

Journal of Mathematical Sciences and Modelling

Journal Homepage: www.dergipark.gov.tr/jmsm ISSN 2636-8692 DOI: http://dx.doi.org/10.33187/jmsm.931258

Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve

Moussa Fall¹

¹Department of Mathematics, Faculty of Science and Technology University, Assane Seck, Ziguinchor

Keywords: Degree of algebraic points, Plan curve, Rational points.In this p the sch result v degree2010 AMS: 11D68, 12FO5, 14H40, 14H50degree	aper, we give a parametrization of algebraic points of degree at most 4 over \mathbb{Q} on effer curve \mathscr{C} of affine equation : $y^2 = x^5 + 1$. The result extends our previous
Accepted: 19 August 2021 Available online: 31 August 2021	hich describes in [5] (Afr. Mat 29:1151-1157, 2018) the set of algebraic points of t most 3 over \mathbb{Q} on this curve.

1. Introduction

Let \mathscr{C} be a smooth projective plane curve defined over K. For all algebraic extension field K of \mathbb{Q} , we denote by $\mathscr{C}(K)$ the set of K-rational points of \mathscr{C} over K and $\mathscr{C}^{(d)}(\mathbb{Q})$ the set of algebraic points of $\leq d$ over \mathbb{Q} . The degree of an algebraic point R is the degree of its field of definition on \mathbb{Q} : $deg(R) = [\mathbb{Q}(R) : \mathbb{Q}]$.

A famous theorem of Fatling show that if \mathscr{C} is a smooth projective plane curve defined over *K* of genus $g \ge 2$, then $\mathscr{C}(K)$ is finite. Fatling's proof is still ineffective in the sense that it does not provide an algorithm for computing $\mathscr{C}(K)$. A most precise theorem of Debarre and Klasen [4] show that if \mathscr{C} be a smooth projective plane curve defined by an equation of degree $d \ge 7$ with rational coefficients then $\mathscr{C}^{(d-2)}(\mathbb{Q})$ is finite. This theorem often us to characterize the set $\mathscr{C}^{(2)}(\mathbb{Q})$ of all algebraic points of degree ≤ 2 over \mathbb{Q} .

Currently for curve \mathscr{C} defined over a numbers field K of genus $g \ge 2$, there is no known algorithm for computing the set $\mathscr{C}(K)$ or for deciding if $\mathscr{C}(K)$ is empty. But there is a bag of strikes that can be used to show that $\mathscr{C}(K)$ is empty, or to determine $\mathscr{C}(K)$ if it is not empty. Among these methods, we can cite the local method, Chabauty method [2], Descent method [7], mordell-weil sieves method [1]. These methods often succeed with less than full knowledge of the jacobian $J(\mathbb{Q})$ of the curve . If $J(\mathbb{Q})$ is finite then it is no hard to determine $\mathscr{C}(\mathbb{Q})$ and to generalize for all number field K.

Previous works ([3] and [5]) have studied the algebraic points of degree at most 3 on the schaeffer curve of affine equation $y^2 = x^5 + 1$ denoted \mathscr{C} . The curve \mathscr{C} is hyperelliptic of genus g = 2 and of rank null by [3].

Let's denote $P_0 = (-1, 0)$, $P_1 = (0, 1)$, $\overline{P_1} = (0, -1)$, $Q_1 = (1 + i, 1 - 2i)$, $Q_2 = (1 - i, 1 + 2i)$, $\overline{Q_1} = (1 + i, -1 + 2i)$, $\overline{Q_2} = (1 - i, -1 - 2i)$ and ∞ the point at infinity.

The purpose of this note is to determine the algebraic parametrization of all algebraic points of degree at most four on the curve \mathscr{C}_s over the rationnal numbers field \mathbb{Q} using ideas in [5] (Afr. Mat 29:1151-1157, 2018).

2. Auxiliary results

Lemma 2.1. Let x and y be the rational functions defined on \mathscr{C}_s by $x(X,Y,Z) = \frac{X}{Z}$ and $y(X,Y,Z) = \frac{Y}{Z}$:

• $div(y-1) = 5P_1 - 5\infty;$ $div(y+1) = 5\overline{P}_1 - 5\infty;$

- $div(x) = P_1 + \overline{P}_1 2\infty; \quad div(x+1) = 2P_0 2\infty$
- $div(y) = A_0 + A_1 + A_2 + A_3 + A_4 5\infty$ where $A_i = exp(i(2k+1)\frac{\pi}{5})$.

Email addresses and ORCID numbers: m.fall@univ-zig.sn, 0000-0003-3880-7603 (M. Fall)

Denote by $\mathscr{L}(m\infty)$ the $\overline{\mathbb{Q}}$ -vector space of rational functions defined by $\mathscr{L}(m\infty) = \{f \in \overline{\mathbb{Q}}(\mathscr{C}_s)^* \mid div(f) \geq -m\infty\} \cup \{0\}$:

- $\mathscr{L}(\infty) = \langle 1 \rangle$
- $\mathscr{L}(2\infty) = \mathscr{L}(3\infty) = \langle 1, x \rangle$
- $\mathscr{L}(4\infty) = \langle 1, x, x^2 \rangle$
- $\mathscr{L}(5\infty) = \langle 1, x, x^2, y \rangle$
- $\mathscr{L}(6\infty) = \langle 1, x, x^2, y, x^3 \rangle$

Proof. See [5]

Lemma 2.2. We consider the divisor D on the curve \mathscr{C}_s :

 $\begin{array}{l} \bullet \ D = [(-1, \ 0) + (0, \ 1) - 2\infty] = [P_0 + P_1 - 2\infty] \\ \bullet \ 2D = [2 \ (0, \ 1) - 2\infty] = [2P_1 - 2\infty] \\ \bullet \ 3D = [(1 + i, \ 1 - 2i) + (1 - i, \ 1 + 2i) - 2\infty] = [Q_1 + Q_2 - 2\infty] \\ \bullet \ 4D = [(0, \ -1) - \infty] = [\overline{P_1} - \infty] \\ \bullet \ 5D = [(-1, \ 0) - \infty] = [P_0 - \infty] \\ \bullet \ 6D = [(0, \ 1) - \infty] = [P_1 - \infty] \\ \bullet \ 7D = [(1 + i, \ -1 + 2i) + (1 - i, \ -1 - 2i) - 2\infty] = [\overline{Q_1} + \overline{Q_2} - 2\infty] \\ \bullet \ 8D = [2 \ (0, \ -1) - 2\infty] = [2\overline{P_1} - 2\infty] \\ \bullet \ 9D = [(-1, \ 0) + (0, \ -1) - 2\infty] = [P_0 + \overline{P_1} - 2\infty] \\ \bullet \ 10D = 0. \end{array}$

The Mordell-weil groupe of the curve \mathscr{C}_s is $J(\mathbb{Q}) \cong (\mathbb{Z}/10\mathbb{Z}) \cong \langle D \rangle = \{mD \mid 0 \le m \le 9\}.$

Proof. See [3].

3. Main result

Our main result is the following theorem

Theorem 3.1. The algebraic points of degree 4 over \mathbb{Q} on the curve \mathcal{C}_s are given by the union of the following sets : $\mathcal{G}_0 \cup \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3 \cup \mathcal{G}_4 \cup \mathcal{G}_5$ with

$$\begin{split} & \cdot \mathscr{G}_{0} = \left\{ \left(x, \pm \sqrt{x^{2} + 1} \right) \mid \left[\mathbb{Q}\left(x \right) : \mathbb{Q} \right] = 2, x^{2} - 2x + 2 \neq 0 \right\}; \\ & \cdot \mathscr{G}_{1} = \left\{ \begin{array}{l} \left(x, \pm \left(-1 + \left(-1 - a + c \right) x - ax^{2} - cx^{3} \right) \mid a, c \in \mathbb{Q}, c \neq 0 \ et \ a \neq c - 1, x \ root \ of \\ B_{1}\left(x \right) = c^{2}x^{4} + \left(2ac - c^{2} - 1 \right)x^{3} + \left(a^{2} - c^{2} + 2c + 1 \right)x^{2} + \left(a^{2} + 2a - 2ac + c^{2} - 1 \right)x + 2a - 2c + 2 = 0 \end{array} \right\}; \\ & \cdot \mathscr{G}_{2} = \left\{ \begin{array}{l} \left(x, \pm \left(cx^{3} + ax^{2} - 1 \right) \right) \mid a, c \in \mathbb{Q}^{*}, a \neq c + 1, x \ root \ of \ B_{2}\left(x \right) = c^{2}x^{4} + 2acx^{3} - x^{3} + a^{2}x^{2} - 2cx - 2a = 0 \end{array} \right\}; \\ & \cdot \mathscr{G}_{3} = \left\{ \begin{array}{l} \left(x, \pm \left(-3 - 2a - 4c + \left(2 + 2a + 2c \right)x - ax^{2} - cx^{3} \right) \right) \mid a, c \in \mathbb{Q}, a \neq -1 - 2c, c \neq 0, x \ root \ of \ B_{3}\left(x \right) = c^{2}x^{4} + 2acx^{2} + 2acx^{2}$$

Proof of theoreme.

Let $R \in \mathscr{C}_s(\overline{\mathbb{Q}})$ with $[\mathbb{Q}(R) : \mathbb{Q}] = 4$. Let R_1, R_2, R_3, R_4 be the Galois conjugates of R. We have

$$[R_1+R_2+R_3+R_4-4\infty] \in J(\mathbb{Q})$$

from lemma (2.2), we get

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = mD, \quad 0 \le m \le 9$$

Now for any integer *m* such that $0 \le m \le 9$, we have mD = (m - 10)D, so

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = (m - 10)D, \quad 0 \le m \le 9.$$
 (*)

Our proof is divided in five cases

Case
$$m = 0$$

Formula (*) becomes

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = 0$$

The Abel Jacobi theorem involves the existence of a function F such that

$$div(F) = R_1 + R_2 + R_3 + R_4 - 4\infty$$

so $F \in \mathscr{L}(4\infty)$, and lemma (2.1) gives $F(x,y) = a + bx + cx^2$; x must be in the $\overline{\mathbb{Q}}$ such as $[\mathbb{Q}(x) : \mathbb{Q}] = 2$ and $x^2 - 2x + 2 \neq 0$. We get a family of quartic points

$$\mathscr{G}_0 = \left\{ \left(x, \pm \sqrt{x^5 + 1} \right) \right\} \mid x \in [\mathbb{Q}(x) : \mathbb{Q}] = 2, \ x^2 - 2x + 2 \neq 0 \right\}.$$

Cases $m = 1$ and $m = 9$

For m = 1: The formula (\star) and lemma (2.2) give

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = -9D = -[P_0 + \overline{P}_1 - 2\infty]$$

This means

$$[R_1 + R_2 + R_3 + R_4 + P_0 + \overline{P}_1 - 6\infty] = 0$$

The Abel Jacobi theorem involves the existence of a function F such that

$$div(F) = R_1 + R_2 + R_3 + R_4 + P_0 + \overline{P}_1 - 6\infty.$$

So
$$F \in \mathscr{L}(6\infty)$$
, then $F(x, y) = u + vx + wx^2 + dx^3 + ey \ (e \neq 0)$. We have $F(\overline{P}_1) = F(P_0) = 0$, so $u - e = 0$ and $u - v + w - d = 0$, thus $F(x, y) = u + (u + w - d)x + wx^2 + dx^3 + uy \quad u \neq 0$.

At the points R_i , we have $y = -1 + (-1 - a + c)x - ax^2 - cx^3$ with $a = \frac{w}{u}$ and $c = \frac{d}{u}$. By substituting y in $y^2 - x^5 - 1 = 0$ and simplifying by x(x+1) we obtain

$$B_{1}(x) = c^{2}x^{4} + \left(2ac - c^{2} - 1\right)x^{3} + \left(a^{2} - c^{2} + 2c + 1\right)x^{2} + \left(a^{2} + (2 - 2c)a + c^{2} - 1\right)x + 2a - 2c + 2 = 0$$

We must have $B_1(0) \neq 0$ and $B_1(-1) \neq 0$ which involves $a \neq c-1$ and $c \neq 0$. We have a family of quartic points

$$\mathcal{G}_{1,1} = \left\{ \left(x, +(-1+(-1-a+c)x-ax^2-cx^3) \right) \mid a,c \in \mathbb{Q}, a \neq c-1, c \neq 0, x \text{ root of } B_1(x) = 0 \right\}$$

For m = 9: The formula (\star) and lemma (2.2) give

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = -D = -[P_0 + P_1 - 2\infty]$$

This means

$$[R_1 + R_2 + R_3 + R_4 + P_0 + P_1 - 6\infty] = 0$$

The Abel Jacobi theorem involves the existence of a function F such that

$$div(F) = R_1 + R_2 + R_3 + R_4 + P_0 + P_1 - 6\infty.$$

So $F \in \mathscr{L}(6\infty)$, hence $F(x,y) = u + vx + wx^2 + dx^3 + ey \ (e \neq 0)$. We have $F(P_1) = F(P_0) = 0$, so u - e = 0 et u - v + w - d = 0, then $F(x,y) = u + (u + w - d)x + wx^2 + dx^3 + uy \quad u \neq 0$.

At the points R_i , we have $y = 1 + (1 + a - c)x + ax^2 + cx^3$ with $a = -\frac{w}{u}$ and $c = -\frac{d}{u}$. By substituting y in $y^2 - x^5 - 1 = 0$ and simplifying by x(x+1), we have

$$B_{1}(x) = c^{2}x^{4} + \left(2ac - c^{2} - 1\right)x^{3} + \left(a^{2} - c^{2} + 2c + 1\right)x^{2} + \left(a^{2} + (2 - 2c)a + c^{2} - 1\right)x + 2a - 2c + 2 = 0$$

We must have $B_1(0) \neq 0$ and $B_1(-1) \neq 0$ involving $a \neq c-1$ and $c \neq 0$. We get a family of quartic points

 $\mathscr{G}_{1,2} = \left\{ \left(x, \ -(-1+(-1-a+c)x - ax^2 - cx^3) \right) \ | \ a,c \in \mathbb{Q}, a \neq c-1, c \neq 0, x \text{ root of } B_1(x) = 0 \right\}.$

Finally, we get a second family of quartic points $\mathscr{G}_1 = \mathscr{G}_{1,1} \cup \mathscr{G}_{1,2}$.

Cases m = 2 and m = 8

For m = 2: the formula (\star) becomes

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = -8D = -\left[2\overline{P_1} - 2\infty\right]$$

This means

$$\left[R_1 + R_2 + R_3 + R_4 + 2\overline{P_1} - 6\infty\right] = 0$$

The Abel Jacobi theorem involves the existence of a function F such that

$$div(F) = R_1 + R_2 + R_3 + R_4 + 2\overline{P_1} - 6\infty$$

So $F \in \mathscr{L}(6\infty)$, hence $F(x,y) = a + bx + cx^2 + dx^3 + ey \ (e \neq 0)$. The point \overline{P}_1 is order 2, so u - e = 0 and v = 0, thus

$$f(x,y) = u + wx^2 + dx^3 + uy$$

At the points R_i , we have $-uy = u + wx^2 + dx^3$ ($u \neq 0$), so $y = -1 + ax^2 + cx^3$ with $a = -\frac{w}{u}$ and $k = -\frac{d}{u}$. Substuting y to $y^2 = x^5 + 1$, we have

$$x^{2}\left(a^{2}x^{4} + 2acx^{3} - x^{3} + a^{2}x^{2} - 2cx - 2a\right) = 0$$

Simplifying by x^2 , we have

$$B_{2}(x) = c^{2}x^{4} + 2acx^{3} - x^{3} + a^{2}x^{2} - 2cx - 2a$$

We must have $ac \neq 0$ and $a \neq c+1$. We obtain a family of quartic points :

$$\mathscr{G}_{2,1} = \left\{ \left(x, \left(cx^3 + ax^2 - 1 \right) \right) \mid a, c \in \mathbb{Q}^*, a \neq c+1, x \text{ root of } B_2(x) = 0 \right\}.$$

For m = 8: by a similar argument as in case m = 2, we have

$$\mathscr{G}_{2,2} = \left\{ \left(x, -\left(cx^3 + ax^2 - 1 \right) \right) \mid a, c \in \mathbb{Q}^*, a \neq c+1, x \text{ root of } B_2(x) = 0 \right\}$$

Finally, we have the third family $\mathscr{G}_2 = \mathscr{G}_{2,1} \cup \mathscr{G}_{2,2}$.

Cases m = 3 and m = 7

For m = 3: the formula (\star) becomes

$$[R_1 + R_2 + R_3 + R_4 - 4\infty] = -7D = -\left[\overline{Q_1} + \overline{Q_2} - 2\infty\right]$$

This means

$$\left[R_1+R_2+R_3+R_4+\overline{Q_1}+\overline{Q_2}-6\infty\right]=0$$

The Abel Jacobi theorem involves the existence of a function F such that

 $div(F) = R_1 + R_2 + R_3 + R_4 + \overline{Q_1} + \overline{Q_2} - 6\infty.$

Then $F(x,y) = u + vx + wx^2 + dx^3 + ey \ (e \neq 0)$. We have $F(\overline{Q}_1) = F(\overline{Q}_2) = 0$, so u + v - 2d - e = 0 and v + 2w + 2d + 2e = 0, hence

$$F(x,y) = 2w + 4d + 3e + (-2w - 2d - 2e)x + wx^{2} + dx^{3} + ey \ (e \neq 0).$$

At points R_i , we have $y = (-3 - 2a - 4c) + (2 + 2a + 2c)x - ax^2 - cx^3$ with $a = \frac{w}{e}$ and $c = \frac{d}{e}$. Substuting y into $y^2 = x^5 + 1$ and simplifying by $x^2 - 2x + 2$, we have

$$B_{3}(x) = c^{2}x^{4} + (2c^{2} + 2ac - 1)x^{3} + (-2c^{2} - 4c + a^{2} - 2)x^{2} + ((-4a - 2)c - 2a^{2} - 4a - 2)x + 8c^{2} + (8a + 12)c + 2a^{2} + 6a + 4 = 0.$$

We must have $c \neq 0$ and $a \neq -1 - 2c$. We get a family of quartic points

$$\mathscr{G}_{3,1} = \left\{ \left(x, \left(-3 - 2a - 4c + (2 + 2a + 2c)x - ax^2 - cx^3 \right) \right) \mid a, c \in \mathbb{Q}c \neq 0, a \neq -1 - 2c, x \text{ root of } B_3(x) = 0 \right\}$$

For m = 7: by a similar argument as in previous case, we get a family of quartic points

$$\mathscr{G}_{3,2} = \left\{ \left(x, -(-3-2a-4c+(2+2a+2c)x-ax^2-cx^3) \right) \mid a,c \in \mathbb{Q} \ c \neq 0, a \neq -1-2c, x \text{ root of } B_3(x) = 0 \right\}$$

Therefore, we have the fourth family $\mathscr{G}_3 = \mathscr{G}_{3,1} \cup \mathscr{G}_{3,2}$.

Cases m = 4 and m = 6

For m = 4: it exists a fonction F such that $div(F) = R_1 + R_2 + R_3 + R_4 + P_1 - 5\infty$, hence $F \in \mathcal{L}(5\infty)$,

$$F(x,y) = u + vx + wx^{2} + dy \quad (d \neq 0).$$

We have $F(P_1) = 0$, therefore u + d = 0, then $F(x, y) = u + vx + wx^2 - uy$, $(u \neq 0)$. At points R_i , we have $y = 1 + ax + cx^2$. Substituting y to $y^2 = x^5 + 1$, we have

$$x\left(x^{4} + c^{2}x^{3} + 2acx^{2} + (2c + a^{2})x + 2a\right) = 0.$$

Simplifying by *x*, we have the minimal polynomial

$$B_4(x) = x^4 + c^2 x^3 + 2a c x^2 + (2c + a^2) x + 2a = 0.$$

We must have $a \neq 0$. We obtain a family of quartic points :

$$\mathscr{G}_{4,1} = \left\{ \left(x, +(1+ax+cx^2) \right) \mid a, c \in \mathbb{Q}, a \neq 0, x \text{ root of } B_4(x) = 0 \right\}$$

For m = 6: by a similar argument as in previous case, we get a family of quartic points :

$$\mathscr{G}_{4,2} = \left\{ \left(x, \ -(1+ax+cx^2) \right) \ | \ a, c \in \mathbb{Q}, \ a \neq 0, x \text{ root of } B_4(x) = 0 \right\}$$

Therefore, we have the firth family : $\mathscr{G}_4 = \mathscr{G}_{4,1} \cup \mathscr{G}_{4,2}$.

Case
$$m = 5$$

It exists *F* such that $div(F) = R_1 + R_2 + R_3 + R_4 + P_0 - 5\infty$, so $F \in \mathcal{L}(5\infty)$, then

$$F(x, y) = u + vx + wx^2 + dy \quad (d \neq 0)$$

We have $F(P_0) = 0$, so v = u + w, therefore $F(x, y) = u + (u + w)x + wx^2 + dy$. At points R_i , we have $y = -a + (-a - c)x - cx^2$ with $a = \frac{u}{d}$ and $c = \frac{w}{d}$. Substituting y to $y^2 = x^5 + 1$, we have

$$(x+1)\left(x^{4}+\left(c^{2}+1\right)x^{3}+\left(c^{2}+2\,a\,c-1\right)x^{2}+\left(2\,a\,c+a^{2}+1\right)x+a^{2}-1\right)=0.$$

Simplifying by x + 1, we have the polynomial

$$B_5(x) = x^4 + (c^2 + 1) x^3 + (c^2 + 2ac - 1) x^2 + (2ac + a^2 + 1) x + a^2 - 1.$$

We must have $a \neq \pm 1$, therefore, we have the fifth family :

$$\mathscr{G}_{5} = \left\{ \left(x, \, \left(-a + (-a-l)x - cx^{2} \right) \right) \mid a, c \in \mathbb{Q}, \, a \neq \pm 1, \, x \text{ root of } B_{5}\left(x \right) = 0 \right\}.$$

References

- N. Bruin, M. Stoll, *The Mordell-Weil sieve : proving the nonexistence of Rational points on curves*, LMS J. Comp. Math., **13** (2010), 272 -306.
 R. F. Coleman, *Effective Chabauty* Duke Math. J. **52**(3) (1985), 765-770.
 E. F. Schaefer, *Computing a Selmer group of a Jacobian using functions on the curve*, Mathematische Annalen, **310** (1998), 447–471.
 M. J. Klassen, E. F. Schaefer, *Arithmetic and geometry of the curve x⁴ = y³ + 1*, Acta Arithmetica LXXIV.3 (1996) 241-257.

- [5] M. Fall, O. Sall, *Ponts algébriques de petit degré sur la courbe d'équation affine* $y^2 = x^5 + 1$, Afr. Mat. **29** (2018) 1151-1157. [6] O. Sall, *Ponts algébriques sur certains quotients de courbes de Fermat*, C. R. Acad. Sci. Paris Sér I **336** (2003) 117-120. [7] S. Siksek, M. Stoll, *Partial descent on hyper elliptic curves and the generalized Fermat equation* $x^3 + y^4 + z^5 = 0$, Bulletin of the LMS **44** (2012) 151 -166