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1. Introduction

Let € be a smooth projective plane curve defined over K. For all algebraic extension field K of Q, we denote by ¢ (K) the set of K-rational
points of € over K and ¢ () (Q) the set of algebraic points of < d over Q. The degree of an algebraic point R is the degree of its field of
definition on Q : deg(R) = [Q(R) : Q].

A famous theorem of Fatling show that if & is a smooth projective plane curve defined over K of genus g > 2, then ¢ (K) is finite. Fatling’s
proof is still ineffective in the sense that it does not provide an algorithm for computing ¢ (K). A most precise theorem of Debarre and Klasen
[4] show that if € be a smooth projective plane curve defined by an equation of degree d > 7 with rational coefficients then ¢d-2) (Q) is
finite. This theorem often us to characterize the set €2 (Q) of all algebraic points of degree < 2 over Q.

Currently for curve € defined over a numbers field K of genus g > 2, there is no known algorithm for computing the set 4" (K) or for
deciding if ¢ (K) is empty. But there is a bag of strikes that can be used to show that ¢ (K) is empty, or to determine ¢ (K) if it is not empty.
Among these methods, we can cite the local method, Chabauty method [2], Descent method [7], mordell-weil sieves method [1]. These
methods often succeed with less than full knowledge of the jacobian J (Q) of the curve . If J(Q) is finite then it is no hard to determine
¢ (Q) and to generalize for all number field K.

Previous works ([3] and [5]) have studied the algebraic points of degree at most 3 on the schaeffer curve of affine equation y2 =x+1
denoted %'. The curve % is hyperelliptic of genus g = 2 and of rank null by [3].

Let’s denote Py=(—1,0), P, =(0,1), Py = (0, —1), Q1 = (1 +i,1—2i),0s = (1 —i, 1+2i), Q1 = (1 +i, —1+2i), Q2 = (1 —i, —1 — 2i)
and oo the point at infinity.

The purpose of this note is to determine the algebraic parametrization of all algebraic points of degree at most four on the curve % over the
rationnal numbers field QQ using ideas in [5] (Afr. Mat 29:1151-1157, 2018).

2. Auxiliary results

Lemma 2.1. Let x and y be the rational functions defined on €5 by x(X,Y,Z) = % andy(X,Y,Z) = % :

e div(y—1)=5P —5e0; div(y+1)=5P; —5e;
o div(x) =P +P| —2c0; div(x+1)=2P)— 200
o div(y) =Ag+A; +Ar+ A3+ A4 — 500 where A; = exp(i(2k+1)%).
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Denote by £ (meo) the Q—vector space of rational functions defined by £ (me=) = { f € Q(¢;)* | div(f) > —meo} U{0} :
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Proof. See [5]

Lemma 2.2. We consider the divisor D on the curve 6 :

e D=1(—1,0)4(0, 1) —200] = [Py + P| — 29

« 2D =[2(0, 1) — 200] = [2P; — 209

« 3D =[(14i, 1 =2i)+ (1 —i, 142i) —200] = [Q] + Oy — 209

* 4D =(0, —1) —oo] = [P} — oo

* 5D =[(—1, 0) — o] = [Py — o]

* 6D =(0, 1) —oo] = [P} — 0] -

« ID=[(1+i, —142i)+ (1 —i, =1 —2i) —200] = [Q + 05 — 2c0]
« 8D =1[2(0, —1) —200] = [2P} —2c0]

¢ 9D =[(—1,0)+ (0, —1) —200] = [By + P} — 209

. 10D =0.

The Mordell-weil groupe of the curve € is J(Q) = (Z/10Z) = (D) = {mD |0 <m < 9}.
Proof. See [3].

3. Main result

Our main result is the following theorem

Theorem 3.1. The algebraic points of degree 4 over Q on the curve 6 are given by the union of the following sets : Gy U4 U% U4 U4, UYs
with

s do={(x +VFTD) | [Q0): Q) =2,2 -2 +2£0};

- (x, +(—1+(-l—a+c)x—ax* —cx) | a,c €Q,c #0eta+#c—1, x root of )
! By (x) =t + (2ac—c* — 1) x* + (@® =2+ 2c+ 1) x> + (a® +2a—2ac + 2 — 1) x+2a—2c+2=0 |’

« =1 (x i(cx + ax? -1)) | a,c € Q*,a# c+1, x root of By (x) = 2x* 4+ 2acx® — x> + a?x> —2cx—2a =0 I8
. —3—-2a— 4c+(2+2a+26)x axt —cx3 )\a,ceQ,a%—l—20,6#0,)6rootofB3(x):czx4+ )
- 2c +2a671)x +(—2¢* —4c+a*—2)x +(74ac72c72a274a72)x+8c2+8ac+12c+2a2+6a+4 ’

e y={ (x, 2(1+ax+cx 2)) | a,c € Q,a#0, x root of Ba(x) = —x* + 2x® + 2acx? + (2c +a*) x+2 };
G — (x, £(—a+(—a—c)x—cx?)) |,a,c €Q, a # £1, x root ofBs(x) = —x* + (> + 1) x* + (¢* +2ac — 1) x*
3 +(2ac+a*+1)x+a*—1 '

Proof of thegreme.
Let R € €, (Q) with [Q(R) : Q] =4. Let Ry, Ry, R3, R4 be the Galois conjugates of R. We have

[R1+ Ry +R3 + Ry —4doo] € J(Q)

from lemma (2.2) , we get
[Ri+Ry+R3+Ry—4oc)=mD, 0<m<9

Now for any integer m such that 0 <m <9, we have mD = (m — 10)D, so
[Ri+Ry+R3+Ry—4oo]=(m—10)D, 0<m<9. (%)
Our proof is divided in five cases
Casem =0

Formula (%) becomes
[Ri + R +R3 + Ry —4oo] = 0.

The Abel Jacobi theorem involves the existence of a function F such that
le(F) =R +Ry+R3+Ry — 4oo

50 F € & (4e0), and lemma (2.1) gives F (x,y) = a+ bx+cx?; x must be in the @ such as [Q(x) : Q] =2 and x> —2x+2 #0. We geta
family of quartic points

%0:{<x,:t x5+1)) | XG[Q(.X)ZQ]:Z,XZ*ZX+27£O}.

Casesm=1andm =9
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For m = 1: The formula () and lemma (2.2) give
[Ri+ Ry +R3+ Ry —4oo] = —9D = — [Py + P —200] .
This means B
[Rl +Ry+R3+Ry+FPy+ P —600} =0
The Abel Jacobi theorem involves the existence of a function F such that
div(F)=R;+Ry+R3+Ry+Py+P| —600.
So F € Z (60), then F (x,y) = u~+vx+wx*+dx> +ey (e #0). We have F (Py) =F (Py)) =0,s0 u—e=0andu—v+w—d =0, thus

F(x,y) =u+ (u+w—d)x+wx>+dx> +uy u+#0.

2 w

At the points R;, we have y = —1 + (=1 —a+c¢)x—ax® — x> with a = % and c= %. By substituting y in y> — x> — 1 = 0 and simplifying

by x (x+ 1) we obtain
Bi(x) = cx* + (2(167627 1)x3+ <a2702+2c+1)x2+ <a2+(272c)a+czf 1)x+2a720+220
We must have B (0) # 0 and B; (—1) # 0 which involves a # ¢ — 1 and ¢ # 0. We have a family of quartic points
G :{ (x, +(=1+(~1 —a+c)x—ax2—cx3)) |a,c€Q,a#c—1,c#0,xrootof By (x) =0 }

For m =9 : The formula (x) and lemma (2.2) give
[R] +Ry+R3+Ry 7400] =—-D=— [P() + P 7200]

This means
[Ri+Ry+R3+R4+Py+ P —600] =0
The Abel Jacobi theorem involves the existence of a function F such that
div(F) =Ry +Ry+R3+Ry+ Py+ P —600.
So F € £ (600), hence F (x,y) = u+vx+wx? +dx> +ey (e #0). Wehave F(P|)=F (P)) =0,s0 u—e=0etu—v+w—d =0, then
F(x,y) =u+ (u+w—d)x+wx>+dx> +uy u+#0.

w

At the points R;, we have y = 1+ (14 a— ) x+ ax® + cx® with a = —% and ¢ = f%. By substituting y in y2 — x> — 1 = 0 and simplifying
by x(x+ 1), we have
By (x) = cx* + (2acfczf 1)x3+ <a2 —c? 42+ 1>x2+ <a2+(272c)a+c27 1>x+2a720+220
We must have B (0) # 0 and By (—1) # 0 involving a # ¢ — 1 and ¢ # 0. We get a family of quartic points
G2 = { (x, —(=1+4(-1 —a+c)x—ax2—cx3)) | a,c€Q,a#c—1,c#0,xrootof By (x) =0 }
Finally, we get a second family of quartic points ¥ =¥} | U¥] ».

Casesm=2and m =38

For m =2 : the formula (x) becomes
[Ri 4+ Ry + R3 + Ry — 4oo] = —8D = — [2P| — 2]
This means
[R] +Ry+R3+Ry +2ﬁ]76w} =0
The Abel Jacobi theorem involves the existence of a function F such that
div(F)=Ri+Ry+R3+Ry + 2P| — 600
So F € £ (60), hence F (x,y) = a+ bx+cx> +dx> +ey (e #0). The point P is order 2, so u—e = 0 and v = 0, thus
F(x,y) = u+wx® +dx> +uy

w

At the points R;, we have —uy = u+wx2+dx3 (u #0),so0y=—1 +ax® +cx® witha = — and k= —%. Substuting y to V=x+1,we
have
2 (a2x4 +2acx® — X + x> —2cx — 2a> =0.

Simplifying by x2, we have
By (x) = *x* 4+ 2acx® — 3 + a*x® — 2ex - 2a.
We must have ac # 0 and a # ¢+ 1. We obtain a family of quartic points :

%1 :{(x, (cx3+ax2—l>> | a,ceQ*a#c+1,x rootofBz(x)zo}.

For m = 8§ : by a similar argument as in case m = 2, we have
Do = {(x7 — (cx3 +ax® — 1)) | a,c€Q,a#c+1,x rootof By (x) = O}.
Finally, we have the third family %, =% ;U% .
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Casesm=3andm =17

For m = 3 : the formula (x) becomes
[Ri+Ry+R3+Ry — 4] = —TD = — [Q) + Q5 — 2]

This means .
[Ri+Ry+R3+ R4+ Q1+ Qs — 60 =0

The Abel Jacobi theorem involves the existence of a function F' such that
div(F) =Ry +Ry +R3 + Ry + Q1 + Oy — 600,
Then F (x,y) = u+vx+wx? +dx> +ey (e #£0). We have F (Q;) = F (Q;) =0,s0 u+v—2d —e =0 and v+ 2w+ 2d + 2e = 0, hence
F(x,y) = 2w+4d +3e+ (—2w — 2d — 2e) x+ wx> +dx> + ey (e #0).
At points R;, we have y = (=3 —2a—4c) 4+ (2+2a+2¢)x — ax> — cx® with a = % and ¢ = % . Substuting y into y> = x> + 1 and
simplifying by x? — 2x +2, we have
B3 (x) = cx* + <2c2+2ac— 1>x3+ (—26‘2 —4c+d? —2>x2+ ((—4a—2)c—2a2—4a—2)x+802+(8a+ 12)c+2a> 4+ 6a+4 = 0.
We must have ¢ # 0 and a # —1 —2¢. We get a family of quartic points
Gi={ (x,(-3-2a—4c+(2+2a+2c)x—ax’> —cx?)) | a,c € Qc #0,a# —1 —2¢,x root of B3 (x) =0 }
For m =7 : by a similar argument as in previous case, we get a family of quartic points
Go={ (x, ~(-3—2a—4c+(2+2a+2c)x—ax* —cx®)) | a,c €Qec#0,a# —1—2¢, x root of B3 (x) =0 }

Therefore, we have the fourth family ¥3 = %3 | U%; 5.

Casesm=4andm =6

For m = 4 : it exists a fonction F such that div(F) = Ry + Ry + R3 + R4 + P| — 50, hence F € .Z (5),
F(x,y) =u+vx+wx’+dy (d#0).

We have F (P;) = 0, therefore u+d = 0, then F (x,y) = u+vx+wx> —uy, (u # 0). At points R;, we have y = 1 +ax + cx>. Substiting y to
y? = x>+ 1, we have

X (x4 +x3 F2aex® + <2c+a2> x+2a) =0.
Simplifiying by x, we have the minimal polynomial
By(x) =x*+ 23 +2acx® + (26+a2> x+2a=0.
We must have a # 0. We obtain a family of quartic points :
G = { (x, +(1 +ax+cx2)> | a,c€Q,a#0,x root of By (x) = O} .
For m = 6 : by a similar argument as in previous case, we get a family of quartic points :
Yo = {(x, —(1 +ax+cx2)> | a,c € Q,a#0,x root of By (x) = O}

Therefore, we have the firth family : ¥4 = %4 1 U%, 5.

Casem =35
It exists F such that div(F) = Ry +Ry +R3+ R4+ Py — 500, 50 F € £ (500), then
F(x,y) =u+vx4+wx’+dy (d#0).

u

We have F (Py) = 0, so v = u+w, therefore F (x,y) = u+ (1 +w)x+wx?+dy. At points R;, we have y = —a+ (—a — ¢)x — cx? with a = 4
and ¢ = . Substiting y to y? = x>+ 1, we have

(x+1) <x4+ <cz+ 1) O+ (cz+2ac— 1) X+ (2ac+a2—|— 1) x+a®— 1) =0.
Simplifliying by x + 1, we have the polynomial
Bs(x) =x*+ (c2—|— 1) 4+ (c2—|—2ac— l) 2+ (2ac+a2+l> x+a*—1.
We must have a # +1, therefore, we have the fifth family :

Y5 = {(X7 (—a+(—a—l)x—cx2)) | a,c€Q,a# %1, x root of Bs (x):O}_
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