

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje e-ISSN 2587-1366

Single and multisite detailed kinetic models for the adsorption and desorption of NO_2 over Cu based $NH_3\mbox{-}SCR$ catalyst

Selmi Erim Bozbağ*100

¹ Koç University, College of Engineering, Department of Chemical and Biological Engineering, Sarıyer, Istanbul, Turkey

Keywords NO₂ storage NH₃ storage Kinetic model TPD

NH₃-SCR

ABSTRACT

Kinetic modeling of NH₃ Selective Catalytic Reduction (NH₃-SCR) of NOx in Cu-chabazite washcoated monolithic reactors has recently become an important task for design, control and calibration of heavy-duty engine aftertreatment systems. Development of detailed and accurate kinetic models rely on the correct simulation of the NO₂ and NH₃ storage at different conditions. Here, different kinetic schemes for NO₂ adsorption and desorption were developed and compared to experimental data. For this purpose, firstly, realistic values of the active Cu sites in the Cu-zeolite were obtained using the temperature programmed desorption (TPD) of NH₃ and NO₂ which showed fractional coverages of 0.04 and 0.17 for the so-called ZCuOH and Z₂Cu species which reside in the 8 and 6 membered rings (MR) of the zeolitic framework, respectively. Active site concentrations were used in the kinetic models which included simultaneous formation of nitrate/nitrite species or the formation of HNO₃ intermediate which in turn resulted in the formation of nitrates or nitrites over the ZCuOH. Models also included or excluded the NO₂ storage over the so called secondary Z₂Cu sites. It was shown that models taking into account HNO₃ intermediate formation along with two NO₂ storage sites were better fits to the experimental data.

1. INTRODUCTION

Ammonia Selective Catalytic Reduction (NH₃-SCR) is a widely used technology in the aftertreatment systems (ATS) of the lean-burn diesel powered light or heavyduty vehicles for the abatement of harmful and toxic oxides of nitrogen (NOx). NH₃-SCR reactors usually are monolithic reactors with microchannels wash coated with active catalyst materials where NOx originating from the engine and NH₃ fed using the thermolysis of urea solution sprayed to the reactor undergo SCR reactions. Cu exchanged zeolites especially Cuchabazites including Cu-SSZ-13 are the catalyst of choice by many original equipment manufacturers (OEMs) for NH₃-SCR process due high deNOx performance in a wide range of temperature and good hydrothermal stability (Gao et al. 2013; Paolucci et al. 2016a).

Over the recent years, there have been significant developments in the kinetic modeling of NH_3 -SCR processes for NOx abatement which are usually aimed to be used in the design, calibration and control of SCR units (Bozbag et al. 2020b; Chatterjee et al. 2005; Chatterjee et

al. 2007; Daya et al. 2018; Daya et al. 2020a; Dhillon et al. 2019; Gao et al. 2021; Olsson et al. 2015; Selleri et al. 2019; Supriyanto et al. 2015; Usberti et al. 2020). Unlike many industrial reactors, the reactors in the aftertreatment system are continually exposed to highly transient conditions in many cases due to different road conditions, speed and torque generated by the engine. These conditions require the models to be predictive in a variety of conditions for the calibration and control of urea dosage and for the prediction of downstream NOx and NH₃ concentrations. Thus, the underlying SCR mechanisms should be well emulated by the models otherwise cumulative NOx emissions could not be well predicted (Bendrich et al. 2020). Both NO₂ and NH₃ could be stored in Cu-chabazite catalysts at greater quantities and the surface NH_3 and NO_2 related species are important contributors to the catalytic mechanism of NH₃-SCR of NOx according to many authors (Bendrich et al. 2018; Bozbag et al. 2018; Clark et al. 2020; Greenaway et al. 2020; Janssens et al. 2015; Paolucci et al. 2017). Therefore, realistic kinetic modeling of NO₂ and NH₃ adsorption and desorption is crucial to correctly

* Corresponding Author

Bozbağ S E (2022). Single and multisite detailed kinetic models for the adsorption and desorption of NO_2 over Cu based NH_3 -SCR catalyst. Turkish Journal of Engineering, 6(3), 230-237

Cite this article

^{*(}sbozbag@ku.edu.tr) ORCID ID 0000-0003-4471-2301

represent the NH₃-SCR mechanism in order to obtain highly accurate transient NH₃-SCR models. This requires a realistic insight to the concentrations of the active sites on the catalyst for the calculation of total species rates using the mean field approximation where active site concentration normalized rate constants are used (Bozbag et al. 2020a; Daya et al. 2020b). It has been shown that the combined analysis of NH₃-TPD and NO₂-TPD profiles of Cu-chabazites could be used to quantify the concentration of two different Cu species often encountered in Cu-chabazites which are usually referred to as ZCuOH and Z₂Cu which occupy the 8MR and 6MR in the zeolite framework, respectively (Marberger et al. 2018; Paolucci et al. 2016b). Us and others (Bozbag et al. 2020a; Leistner et al. 2017; Luo et al. 2016) had shown that the NH₃-TPD peaks with centers at around 320 and 450°C could be associated with Cu species residing at 6MR and 8MR, respectively. Combined with the known NH₃/Cu stoichiometry (Luo et al. 2017), one can calculate the surface concentrations. According to (Villamaina et al. 2019), NO₂-TPD could be used to titrate the ZCuOH concentrations which could be used as a validation of the surface concentrations obtained from NH₃-TPD. Along this line, different NO₂ adsorption-desorption mechanisms were modeled in the literature (Bendrich et al. 2018; Colombo et al. 2012; Olsson et al. 2009). While some of the models take into account the HNO₃ intermediate formation reactions (Bendrich et al. 2018) some do not (Colombo et al. 2012; Olsson et al. 2009). Moreover, these different NO₂ adsorption-desorption kinetic schemes have not been compared over the same fresh Cu-chabazite catalyst. Therefore, implications of using these different chemical schemes are yet to be discovered. There is also no model in the literature which accounts for multisite adsorption and desorption of NO₂.

For the case of the adsorption of NH₃ over Cuchabazite, it has recently been suggested that upon adsorption, some Cu species undergo NH₃ solvation within the zeolitic cage and these NH₃ solvated Cu species which are in dynamic mobility might play a role in the SCR mechanism (Paolucci et al. 2017) or may not (Dava et al. 2021). On the other hand, in the literature, the active site values associated with the NH3 adsorption desorption models is usually done quite arbitrarily and do not generally reflect the true number of active sites associated with adsorption and therefore the rate parameters associated with adsorption are usually lumped parameters. Thus, there is no multi-site kinetic model in the literature where the active site values used in the NH3 adsorption-desorption model were validated by the NO₂ adsorption-desorption experiments as well.

In this study, a relatively easy method to evaluate different Cu species in Cu-chabazites based on NO₂ and NH₃ adsorption/desorption experiments is proposed and used to develop multisite kinetic models for NH₃ and NO₂ adsorption and desorption. The performance of different kinetic schemes for simulating NO₂ adsorption and desorption were compared to the experimental data obtained using a commercial Cu-chabazite catalyst. The mechanistic implications of using different models were determined.

2. METHOD

2.1. Laboratory tests

The catalysts used in this study were a commercial Cu-chabazite based formulation washcoated to cordierite monolith (400 cpsi - 4 mils). A cylindrical core with a length of 2.2 cm and a diameter of 1.9 cm was used in the runs. The experiments were carried out in a synthetic gas bench (SGB) described in (Bozbag et al. 2020a and 2020b). In a typical run, ceramic fiber paper wrapped monolith was loaded in a guartz reactor and placed in an electric tubular furnace (Thermo Scientific Lindberg Blue M) equipped with a PID controller enabling the desired temperatures or ramps for the experiments. The temperature at reactor inlet was constantly monitored using a J-type thermocouple placed 0.5 cm upstream of the catalyst. NH₃ was purchased from Elite Gaz (10% in He balance), NO₂ was purchased from Hatgaz (10% in N_2 balance), CO_2 and N_2 (5.0) were purchased from Airliquide. All gases were connected to and were fed to the reactor using respective calibrated mass flow controllers (Brooks Instruments) and H₂O was delivered using a peristaltic pump (Gilson Minipuls 3). During the experiments, a general mixture which contained CO₂, H₂O and N₂ passed initially through to a pre-heater after which they were fed to the reactor. NO2 and NH₃, on the other hand, were fed to general mixture stream just before the reactor using three-way valves connected to inlet via compression fittings to avoid undesired gas phase reactions. All lines before and after the reactor was heated to 190 °C. The species concentrations at the outlet of the reactor were continuously monitored using MKS Multigas 2030 FTIR spectrometer. The catalyst was pre-treated (i.e. degreened) at 550 °C in the presence of 5% H_2O_1 , 8% O_2 , in N_2 for 2h at 40000 h⁻¹ (NTP). Subsequent to the experiments, the catalyst was exposed to a stream consisting of 8% O₂ in N₂ at 550 °C for 30 min to clean the surface of any N-containing residues. All experiments were carried out at with a space velocity of 40000 h⁻¹ (NTP). All the gas grades used were 5.0 or above.

NO₂ adsorption/TPD experiment consists of the adsorption, isothermal desorption, and Temperature Program Desorption (TPD) parts. In a typical experiment, NO_2 was introduced to the reactor (500 ppm NO_2 , 5%) $H_2O_1 = 10\% CO_2$ in N_2 balance), which evidently resulted in an adsorption breakthrough curve. Once adsorption was completed NO₂ feed was cut off and isothermal desorption of weekly bound NO₂ started during which feed stream contained 5% H₂O, 10% CO₂ in N₂ balance. After desorption of weakly bound NO₂ was completed, temperature ramp was started with a rate of 10 °C/min during which feed stream contained 5% H_2O , 10% CO_2 in N₂ balance as well.. NH₃ adsorption/TPD experiment was carried out in a similar manner. Feed conditions, reactor outlet concentrations and reactor inlet temperatures monitored during each experiment were presented in Section 3. Peak deconvolution was carried out using Fityk version 1.3.1. Gaussian peaks were added manually and then optimized using Nelder-Mead Simplex method.

2.2. Modeling

2.2.1. The reactor model

Modeling was performed using GT-POWER, version 2019 (GT-SUITE Exhaust Aftertreatment Application Manual 2019) using the Fixed Mesh (1+1D) solver and the details were provided elsewhere (Bozbag et al. 2020a). Briefly, mass, energy and momentum balances for the gas and washcoat phases were solved for each contributing gaseous and surface species. Film model was used to incorporate external mass transfer and a washcoat diffusion model was used to consider the effects of internal mass transfer.

2.2.2. Kinetic model

Reaction mechanisms and rate expressions for NO₂ adsorption/desorption (Model A, B, C, D) and NH₃ adsorption/desorption are presented in Table 1. The Arrhenius equation was used in the model to account for the temperature dependency of the turnover rate constant, k_j :

$$k_{j} = A_{j} e^{\frac{-E_{A,j}}{RT}}$$
(1)

where A_j is the pre-exponential factor and $E_{A,j}$ is the activation energy in reaction j. A coverage dependent activation energy function was used to describe the desorption of NH₃ from Z₂Cu sites (Reaction 11b):

$$E_{A,i} = E_{A,i,0} (1 - \alpha \theta_k) \tag{2}$$

In Model A, the NO_2 adsorption and desorption occurred over ZCuOH sites accounting the simultaneous formation of ZCuONO and ZCuNO₃ surface species (Reaction 1). Formation of NO upon NO₂ adsorption was modeled using Reaction 2. In Model B, the formation of HNO₃ intermediate was accounted and ZCuNO₃ formation is based on reaction of ZCuOH and formed HNO₃ (Reaction 6). Model C is similar to Model A except additional NO₂ storage in terms of surface nitrites and desorption reaction were used over Z₂Cu sites. Model D is similar to Model B except additional NO2 storage in terms of surface nitrites and desorption reaction were used over Z₂Cu sites. Thermal decomposition of surface nitrates was accounted in all of the models (Reactions 3 and 8). NH₃ adsorption and desorption was modeled using the reactions in Table 1.

The pre-exponential factors and activation energy values of Models A-D were optimized using the experimental data via a Genetic Algorithm to minimize the following error function which is also used to compare model performances:

$$Error = \frac{\left(\sum_{t=0}^{D_{exp}} (y_{NO,meas} - y_{NO,pred})^2 + \sum_{t=0}^{D_{exp}} (y_{NO_2,meas} - y_{NO_2,pred})^2\right) \Delta t}{2D_{exp}}$$
(3)

Kinetic parameters for NH₃ adsorption/desorption model were also optimized using a similar function.

Table 1	Reactions	and	Rate	Expressions	Used	in	the
Models							

Models	
Reaction	Reaction &
Number	Rate Expression
Reactions r	elated to NO2 adsorption/desorption for
Model A (Rx	n. 1-3) and Model C (Rxn. 1-4))
1	$2ZCuOH + 2NO_2 \leftrightarrow ZCuONO + ZCuNO_3 + H_2O$
	$r_{1f} = k_{1f} C_{NO_2}^2 \theta_{ZCUOH}^2$, $r_{1b} = k_{1b} \theta_{ZCUNO_3} \theta_{ZCUONO}$
2	$NO_2 + ZCuONO \leftrightarrow NO + ZCuNO_3$
	$r_{2f} = k_{2f} C_{NO_2} \theta_{ZCUONO}$, $r_{2b} = k_{2b} C_{NO} \theta_{ZCUNO_3}$
3	$ZCuNO_3 + 0.5H_2O \rightarrow NO_2 + 0.25O_2 + ZCuOH$
	$r_{3f} = k_{3f} \theta_{ZCUNO_3}$
4	$Z_2Cu + NO_2 \leftrightarrow Z_2CuONO$
	$r_{_{4f}} = k_{_{4f}} C_{_{NO_2}} \theta_{_{Z_2Cu}}, r_{_{4b}} = k_{_{4b}} \theta_{_{Z_2CuONO}}$
Reactions r	elated to NO2 adsorption/desorption
for Model B	(Rxn. 5-8) and Model D (Rxn. 5-9)
5	$ZCuOH + 2NO_2 \leftrightarrow ZCuONO + HNO_3$
	$r_{_{5f}} = k_{_{5f}}C_{_{NO_2}}^2 \theta_{_{ZCuOH}}$, $r_{_{5b}} = k_{_{5b}}C_{_{HNO_3}} \theta_{_{ZCuONO}}$
6	$ZCuOH + HNO_3 \leftrightarrow ZCuNO_3 + H_2O$
	$r_{6f} = k_{6f} C_{HNO_3} \Theta_{ZCuOH}$, $r_{6b} = k_{6b} \Theta_{ZCuNO_3}$
7	$NO_2 + ZCuONO \leftrightarrow NO + ZCuNO_3$
	$r_{6f} = k_{6f} C_{NO_2} \theta_{ZCUONO}$, $r_{6b} = k_{6b} C_{NO} \theta_{ZCUNO_3}$
8	$ZCuNO_3 + 0.5H_2O \rightarrow NO_2 + 0.25O_2 + ZCuOH$
	$r_{\rm sf} = k_{\rm sf} \theta_{\rm zCuNO_3}$
9	$Z_2Cu + NO_2 \leftrightarrow Z_2CuONO$
	$r_{9f} = k_{9f} C_{NO_2} \theta_{Z_2 Gu}$, $r_{9b} = k_{9b} \theta_{Z_2 GuONO}$
Reactions re	elated to NH3 adsorption/desorption
10	$NH_3 + Z_2W \leftrightarrow Z_2WNH_3$
	$r_{10f} = k_{10f} C_{_{NH_3}} \theta_{_{Z_2W}}$, $r_{10b} = k_{10b} \theta_{_{Z_2WNH_3}}$
11	$4NH_3 + Z_2Cu1 \leftrightarrow Z_2Cu1(NH_3)_4$
	$r_{_{11f}} = k_{_{11f}}C_{_{NH_3}}\theta_{_{Z_2Gu1}}, r_{_{11b}} = k_{_{11b}}\theta_{_{Z_2Gu1}(_{NH_3})_4}$
12	$3NH_3 + ZCuOH \leftrightarrow ZCuOH(NH_3)_3$
	$r_{_{12f}} = k_{_{12f}} C_{_{NH_3}} \theta_{_{ZCuOH}}$, $r_{_{12b}} = k_{_{12b}} \theta_{_{ZCuOH}(_{NH_3})_3}$
13	$NH_3 + ZB \leftrightarrow ZBNH_3$
	$r_{_{13f}}=k_{_{13f}}\mathcal{C}_{_{NH_3}} heta_{_{ZB}}$, $r_{_{13f}}=k_{_{13b}} heta_{_{ZBNH_3}}$

3. RESULTS AND DISCUSSION

Figure 1 displays the typical TPD of NH₃ (Fig. 3a) and TPD of NO₂ (Fig. 3b) over Cu-chabazite. The NH₃-TPD profile was fitted with 3 Gaussian peaks with peaks centers at 355, 474 and 534 °C which were ascribed to Z₂Cu, ZCuOH and Brönsted sites, respectively. Isothermal desorption of NH₃ observed upon the cutting off of the NH3 feed was associated with species which bound to NH₃ weakly (hereafter referred to as Z₂W sites). Among these sites W and Cu were assumed to occupy two zeolitic sites whereas CuOH and B sites occupied a single zeolite site. The NH₃ storages associated with Z₂W, Z₂Cu, ZCuOH and Brönsted sites (ZB) were 119.1, 107.6, 34.2 and 9.7 mol/m³. NO₂-TPD profile was fitted with two Gaussian peaks with peak centers at 302 and 365 °C and with NO₂ storage values of 5.9 and 12.3 mol/m³, respectively. The peak at the 365 °C was assigned to NO₂ storage at ZCuOH species according to the literature (Villamaina et al. 2019) and the peak at the 302 °C was tentatively assigned to NO₂ storage on Z₂Cu species.

To develop a kinetic model based on realistic active site values, these storage values need to converted to active site concentration values via invoking a stoichiometric reaction between NH₃ or NO₂ and the active sites (Table 2). In the literature, it was shown that the ZCuOH sites could accommodate 3 NH₃ molecules, whereas the Z₂Cu sites could accommodate 4 (Villamaina et al. 2019). This stoichiometry was implemented in the kinetic model developed in this study. The measured NH₃ storage associated with the ZCuOH sites (34.2 mol/m³) was in excellent agreement with the ZCuOH surface concentrations obtained using the NO₂-TPD which was 12.3 mol/m³ which is approximately 3 times higher than the NH₃ storage measured for this site in line with the ZCuOH/NH₃ stoichiometry reported in the literature (Luo et al. 2017; Luo et al. 2016; Villamaina et al. 2019). Zeolitic site density occupied by each active site and corresponding fractional coverages were thus calculated based on the stoichiometries given in Table 1 and were presented in Table 2. For example, the fractional coverage of Z₂Cu sites in zeolite was calculated via

dividing the NH₃ storage associated with this site by 4 (Reaction 11) followed by multiplication by 2 since 1 Cu site is occupied two zeolite sites. The fractional coverage values given in Table 2 were then used to develop the realistic active site based 4-site kinetic model of the adsorption and desorption of NH₃ over Cu-chabazite. From Table 2, it is clear that the NO₂ storage associated with Z₂Cu sites is low as compared to the fractional coverage of Z₂Cu sites obtained from NH₃-TPD, this indicated that only a small portion of the Z₂Cu sites could accommodate NO₂.

Table 2. Storage values and site density of the active sites

Sites	NO ₂ stored ^a	NH3 stored ^a	Site density ^a	Fractional coverage
Z_2W	0	119.1	238.1	0.76
Z2Cu	5.9	107.6	53.7	0.17
ZCuOH	12.3	34.2	12.3	0.04
ZB	0	9.7	9.7	0.03

^{a:} Units of mol/m³

Figure 1. TPD profiles with deconvoluted components (a) NH₃, (b) NO₂.

Figure 2. (a) Experimental and predicted NH₃ concentrations during NH₃ adsorption/TPD experiment (b) Simulated fractional coverages for the experiment given in (a).

Measured and modeled NH_3 outlet concentrations during NH_3 adsorption, isothermal desorption and TPD experiment are presented in Figure 2a. Here, upon delivery of the NH_3 feed at t=0 s to the reactor, the experimental data showed NH_3 breakthrough which succeeded the time lag period associated with NH_3 storage over the Cu-chabazite catalyst. Isothermal desorption of NH_3 was observed upon termination of the NH_3 feed at t=3699 s which was followed by the NH_3 -TPD phase upon increase of the temperature. TPD profile manifested two main peaks with centers around 350 and 470 °C in agreement with previous reports (Leistner et al.

2017). Model (Table 1) showed excellent agreement with the measured data throughout the experiment including the adsorption breakthrough, isothermal desorption and TPD phases. The observed bimodal behavior of the TPD phase was well simulated and the relative intensities of the peaks were also well described by the model.

Figure 3. Experimental and predicted effluent concentrations during NO₂ adsorption/TPD experiment (a) NO₂, (b) NO, (c) NO₂ breakthrough region zoomed-up, (d) NO₂-TPD region zoomed-up.

Changes in the fractional coverages of the sites during the NH₃ adsorption and desorption calculated by the model were presented in Figure 2b. All of the NH₃ containing surface species converged to the initial fractional coverage of the corresponding active sites which showed the consistency of the model with measured site densities. Moreover, according to the kinetic model, the temperature centers of the desorption profiles of the Z₂Cu(NH₃)₄, ZCuOH(NH₃)₃ and ZBNH₃ species were in agreement with the deconvoluted temperature centers (355, 474 and 534 °C, respectively) associated with the sites containing the corresponding species obtained from the measured data demonstrating the realistic aspect of the developed kinetic model.

Adsorption and desorption behavior of NO_2 on Cuchabazite along with its TPD profile is displayed in Figure 3a. NO_2 was fed to the reactor at t=0 which was followed by a slight lag time followed by an adsorption breakthrough which eventually reached the feed concentration which was 500 ppm. The observed lag time is associated with NO_2 stored in the catalyst mostly in terms of nitrates. NO_2 feed was stopped at t= 3969 s, which is followed by the rapid decrease of the NO_2 outlet concentrations as shown in Figure 3a. NO_2 release from the surface was observed in the TPD phase of the experiment. NO₂-TPD profile showed one main peak with temperature center of 363 °C and a shoulder at around 300 °C. The formation of NO is observed upon delivery of NO₂ as shown in Figure 3b. The formation of NO was ascribed to the reaction of NO2 with ZCuOH sites as kinetically modeled using Reactions 2 and 7 depending on the models. Both NO2 and NO outlet concentrations were well described by all of the models, however, some models were better than the others. NO₂ breakthrough region is enlarged in Figure 3c which showed Models B and D had better fits as compared to Models A and C. NO₂-TPD region is enlarged in Figure 3d which illustrated that Models B, C and D had similarly well fits to the experimental data whereas the Model A under-predicted NO₂ desorption. Quantitative description of model performances for simulating NO₂ and NO data during this experiment is illustrated in Figure 4 where the value of Eq. 3 for each model is shown. This revealed that the Model B captured the experimental data significantly better than Model A indicating the importance of HNO₃ modeling for NO₂ adsorption/desorption. Additionally, the utilization of second NO₂ storage site (Reactions 4 and 9 in Models C and D, respectively) decreased the

error of both Models A and B as shown with the decreased error values of Models C and D, respectively. This indicated that some of the NO₂ was indeed stored on a secondary storage site as this was hinted in NO₂-TPD curve (Fig. 1b) with a shoulder at around 300 °C. Although the storage capacity obtained from NO₂-TPD for Z₂Cu sites was low (which is in agreement with literature which showed that most of NO₂ was stored by the ZCuOH sites), Model C and D resulted in being better fits to experimental data than Models A and B, respectively, indicated that some NO₂ was in fact stored by the Z₂Cu sites at least to some extent. Better fits of Model C and D were due to the incorporation of Reactions 4 and 9 which accounted for additional NO₂ uptake over Cu-chabazite on the Z₂Cu sites.

Figure 4. Error function values of different models investigated.

Figure 5. Simulated fractional coverages at the center of the reactor for (a) ZCuNO₃, (b) ZCuONO, (c) Z₂CuONO.

The fractional coverages of ZCuNO₃ (Figure 5a) and ZCuONO (Figure 5b) at the surface calculated at the center of the reactor showed that the nearly all of the Cu at the surface was in the form of CuNO₃ according to Models A and B as the fractional coverage of ZCuNO₃ while followed a similar trend to NO₂ breakthrough curve and finally reaching the fractional coverage value of 0.039 which was equal to the initial fractional coverage of ZCuOH. Fractional coverage of the ZCuNO3 species dropped with increase in temperature during the TPD phase of the experiment due to the thermal decomposition (Reaction 3 and 8). Fractional coverage values of CuONO species shown in Figure 5b are very low and suggested that the CuONO species are fast transient intermediates. Calculated fractional coverages of Z₂CuONO are illustrated in Figure 5c which showed lower values as compared those of ZCuNO₃ species.

4. CONCLUSION

A method based on a combinatorial use of NH₃-TPD and NO₂-TPD data of Cu-chabazite is proposed to calculate the surface concentrations of ZCuOH and Z2Cu species. NH₃-TPD calculated concentration of ZCuOH perfectly matched the one obtained from NO₂-TPD. Based on these values, a multisite NH₃ adsorption and desorption model was developed and it described the experimental data in a very successful manner. Moreover, four different NO₂ adsorption/desorption models were developed which included or excluded the HNO3 intermediate formation and possibility of the NO2 storage over ZCuOH and Z₂Cu sites. Based on the fits to experimental data, Model B where HNO₃ the intermediate formation is considered showed much lower error function values as compared to Model A where this reaction was not considered indicating a better representation of the experimental data by the Model B. The possibility of Z₂Cu sites for NO₂ storage was also investigated and the models which included the secondary NO₂ storage sites (Models C and D) showed lower error function values as compared to the ones who do not (Models A and B). This pointed out that the importance of modeling of both ZCuOH and Z₂Cu for NO₂ storage which should be taken into account to develop

accurate detailed transient kinetic models for NH₃-SCR over Cu-chabazites.

ACKNOWLEDGEMENT

Financial support from Ford Otomotiv San. A.Ş. is gratefully acknowledged.

Conflicts of interest

The authors declare no conflicts of interest.

NOMENCLATURE

A_j	Turnover pre-exponential constant for
C.	reaction j
Ci	(mol/m^3)
Dexp	Simulation duration
$E_{A,j}$	Activation energy for reaction <i>j</i> (kJ x mol ⁻¹)
Ea,j,o	Activation energy for reaction <i>j</i> at zero coverage (kJ x mol ⁻¹)
k _j	Turnover rate constant for the reaction <i>j</i>
r _j	Reaction rate for reaction <i>j</i> (mol x s ⁻¹ x mol _{site} ⁻¹)
y i,meas	Measured molar fraction of species <i>i</i> (ppm)
Y i,pred	Predicted molar fraction of species <i>i</i> (ppm)

Greek letters

 α Coverage dependence factor

 Δt Time step

 θ_k Fractional coverage of species k

REFERENCES

- Bendrich M, Scheuer A & Votsmeier M (2020). Importance of nitrates in Cu-SCR modelling: A validation study using different driving cycles. *Catalysis Today.* doi: https://doi.org/10.1016/j.cattod.2020.03.015
- Bendrich V M, Scheuerb A, Hayesa R E & Votsmeierb M (2018). Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. *Applied Catalysis B: Environmental, 222* 76– 87.
- Bozbag S E, Şanlı D, Özener B, Hisar G & Erkey C (2020a). An Aging Model of NH3 Storage Sites for Predicting Kinetics of NH3 Adsorption, Desorption and Oxidation over Hydrothermally Aged Cu-Chabazite. *Catalysts, 10,* 411.
- Bozbag S E, Şimşek M, Demir O, Şanlı D, Ozener B, Hisar G & Erkey C (2020b). Assessment of the Single-Site Kinetic Model for NH3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests. *Emission Control Science and Technology, 6*, 1.
- Bozbag S E, Simsek M, Demir O, Sanli Yildiz D, Ozener H B., Hisar, G., & Erkey, C. (2018). Experimental and theoretical study of NH3 adsorption and desorption over a Cu-chabazite NH3-SCR catalyst. *Turkish Journal of Chemistry*, *42*, 1768 – 1780.
- Chatterjee D, Burkhardt T, Bandl-Konrad B, Braun T, Tronconi E, Nova I & Ciardelli C (2005). Numerical

Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application. *SAE Technical Paper Series, 2005-01-965.*

- Chatterjee D, Burkhardt T, Weibel M, Nova I, Grossale A & Tronconi E (2007). Numerical Simulation of Zeoliteand V-Based SCR Catalytic Converters. *SAE Technical Paper Series, 2007-01-1136*.
- Clark A H, Nuguid R J G, Steiger P, Marberger A, Petrov A W, Ferri D, . . . Kröcher O (2020). Selective Catalytic Reduction of NO with NH3 on Cu–SSZ-13: Deciphering the Low and High-temperature Ratelimiting Steps by Transient XAS Experiments. *Chemcatchem*, 12(5), 1429-1435. doi:10.1002/cctc.201901916
- Colombo M, Nova I & Tronconi E (2012). Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. *Catalysis Today*, 197(1), 243-255. doi:10.1016/j.cattod.2012.09.002
- Daya R, Desai C & Vernham B (2018). Development and Validation of a Two-Site Kinetic Model for NH3-SCR over Cu-SSZ-13—Part 2: Full-Scale Model Validation, ASC Model Development, and SCR-ASC Model Application. *Emission Control Science and Technology*, *4*, 172–197.
- Daya R, Joshi S Y, Dadi R K, Tang Y, Trandal D, Srinivasan A, . . . Cunningham M (2020a). An explicit reducedorder model of Cu-Zeolite SCR catalyst for embedding in ECM. *Chemical Engineering Journal*, 127473. doi: https://doi.org/10.1016/j.cej.2020.127473
- Daya R, Joshi S Y, Luo J, Dadi R K, Currier N W & Yezerets A (2020b). On kinetic modeling of change in active sites upon hydrothermal aging of Cu-SSZ-13. *Applied Catalysis B: Environmental, 263,* 118368. doi: https://doi.org/10.1016/j.apcatb.2019.118368
- Daya R, Keturakis C J, Trandal D, Kumar A, Joshi S Y & Yezerets A (2021). Alternate pathway for standard SCR on Cu-zeolites with gas-phase ammonia. *Reaction Chemistry & Engineering*. doi:10.1039/D1RE00041A
- Dhillon P S, Harold M P, Wang D, Kumar A & Joshi S Y (2019). Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13 + Pt/Al2O3 ASC. *Reaction Chemistry & Engineering, 4*(6), 1103-1115. doi:10.1039/C8RE00325D
- Gao F, Kwak J H, Szanyi J & Peden C H F (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO(x) Catalysts. *Topics in Catalysis, 56*(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8
- Gao Z, Pihl J, LaClair T & Fricke B (2021). Global kinetic modeling of NH3-SCR with two sites of NH3 storage on Cu-SSZ-13. *Chemical Engineering Journal, 406,* 127120. doi: https://doi.org/10.1016/j.cej.2020.127120

Greenaway A G, Marberger A, Thetford A, Lezcano-González I, Agote-Arán M, Nachtegaal M, ... Beale A M (2020). Detection of key transient Cu intermediates in SSZ-13 during NH3-SCR deNOx by modulation excitation IR spectroscopy. *Chemical Science*, 11(2), 447-455. doi:10.1039/C9SC04905C

GT-SUITE Exhaust Aftertreatment Application Manual. (2019). Gamma Technologies LLC.

- Janssens T V W, Falsig H, Lundegaard L F, Vennestrom P N R, Rasmussen S B, Moses P G, ... Beato P (2015). A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. *ACS Catalysis, 5*(5), 2832-2845. doi:10.1021/cs501673g
- Leistner K, Xie K, Kumar A, Kamasamudram K & Olsson L (2017). Ammonia Desorption Peaks Can Be Assigned to Different Copper Sites in Cu/SSZ-13. *Catalysis Letters*, 147(8), 1882-1890. doi:10.1007/s10562-017-2083-8
- Luo J, Gao F, Kamasamudram K, Currier N, Peden C H F & Yezerets A (2017). New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. *Journal of Catalysis, 348,* 291-299. doi: https://doi.org/10.1016/j.jcat.2017.02.025
- Luo J, Wang D, Kumar A, Li J, Kamasamudram K, Currier N & Yezerets A (2016). Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. *Catalysis Today*, 267, 3-9. doi: https://doi.org/10.1016/j.cattod.2015.12.002
- Marberger A, Petrov A W, Steiger P, Elsener M, Kröcher O, Nachtegaal M & Ferri D (2018). Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. *Nature Catalysis*, 1(3), 221-227. doi:10.1038/s41929-018-0032-6
- Olsson L, Sjovall H & Blint R J (2009). Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. *Applied Catalysis B-Environmental*, 87(3-4), 200-210. doi:10.1016/j.apcatb.2008.09.007
- Olsson L, Wijayanti K, Leistner K, Kumar A, Joshi S Y, Kamasamudram K,... Yezerets A (2015). A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Applied Catalysis B-Environmental, 174, 212-224. doi:10.1016/j.apcatb.2015.02.037
- Paolucci C, Di Iorio J R, Ribeiro F H, Gounder R & Schneider W F (2016a). Chapter One - Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. In C. Song

(Ed.), *Advances in Catalysis* (Vol. 59, pp. 1-107): Academic Press.

- Paolucci C, Khurana I, Parekh A A, Li S, Shih A J, Li H, ... Gounder R (2017). Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. *Science*, *357*(6354), 898-903. doi:10.1126/science.aan5630
- Paolucci C, Parekh A A, Khurana I, Di Iorio J R, Li H, Albarracin Caballero J D, . . . Schneider W F (2016b). Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. *J. Am. Chem. Soc.*, *138*(18), 6028-6048. doi:10.1021/jacs.6b02651
- Selleri T, Nova I & Tronconi E (2019). An efficient reduced model of NH3-SCR converters for mobile aftertreatment systems. *Chemical Engineering Journal*, 377, 120053. doi:https://doi.org/10.1016/j.cej.2018.09.214
- Supriyanto Wijayanti K, Kumar A, Joshi S, Kamasamudram K, Currier N W, ... Olsson L (2015). Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. *Applied Catalysis B-Environmental*, 163, 382-392. doi:10.1016/j.apcatb.2014.07.059
- Usberti N, Gramigni F, Nasello N D, Iacobone U, Selleri T, Hu W, . . . Tronconi E (2020). An experimental and modelling study of the reactivity of adsorbed NH3 in the low temperature NH3-SCR reduction half-cycle over a Cu-CHA catalyst. *Applied Catalysis B: Environmental,* 279, 119397. doi:https://doi.org/10.1016/j.apcatb.2020.119397
- Villamaina R, Liu S, Nova I, Tronconi E, Ruggeri M P, Collier J, . . . Thompsett D (2019). Speciation of Cu Cations in Cu-CHA Catalysts for NH3-SCR: Effects of SiO2/AlO3 Ratio and Cu-Loading Investigated by Transient Response Methods. ACS Catalysis, 9(10), 8916-8927. doi:10.1021/acscatal.9b02578

© Author(s) 2022. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/