Journal of Nonlinear Sciences and Numerical Simulation, 20(6), 691-701 (2019).

[6] Hirota, R.: The direct method in soliton theory (No. 155). Cambridge University Press (2004).

[7] Fuchssteiner, B., & Fokas, A. S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries.
Physica D: Nonlinear Phenomena, 4(1), 47-66 (1981).

[8] Guo, B., Ling, L., & Liu, Q. P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave
solutions. Physical Review E, 85(2), 026607 (2012).

[9] Ramani, A., Grammaticos, B., & Bountis, T.: The Painlevé property and singularity analysis of integrable and
non-integrable systems. Physics Reports, 180(3), 159-245 (1989).

[10] Bluman, G., & Anco, S.: Symmetry and integration methods for differential equations (Vol. 154). Springer
Science & Business Media (2008).

[11] He, J. H.: Variational iteration method–a kind of non-linear analytical technique: some examples. International journal
of non-linear mechanics, 34(4), 699-708 (1999).



Group Invariant Solutions 113

[12] Malfliet, W., & Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Physica
Scripta, 54(6), 563 (1996).

[13] Ma, W. X.: A refined invariant subspace method and applications to evolution equations. Science China Mathematics,
55(9), 1769-1778 (2012).

[14] Olver, P. J.: Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media
(2000).

[15] Bluman, G. W., Cheviakov, A. F., & Anco, S. C.: Applications of symmetry methods to partial differential
equations (Vol. 168, pp. xx+-398). New York: Springer (2010).

[16] Siregar, S., Oktamuliani, S., & Saijo, Y.: A theoretical model of laser heating carbon nanotubes. Nanomaterials, 8(8),
580 (2018).

[17] Nakamiya, T., Ueda, T., Ikegami, T., Ebihara, K., & Tsuda, R.: Thermal analysis of carbon nanotube film irradiated
by a pulsed laser. Current Applied Physics, 8(3-4), 400-403(2008).

[18] Nakamiya, T., & Ebihara, K.: The Finite Element Thermal Analysis of Amorphous Silicon Thin Films Irradiated by a
Pulsed Laser. The transactions of the Institute of Electrical Engineers of Japan. A, 108(10), 443-450 (1988).

[19] Younis, M., & Rizvi, S. T. R.: Optical soliton like-pulses in ring-cavity fiber lasers of carbon nanotubes. Journal of
Nanoelectronics and Optoelectronics, 11(3), 276-279 (2016).

[20] Wang, G., Kara, A. H., Buhe, E., & Fakhar, K.: Group analysis and conservation laws of a coupled system of partial
differential equations describing the carbon nanotubes conveying fluid. Romanian Journal in physics, 60(7-8), 952-960
(2015).

[21] Muriel, C.; Romero, J.L.: First integrals, integrating factors and λ-Symmetries of second-order differential equations. J.
Phys. A Math. Theor. 42, 365207 (2009).

[22] Bai, Y. S., Pei, J. T., & Ma, W. X.: Symmetry and-Symmetry Reductions and Invariant Solutions of Four Nonlinear
Differential Equations. Mathematics, 8, 1138 (2020).

[23] A. Cheviakov.: GeM software package for computation of symmetries and conservation laws of differential equations.
Comp. Phys. Comm. 176 (2007), 48-61.

[24] Gaeta, G. C., & Morando, P.: On the relation between standard and µ-symmetries for PDEs. J. Phys. A: Math. Gen.,
Vol. 37, 9467-9486 (2004).

Affiliations

EMRULLAH YAŞAR
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