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Abstract

In this paper, we investigate the existence and uniqueness of solutions for a class of fractional differential
equations with boundary conditions in the frame of Riesz-Caputo operators. We apply the methods of
functional analysis such that the uniqueness result is established by using Banach’s contraction principle,
whereas Schaefer’s and Krasnoslkii’s fixed point theorems are applied to obtain existence results. Some
examples are given to illustrate our acquired results.
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1. Introduction

Fractional calculus (FC) is a mathematical branch that investigates the properties of derivatives and
integrals of non-integer order. The interested readers in the subject should refer to the books [34] [35]
36]. Fractional order models, which provide an excellent description of memory and genetic processes, are
more accurate and appropriate than models with integer order. For the development of FC, there are
sundry common definitions of fractional derivatives and integrals, such as Rimann-Liouville type, Caputo
type, Hadamard type, Hilfer type, »-Caputo, ¥-Hilfer type, Caputo-Fabrizio type, Atangana-Baleanu type,
conformable type, and Erdelyi-Kober type, etc, (see |11} 15} 16l 25] [32], B3] 37, 3]).
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Some recent contributions have been investigated the existence and uniqueness of solutions for different
kinds of nonlinear fractional differential equations (FDEs) and inclusion (FDIs) by using various types of fixed
point theorems, which can be found in [13} 6] 17, [7, 39} 38, [8], 19, 20} 211, 4] 51 [1} 21 18], and the references cited
therein. The study of FDEs or FDIs with anti-periodic boundary conditions, that are applied in numerous
different fields, like chemical engineering, physics, economics, dynamics, etc., has received much attention
recently, (see [23] 27, 40} 10, 26]) and the papers mentioned therein.

On the other hand, the authors in [31] investigated the existence results of the following FDEs

{?CD“%%(> g(t, #(),0 <7y <1,0<t < T,
#(0) = sa0, #(T) = ser,

where (I)%CD% is the Riesz-Caputo derivative, g : [0,7] x R — R is a continuous function, and s, are
constants.

The positive solution of nonlinear FDEs with the Riesz space derivative

BEDYs(t) = h(t, »(1)),0 <9 < 1, t € [0,1],
#(0) = »0, »#(1) =01, 0,1 >0,

has been studied by Yun Gu et al., in [24]. Also, Chen et al., in [27] discussed a class of FDEs with
anti-periodic boundary condithions of the form

where CD? is the Riesz-Caputo derivative and g : [0,1] x R — R is a continuous function.
Motivated by the above cited work, in this paper, we investigat the existence and uniqueness results of the
following FDEs with the Riesz-Caputo derivative

{ FCDY se(t) + F(t, (1), FODS3(t)) = 0, t € J := [0, T, 1)
#(0) + (T )—0 ps'(0) + 0 (T) = 0,

where 1 < 9 < 2 and ,0 < ¢ < 1, FUDE is the Riesz-Caputo fractional derivative of order x € {¥,c},
$:J xR xR —R, is a continuous function, and p,0 are nonnegative constants with p > 0. We refer here
to some very recent works that dealt with a similar analysis, see [28], 29] 30)].

The paper is marshaled as follows. Section 2 has definitions and some of the most important basic concepts
of the FC. In section 3, we prove the existence and uniqueness of solutions for the proposed problem with the
Riesz-Caputo derivatives via Banach’s, Schaefer’s, and Krasnoselskii’s fixed point theorems. Some illustrative
examples associated with our suggested problem are provided in Section 4.

2. Preliminaries

In this section ,we recall some basic concepts, and preliminary facts. By E = €(J,R) we denote the
Banach space of all continuous functions from J into R as follows

o {% : 5 € €([0,T]), RC Do, ¢ Q:([OvT])}a

endowed with the norm
RC 1o
5l = |5l + | D[],
and
[[¢]) = sup [5(t)|, [|*9D || = sup | " DOs(t)).
teg teJ

We start with definitions.
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Definition 2.1. [9, [36] For 0 <t < T, the classical Riesz—Caputo fractional derivative is defined by

1 T
RC 19 _ _ ¢n—9-1z(n)
D t) = t d
SODRS0 = oy [ R e
1 n
= 5§07 + (1" E D3,
where OCDf and ¢ D%’l are the left and right Caputo derivative, respectively

1

t —0-15(n)
M/O(t—f) F(€)de,

(
_1\n T
oy [ o

§DYF(t) =
CDYF(t) =

Remark 2.2. ([27, [31)]) In particular if §(t) € €([0,T]) and 0 < ¥ < 1, then
1

FODIS() = (S D) - CDRE0).
if §(t) € €2([0,T)) and 1 <9 < 2, then
1
£D350) = LG D!+ £,

Definition 2.3. ([31]) The Riemann-Liouville fractional integrals concepts of order ¥ are defined as

1 t 3
IS0 = i /0 (t - €715 (O)de,

T
I3 () = F(lﬁ) / (6 — 1y 15 (0)de,

T
oIL3 (1) = F(lﬁ) /0 € — P15 (€) de.

Lemma 2.4. ([27]) If §(t) € €*([0,T]), then

=l (k) (g
1§ D750 =50 - > S e - 0,
k=0 )

and 1 e
DI () = (1) [w) -y SO t>k] .
From the above definitions and lemmas, we have
oI2EC DY) = o (s1§ DY + 8§ DY) (1)
(g (o7 D% + B DY) 5(0)
= L (1§D + (1) DR 5(0).

In particular, if 1 <9 <2 and F(t) € €2([0,T)), then

JIZEC D) = §(0) — 5 (5(0) + §(T) 5§ O + 1§ (T)(T 1),
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3. Main Results
Lemma 3.1. Assume that g € €(J,R) and » € €2(J). Then

BCDYse(t) +g(t) =0,t € [0,T],1 <9 <2,
{ #(0) 4 5(T) = 0, u3d (0) + 05/ (T) = 0,

is equivalent to the integral equation given by

o — T t
(1) = <L+J’“)‘)Ft(; ‘fq) /0 (T — 5)72g(s)ds — 1“(119) /O (t — 5)"Tg(s)ds

T
_1“(119)/t (5 — )" Lg(s)ds.

Proof. Applying Lemma (2.4) on equation , we obtain
1 1 1
(1) = 5 ((0) + 5(T)) + 3 (0 — 54" Hg (1)
1

= 5o0) 4 D))+ 5O = (DT =) = s [ (=€) a(e

Then

(1) = 5640 +#(D) ~ g [ (1= Zate)ae

T
el A (LS

By the boundary conditions of (3], we find that:

5 T T
A0) = et [ ="+ o [T - 9" sl
T T
AT) = iy | =0 R - o [T -0 e
o T
A0) = = ) (T 0" e
. T
AT) = = [ (= 9" alede

Substituting the values of 5/(0)and »/(T') into (3)), we obtain (2).
Let us introduce the following notations:

uT? 27
Ql = + ’
(n+o)T@W)  T(0+1)
0 — T9=(p— o) + 2uT°T(2 — ) . 2705
2T 2+ o) (2—)T(®) (W —c+1)
—¢
oI
L —¢+1)
9 —¢
PP
LW —¢+1)
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3.1. Uniqueness result via Banach’s fized point theorem

Theorem 3.2. Let §:[0,7] x R x R — R is a continuous function. Assume that
(Hy) there exists nonnegative real numbers L1, Ly such that for all (£,v),(&',v") € R2, we have
8t & v) = 8t & V) < Laf§ — &'+ Lafv — '),
of
(1 4+ Q2)(L1 + Lo) < 1.

Then the problem has a unique solution on J.

Proof. We transform BVP into fixed point problem. Then we define the integral operator H : E — E by

o — T
rlt) = (TS [ - 7 (6 . D
_L ! _ \0-1 P RC S
5 | (=716 (€). Drse)e

T
- (13) / (€ — 6715 (€, 5(6),7C DSse(€)) de.

Now, we prove that H is a contraction. For s¢,w € E and for each t € J, we have

|H(t) — Hoo(t)]

(0 — )t +puT)|
“(p+o)FW-1

it_ﬂ—l%RC’gz_wRng
+ 57 [ = O (€ ). Dx(6)) = (6 w(0)." D)

T
| /0 (T — €7 2[3(€, 5(6).7C DF5e(€)) — §(£,w(€).7C Diw(£)))de

L T _\9-1 P RC S _ o RC S
+r(19)/t (€ — )" HF(E, 2(6),C Do e(€)) — (&, w(€),C Dow(€))|dé

uT’
= 2ut o)T()
27"
EnL
- ( wT? N 27"
“\Grorw "torn

(Ll — l| + Lo 0 D5 € Deo])

Ly|j3 — @|| + Lo ||*“ D3¢ =€ Do)

) (L1 + La) (I = ] + D5 =€ D).

Consequently, we obtain

IHs(t) = Heo(t)]| < (L1 + L2)(l2 = w]| + | 9D =€ Do) . (12)
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On the other hand, we have

|67 Dy Ho(t) ~¢' DyHse(t)]
1 t e . .
< g | O O™ DA(€) = e (. D))
1 4 Y—c— C s _ C s
g | €0 IR O DA(€) ~ 56 w7 D)
(15 = (T = )'%) (0 — ) + 2uT'(2 = T
2004+l 2—-9I'(Ww-1)

T
/0 (T — €)"213(€. (€)% D 5(€)) — §(£, w(€).FC Dao())de

T"=5(0 — p) + 2uT"T(2 — <)
(0 +p)(2 —)I'(V)
277~

L o L RCDC _RCD§ .
+ T (Dl = =1+ Ll D5 = i)

(Lull3¢ = ]| + La|| "€ D55 =€ Dico]))

Thus,
|5 DS H(t) = DHo(t)]| < Qo (L1 + La)(||3¢ — || + |9 D*5 —C Do) (13)
From and , we get
IHo(t) = Heo(t)l| 5 < (1 +Qa) (L1 + La) (|5 — @l + | 19D~ D))

Hence, H is a contraction. As a consequence of Banach contraction principle, the problem has a unique
solution on 7. 0

3.2. Existence result via Shaefer fized point theorem
Lemma 3.3. Let E be a Banach space. Assume that H : E — E be a completely continuous operator, and
the set
wH)={weF:w= Hw, A€ (0,1)}.
w(§) is bounded. Then H has a fized point in E.

Theorem 3.4. Assume that there exists a positive M such that
I§(&, se,m)| <M for te€J, x,weR.
Then the problem has at least one solution on J.

Proof. We will use the Sheafer’s fixed point theorem, to prove H has a fixed point on F, we subdivided the
proof into several steps :

Step 1. H is continuous on E: in view of continuity of §, we conclude that operator H is continuous.
step 2. H maps bounded sets into bounded sets in E.

For each s € B, ={x € E : ||x||[g <r}and t € J, we get

o_ T
()] < (T [ = 07 (e, 0.1 Dl
+ F(lﬂ) /0 (t — )71 F(&, 2(€).FC Deoe())d
1 T
- 5 / (€ — 1) V(€ 5(6),7C DS se(€)) de

pT?9m N 2mTY
“(+wl@W) TW+1)
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Which implies that,
[Ho(t)]| < M€Y,

and,

S 1 ! —S— S
D3 HoA0)] < prmy [ (= €07 (E (€. Dot

# g _ s\¥——1 RC 1y
+ T —o) J, (t—¢) T (€, 5(£),C Do s(€))|d€
|t = (T = t)'7°) (o — p) +2uT(2 — )T

2(0 + p)|T(2 —)T(W¥ — 1)

T
x / (T — €723 (€, 2(€),7C DS 52(€))|de
0

TP (u+0) +2uT°T(2 <) 270
Sp—oT2—or@ T arw s D
T7=5(0 — p)) + 2uT’T(2 — <) 27V —¢
S T et —orw) o —r 1)

Which implies that,
|5 DS H (L[] < Q220

Adds side of inequality (14)and(15), we get
€ D Ho(t) || 5 < M (Q + Q) 00

Which implies that H maps bounded sets into bounded sets on E.
step 3. H maps bounded sets into equicontinuous sets in F.

Let B, be a bounded set of F as in step 2, and let s € B,.. For each t1,to € J,t1 < to, we have

[Hoe(tz) — Hoe(tr)] < ((j L “)) / (1~ )" 2[§(5¢(6)," D*e(€))Ide

w10 -6 = - 9717 D
+ 55 / —1)P7 = (1 — €7 [34(6), 7 D))l
+ ooy /. e (6= 1) 15606, Do)l
=+t —0)] o (o=l =0T

- r'w+1) (c+ )T (¥+1)
(T = t1)? = (T = t2)?) + (t2 — t1)?|

+ T+ 1) n
(8] —t5) + (ta — t1)"| (0 —p)lta — thTﬂDﬁ

= T+ 1) o+ @+ 1)

(T = t1)? — (T — t2)”) + (t2 — t1)"”]
INCES)

m,

(14)

(15)
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and,
|5C DS He(ta) —HC Dy Ho(t)] < M-t
0 T 2) —0 T 1) < 2F(19 — 1)
(T = t2)"= = (T — t1)"=°) + (t2 — tl)ﬁ_gim
LW —c+1)
L o= mt ™ =07 + (T =)' = (T = t)1 )| 7'
2(0 + p)'(2 = I'(¥) :
Hence,
|<tll9 B tg) + (t2 - tl)ﬁ‘ (o’ — M)‘t2 _ tl’ﬁTﬂ
oAt = Hott e = ) CERINCES R
(T = t1)" = (T = t2)") + (2 — 751)19’9)?
I'W+1)
(tﬁ—C . tﬁ—g)
o)
(7 = t2)"~S = (T = 01)"~) + (b2 — 1)
' I(W—c+1) m

N [(0 =)ty =) + (T =)' = = (T = 1)) T" "'
2(0 + )02 —o)T(Y) '

Which implies that ||Hs(t2) — Hsx(t1)||z — 0 as t2 — t1.By Arzela-Ascoli theorem, we conclude that H is
completely continuous operator.

step 4. We show that the set A defined by
A={xxecE x=pH(x),0<p<1}
is bounded. Let s € A, for some p € (0,1). For each t € J, we have

1% |(U_M)t+NT’ r 92 2(€).BC DS,
)] < (B [T - 976 (€).7 Drt)

L ' _ )Y 22(€).BC DS 5
+ 7 | (= 718 (E )7 De())lde

L / C (€ — 07156, 5(6),7C D)) de
L) J; T
uT? 27"

Seror@ Tty

Therefore,
Il < puom. (16)



A. Naas, M. Benbachir, M.S. Abdo, A. Boutiara, Adv. Theory Nonlinear Anal. Appl. 1 (2022), 1427, 22

and,

BC Ds so(t)] < ml_g /0 (t = &) HB(E, 5(8), Ds(€))|de

T € 7536, 0), T Do) e
F(’l9 — §) t , ’
|t = (T = t)') (0 — p) +2uT'(2 — )T
2(c + )2 — o)W - 1)

T
x / (T — )73 (€, (€),FC D 5(£))dt
0

T9=(p + o) + 2uT’T(2 — <) o+ 2TV
2|lp —o|(2 — ¢)T'(V) AW —c+1)
790 — 2uT’T(2 — 27—
(0 —p) +2p o 4

(
2(0 + p)T'(2 = <)T(V) LW —c+1)

Therefore,
16°€ Dg ()| < pa9M. (17)
Adds side of inequality (16)and (17), we get

[l 2 < p(S + 22)90.

Hence,
Il g < oc.
This shows that A is bounded.
As consequence of Schaefer’s fixed point theorem, the problem has at least one solution in [0, 7. OJ

3.3. Existence result via Karesnoslskii’s fized point theorem

Lemma 3.5. (Karasnoselskii’s fized point theorem) Let M a closed bounded, convex and nonempty subset
of a Banach space E, let A, Bbe operator, such that

(a) A»x+ Bw € M, whenever, »,w € M,
(b) A is compact and continuous,
(c) B is a contraction mapping, then there exist z € M such that z = Az + Bz.

Theorem 3.6. Let §: J x R xR — R be a continuous function, and let the conditions (Hy )-(Hz) hold. In
addition, the function § satisfying the assumptions :

(H3) There exists a nonnegative function Q € €(J,RY) such that
|§(t, 22, )| < Q(t) for any (t,7¢,@w) € T X R x R,
(Hy) (k1 +ko)(L1+ L2) <1,
Then the problem has a least one solution in J.
Proof. We define two operators H1(t) and Hasx(t) as
(0 —wt) +pT

(0 + )00 — 1)

(Hase(t)) = —F(lﬁ) /0 (t— €)1 (E, (€).FC DS se(€))de

T
(Ha)(t) = /0 (T — €725 (£, 2(€).FC DS 3e(€) e

-5 / (6= 07156 (9.7 D))
T(0) J; o |
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Choosing d > (1 + Q2)(L1 + L2)[|€?||, and we consider By = {» € E : ||»||g < d}.
Stepl We shall prove that His(t) + Ha(t) € By.
For any s, € By and for each then t € 7, we have

(o — p)t + pT|
(0 w9 = 1)

/ (t — )7V 3(&, (€).FC Deoe(€)) d

(H15(t) + How(t)] <

/ (T — €723 (€, 5(£),7C Dse(€)) |

/ (€ — 1) VF(E, 52(€),RC Dese(€))|dE

9
< C;prjfzgj(Ll‘Flé)H§”’+“(5jFIS(L1—Fl@))HQH.
Then
[H154(t) + Haw(t)]| < (L1 + La) |1 (15)

On the other hand,

t
0 DM (t) +5 DyHw(t)| < wl_g) /0 (t — )" HF (€, 5(8).C Do 5e(€)) |de

T € 7SR (E, 6), T Do) e
LW —<) /)i o

|t = (T = t)°) (0 — p) +2ul'(2 — ) T‘

" 2o+ pTE2 =T —1) (T = 16 €). Do() e
T9=(0 — p) + 2uT’T(2 — <) 2TV
2(c + W2 — )T (V) (L1 + Lo) |9 + 01 1) (L1 + La) [|9]|.
Hence
167 D5 Ho(t) +§C DSHw(t)|| < Qi (L1 + La)||1Q (19)

It follows from (18) and (19) that
[H15(t) + Howo(t)|[ 5 < (21 + Q2) (L1 + L2) Q] < d.

Hence, H1(t) + Hax(t) € By .

step2 We shall prove that H;is continuous and compact. The continuity of § implies that the operator H;
is continuous.

Now, we prove that Hs maps bounded sets into bounded sets of E.

For sz € By,and for each t € 7, we have

(0= +uT| [T o2 (). BC s,
< G [T = 076 (). D)

[Hs(t)

uT’
Hence
uT’

[Has(1)] < (L1 + L2) 2], (20)

(0 +)0® 1)
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and

g (T =)' = 1) (0 — ) + 2uTT(2 — )|
("D Ha(1)| < 2o+ L2 — T (0 —1)

T
x / (T — )7 2[3 (€, 52(€),7C D*52(€))|dé
0

< T9=(o — p) + 2uT T(2 — <)
- 2004+ w2 —-9I'W)

(L1 + L2)[|€2]]

Hence
TP=(o — p) +2uT’T(2 — ¢

2(0 + p)(2 — )T ()

7€ D3| < )11+ Lol (21)
Combining (20) and (21), we get

uT? N T9=(o — p) + 2uT’T(2
(0 — )T —1) 2(c + )2 —)L'(¥Y

[Hase(t)]1 e < ( - g)) (Ly + L))

Consequently
[H12(t)|| & < oo

Thus, it follows the above inequality that operator H; is uniformly bounded.
The operator 1 maps bounded sets into equicontinuous sets of E. Let t1,t0 € J,t1 < tg, 2 € By, then we
have :

T (0 —p)(t2 — t1) Y21 (50(£) BC DS 5
i)~ M) < I [ =252 D) i

(0 — w)lta = ta [T
(c+uw)l(W¥+1)

(L1 + La) ||

On the other hand,
1O DM 5e(t) —FC D Hy 5(t)|
(0 —p) [(t™ = t17) + (T —t2)' = = (T = 1) )| TN (L1 + L) |
: 20 + W2 - T
It follows from (22) and (23) that

(0 = p)lts — 1T
(c+w)Il'(W+1)
(0 —p) [(ty° —t1°) + (T —t2)' =5 — (T — t2)' )] T""1(Ly1 + L) |||
2(c + (T2 = )T(W).

As t9 — t1, the right-hand side of this inequality tends to zeros.
Then as a consequence od steps, we can conclude that 4 is continuous and compact.

Step3 Now, we prove that Hs is contraction mapping .
Let sc,00 € E. Then, for each t € J, we have

[ H1se(t2) — Hase(tr)||E < (L1 + La) |~

+

Hase(t) — Haw(t)] < *r(lm /0 (t — €€, #(6).FC DSsel€)) — F(£, w(€),7C DSo(£))|d

I RC s (¢Y) — RC e
F iy [ (€= 077 B(E A DAE) - B(e, (6.7 D6

o7

< _—— (L L _ RC s, _RC s
< pg L) (e —wl + 17D =)
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Consequently we obtain

[Hase(t) — How (1) < k1 (Lr + La)(|| ¢ — || + |79 D% =" D* o)) (24)
and
€ DS Hase(t) —5C DS Han(t)]
t
<t [ (6= 97T A D) — e (0T D)
T
" rwl—c) /t (€ = D)7 THS(E #(6),™ D3(9)) = F(&, @(€)," D (€))
275
< oyt L) (e ==l + [ 70D% = D]l
and
1% DS Ha3e(t) =" DHaw (1) < ka(Ln + Lo) (|12 — ]| + || "9 D3 ¢ Do) (25)

It follows from (24) and (25) that
[Ho5(t) — How(t)l| & < (ki + ko) (L1 + La) (|| — w]| + || 79D =7 Do)

Using the condition (Hy), we conclude that Hs9 is a contraction mapping. As consequence of a krasnosselski’s
fixed point theorem, we deduce that H has a fixed point which as solution of . O

Example 3.7. Consider following nonlinear FDE with Riesz-Caputo derivative:

3 T+1)|2(t 1
§ODRo() + iy T e cos(1C D () = 0.t € [0.1],

w(0) +w(1) = 0,2'(0) + s/ (1) = 0, (26)

Here, ¥ = %,gz %,,u:2,a: %, and,
+ 1) 1 f
t, (t),BC DS x(t)) = (vr + cos(BC D3 5(t)).

B0, 0).1 D et) = o g cos(*D (0

We have Al )
™+
§ (o0, @) = F(o,@)| < B [[3¢ — 5| + m”w — .

Then, the assumption (Hi) is satisfied with Ly = %,LQ =
2,1493,Q9 = 1,9057.

Therefore, (L1 + L2)($1 4+ Q2) = 0,9369 < 1. By using the theorem (3.9), the problem (26) has a unique
solution on [0, 1].

W' Using the Matlab program, 1 =

Example 3.8. Consider following nonlinear FDE with Riesz-Caputo derivative:

e—2t

5 sin(ﬂ) RC‘D% t 1
BODIse(t) + ey + LG g 4 ¢ [o,1],
0 T ( ) (e2742) (‘RCD%%(t)|+1)(7T+2)2 [ ] (27)

@(0) + w(1) =0, 2’(0) + 2’'(1) = 0,

1
= (1+e27r)2? a’nd

_esin() RO )| (vA+ 1)

(E742) (D2 s(t)| + 1)(r +2)>
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Moreover,

1 VT 41

m”%— A+ F—llw—=|.

’g(%') w) - S(%’, w/)’ < (1 + 7T)2

Therefor,

—2t
RC € ﬁ+ 1 -
30007 D) < g + L0 = 020
Q) = 2,1493,0 = 1,9057, K1 = 1,5045, ky = 0, 9239 .
Then (k1 +ko)(L1 + L) = 0,2406 < 1, (Ha) is satisfied, by using the theorem (3.6]), the problem has at

least one solution on [0, 1].

4. Conclusion

We have effectively achieved several necessary conditions describing the the existence and uniqueness
of solutions for a class of fractional differential equations with boundary conditions involving Riesz-Caputo
fractional derivatives. Under some fixed point theorems such as Banach, Schaefer, and Krasnoselskii, the
necessary results have been investigated. Moreover, by giving appropriate examples, all the main results have
been testified. In future such type of analysis can be established for more general type fractional differential
equations involving ¥-Riesz-Caputo fractional derivatives.
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