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Abstract

In this paper, we give a parametrization of algebraic points of degree at most 4 over Q on
the schaeffer curve C of affine equation : y2 = x5 + 1. The result extends our previous
result which describes in [5] ( Afr. Mat 29:1151-1157, 2018) the set of algebraic points of
degree at most 3 over Q on this curve.

1. Introduction

Let C be a smooth projective plane curve defined over K. For all algebraic extension field K of Q, we denote by C (K) the set of K-rational
points of C over K and C (d) (Q) the set of algebraic points of ≤ d over Q. The degree of an algebraic point R is the degree of its field of
definition on Q : deg(R) = [Q(R) : Q].
A famous theorem of Fatling show that if C is a smooth projective plane curve defined over K of genus g≥ 2, then C (K) is finite. Fatling’s
proof is still ineffective in the sense that it does not provide an algorithm for computing C (K). A most precise theorem of Debarre and Klasen
[4] show that if C be a smooth projective plane curve defined by an equation of degree d ≥ 7 with rational coefficients then C (d−2) (Q) is
finite. This theorem often us to characterize the set C (2) (Q) of all algebraic points of degree ≤ 2 over Q.
Currently for curve C defined over a numbers field K of genus g ≥ 2, there is no known algorithm for computing the set C (K) or for
deciding if C (K) is empty. But there is a bag of strikes that can be used to show that C (K) is empty, or to determine C (K) if it is not empty.
Among these methods, we can cite the local method, Chabauty method [2], Descent method [7], mordell-weil sieves method [1]. These
methods often succeed with less than full knowledge of the jacobian J (Q) of the curve . If J (Q) is finite then it is no hard to determine
C (Q) and to generalize for all number field K.
Previous works ([3] and [5]) have studied the algebraic points of degree at most 3 on the schaeffer curve of affine equation y2 = x5 + 1
denoted C . The curve C is hyperelliptic of genus g = 2 and of rank null by [3].
Let’s denote P0 = (−1, 0), P1 = (0, 1), P1 = (0,−1), Q1 = (1+ i, 1−2i),Q2 = (1− i, 1+2i), Q1 = (1+ i,−1+2i), Q2 = (1− i,−1−2i)
and ∞ the point at infinity.
The purpose of this note is to determine the algebraic parametrization of all algebraic points of degree at most four on the curve Cs over the
rationnal numbers field Q using ideas in [5] (Afr. Mat 29:1151-1157, 2018).

2. Auxiliary results

Lemma 2.1. Let x and y be the rational functions defined on Cs by x(X ,Y,Z) = X
Z and y(X ,Y,Z) = Y

Z :

• div(y−1) = 5P1−5∞ ; div(y+1) = 5P1−5∞;
• div(x) = P1 +P1−2∞ ; div(x+1) = 2P0−2∞

• div(y) = A0 +A1 +A2 +A3 +A4−5∞ where Ai = exp(i(2k+1) π

5 ).
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Denote by L (m∞) the Q−vector space of rational functions defined by L (m∞) =
{

f ∈Q(Cs)
∗ | div( f )≥−m∞

}
∪{0} :

• L (∞) = 〈 1 〉
• L (2∞) = L (3∞) = 〈 1, x 〉
• L (4∞) = 〈 1, x, x2 〉
• L (5∞) = 〈 1, x, x2, y 〉
• L (6∞) = 〈 1,x,x2,y,x3 〉

Proof. See [5]

Lemma 2.2. We consider the divisor D on the curve Cs :

• D = [(−1, 0)+(0, 1)−2∞] = [P0 +P1−2∞]
• 2D = [2(0, 1)−2∞] = [2P1−2∞]
• 3D = [(1+ i, 1−2i)+(1− i, 1+2i)−2∞] = [Q1 +Q2−2∞]
• 4D = [(0, −1)−∞] =

[
P1−∞

]
• 5D = [(−1, 0)−∞] = [P0−∞]
• 6D = [(0, 1)−∞] = [P1−∞]
• 7D = [(1+ i, −1+2i)+(1− i, −1−2i)−2∞] =

[
Q1 +Q2−2∞

]
• 8D = [2(0, −1)−2∞] =

[
2P1−2∞

]
• 9D = [(−1, 0)+(0, −1)−2∞] =

[
P0 +P1−2∞

]
• 10D = 0.

The Mordell-weil groupe of the curve Cs is J(Q)∼= (Z/10Z)∼= 〈 D〉= {mD | 0≤ m≤ 9}.

Proof. See [3].

3. Main result

Our main result is the following theorem

Theorem 3.1. The algebraic points of degree 4 over Q on the curve Cs are given by the union of the following sets : G0∪G1∪G2∪G3∪G4∪G5
with

• G0 =
{(

x, ±
√

x2 +1)
)
| [Q(x) : Q] = 2 , x2−2x+2 6= 0

}
;

• G1 =

{ (
x, ±(−1+(−1−a+ c)x−ax2− cx3) | a, c ∈Q, c 6= 0et a 6= c−1, x root of

B1 (x) = c2x4 +
(
2ac− c2−1

)
x3 +

(
a2− c2 +2c+1

)
x2 +

(
a2 +2a−2ac+ c2−1

)
x+2a−2c+2 = 0

}
;

• G2 =
{ (

x, ±
(
cx3 +ax2−1

))
| a, c ∈Q∗ , a 6= c+1, x root of B2 (x) = c2x4 +2acx3− x3 +a2x2−2cx−2a = 0

}
;

• G3 =

{ (
x, ±(−3−2a−4c+(2+2a+2c)x−ax2− cx3)

)
| a, c ∈Q, a 6=−1−2c, c 6= 0, x root of B3 (x) = c2x4+(

2c2 +2ac−1
)

x3 +
(
−2c2−4c+a2−2

)
x2 +

(
−4ac−2c−2a2−4a−2

)
x+8c2 +8ac+12c+2a2 +6a+4

}
;

• G4 =
{ (

x, ±(1+ax+ cx2)
)
| a, c ∈Q, a 6= 0, x root of B4(x) =−x4 + c2x3 +2acx2 +

(
2c+a2)x+2

}
;

• G5 =

{ (
x, ±(−a+(−a− c)x− cx2)

)
|, a, c ∈Q, a 6=±1, x root ofB5(x) =−x4 +

(
c2 +1

)
x3 +

(
c2 +2ac−1

)
x2

+
(
2ac+a2 +1

)
x+a2−1

}
.

Proof of theoreme.
Let R ∈ Cs

(
Q
)

with [Q(R) : Q] = 4. Let R1, R2, R3, R4 be the Galois conjugates of R. We have

[R1 +R2 +R3 +R4−4∞] ∈ J(Q)

from lemma (2.2) , we get
[R1 +R2 +R3 +R4−4∞] = mD , 0≤ m≤ 9

Now for any integer m such that 0≤ m≤ 9, we have mD = (m−10)D, so

[R1 +R2 +R3 +R4−4∞] = (m−10)D , 0≤ m≤ 9. (?)

Our proof is divided in five cases

Case m = 0

Formula (?) becomes
[R1 +R2 +R3 +R4−4∞] = 0.

The Abel Jacobi theorem involves the existence of a function F such that

div(F) = R1 +R2 +R3 +R4−4∞

so F ∈L (4∞), and lemma (2.1) gives F (x,y) = a+bx+ cx2; x must be in the Q such as [Q(x) : Q] = 2 and x2−2x+2 6= 0. We get a
family of quartic points

G0 =
{(

x, ±
√

x5 +1)
)
| x ∈ [Q(x) : Q] = 2, x2−2x+2 6= 0

}
.

Cases m = 1 and m = 9
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For m = 1: The formula (?) and lemma (2.2) give

[R1 +R2 +R3 +R4−4∞] =−9D =−
[
P0 +P1−2∞

]
.

This means [
R1 +R2 +R3 +R4 +P0 +P1−6∞

]
= 0

The Abel Jacobi theorem involves the existence of a function F such that

div(F) = R1 +R2 +R3 +R4 +P0 +P1−6∞.

So F ∈L (6∞), then F (x,y) = u+ vx+wx2 +dx3 + ey (e 6= 0). We have F
(
P1
)
= F (P0) = 0, so u− e = 0 and u− v+w−d = 0, thus

F (x,y) = u+(u+w−d)x+wx2 +dx3 +uy u 6= 0.

At the points Ri, we have y =−1+(−1−a+ c)x−ax2− cx3 with a = w
u and c = d

u . By substituting y in y2− x5−1 = 0 and simplifying
by x(x+1) we obtain

B1(x) = c2x4 +
(

2ac− c2−1
)

x3 +
(

a2− c2 +2c+1
)

x2 +
(

a2 +(2−2c)a+ c2−1
)

x+2a−2c+2 = 0

We must have B1(0) 6= 0 and B1(−1) 6= 0 which involves a 6= c−1 and c 6= 0. We have a family of quartic points

G1,1 =
{ (

x, +(−1+(−1−a+ c)x−ax2− cx3)
)
| a, c ∈Q, a 6= c−1, c 6= 0, x root of B1 (x) = 0

}
For m = 9 : The formula (?) and lemma (2.2) give

[R1 +R2 +R3 +R4−4∞] =−D =− [P0 +P1−2∞]

This means
[R1 +R2 +R3 +R4 +P0 +P1−6∞] = 0

The Abel Jacobi theorem involves the existence of a function F such that

div(F) = R1 +R2 +R3 +R4 +P0 +P1−6∞.

So F ∈L (6∞), hence F (x,y) = u+ vx+wx2 +dx3 + ey (e 6= 0). We have F (P1) = F (P0) = 0, so u− e = 0 et u− v+w−d = 0, then

F (x,y) = u+(u+w−d)x+wx2 +dx3 +uy u 6= 0.

At the points Ri, we have y = 1+(1+a− c)x+ax2 + cx3 with a =−w
u and c =− d

u . By substituting y in y2− x5−1 = 0 and simplifying
by x(x+1), we have

B1(x) = c2x4 +
(

2ac− c2−1
)

x3 +
(

a2− c2 +2c+1
)

x2 +
(

a2 +(2−2c)a+ c2−1
)

x+2a−2c+2 = 0

We must have B1(0) 6= 0 and B1(−1) 6= 0 involving a 6= c−1 and c 6= 0. We get a family of quartic points

G1,2 =
{ (

x, −(−1+(−1−a+ c)x−ax2− cx3)
)
| a, c ∈Q, a 6= c−1, c 6= 0, x root of B1 (x) = 0

}
.

Finally, we get a second family of quartic points G1 = G1,1∪G1,2.

Cases m = 2 and m = 8

For m = 2 : the formula (?) becomes
[R1 +R2 +R3 +R4−4∞] =−8D =−

[
2P1−2∞

]
This means [

R1 +R2 +R3 +R4 +2P1−6∞
]
= 0

The Abel Jacobi theorem involves the existence of a function F such that

div(F) = R1 +R2 +R3 +R4 +2P1−6∞

So F ∈L (6∞), hence F (x,y) = a+bx+ cx2 +dx3 + ey (e 6= 0) . The point P1 is order 2, so u− e = 0 and v = 0, thus

F (x,y) = u+wx2 +dx3 +uy

At the points Ri, we have −uy = u+wx2 +dx3 (u 6= 0), so y =−1+ax2 +cx3 with a =−w
u and k =− d

u . Substuting y to y2 = x5 +1, we
have

x2
(

a2x4 +2acx3− x3 +a2x2−2cx−2a
)
= 0.

Simplifying by x2, we have
B2 (x) = c2x4 +2acx3− x3 +a2x2−2cx−2a.

We must have ac 6= 0 and a 6= c+1. We obtain a family of quartic points :

G2,1 =
{(

x,
(

cx3 +ax2−1
))
| a, c ∈Q∗, a 6= c+1, x root of B2 (x) = 0

}
.

For m = 8 : by a similar argument as in case m = 2, we have

G2,2 =
{(

x, −
(

cx3 +ax2−1
))
| a, c ∈Q∗, a 6= c+1, x root of B2 (x) = 0

}
.

Finally, we have the third family G2 = G2,1∪G2,2.
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Cases m = 3 and m = 7

For m = 3 : the formula (?) becomes

[R1 +R2 +R3 +R4−4∞] =−7D =−
[
Q1 +Q2−2∞

]
This means [

R1 +R2 +R3 +R4 +Q1 +Q2−6∞
]
= 0

The Abel Jacobi theorem involves the existence of a function F such that

div(F) = R1 +R2 +R3 +R4 +Q1 +Q2−6∞.

Then F (x,y) = u+ vx+wx2 +dx3 + ey (e 6= 0). We have F
(
Q1
)
= F

(
Q2
)
= 0, so u+ v−2d− e = 0 and v+2w+2d +2e = 0, hence

F (x,y) = 2w+4d +3e+(−2w−2d−2e)x+wx2 +dx3 + ey (e 6= 0).

At points Ri, we have y = (−3−2a−4c) + (2+2a+2c)x− ax2− cx3 with a = w
e and c = d

e . Substuting y into y2 = x5 + 1 and
simplifying by x2−2x+2, we have

B3 (x) = c2x4 +
(

2c2 +2ac−1
)

x3 +
(
−2c2−4c+a2−2

)
x2 +

(
(−4a−2)c−2a2−4a−2

)
x+8c2 +(8a+12)c+2a2 +6a+4 = 0.

We must have c 6= 0 and a 6=−1−2c. We get a family of quartic points

G3,1 =
{ (

x, (−3−2a−4c+(2+2a+2c)x−ax2− cx3)
)
| a, c ∈Qc 6= 0, a 6=−1−2c, x root of B3 (x) = 0

}
For m = 7 : by a similar argument as in previous case, we get a family of quartic points

G3,2 =
{ (

x, −(−3−2a−4c+(2+2a+2c)x−ax2− cx3)
)
| a, c ∈Q c 6= 0, a 6=−1−2c, x root of B3 (x) = 0

}
Therefore, we have the fourth family G3 = G3,1∪G3,2.

Cases m = 4 and m = 6

For m = 4 : it exists a fonction F such that div(F) = R1 +R2 +R3 +R4 +P1−5∞, hence F ∈L (5∞),

F (x,y) = u+ vx+wx2 +dy (d 6= 0) .

We have F (P1) = 0, therefore u+d = 0, then F (x,y) = u+ vx+wx2−uy, (u 6= 0). At points Ri, we have y = 1+ax+ cx2. Substiting y to
y2 = x5 +1, we have

x
(

x4 + c2 x3 +2acx2 +
(

2c+a2
)

x+2a
)
= 0.

Simplifiying by x, we have the minimal polynomial

B4(x) = x4 + c2 x3 +2acx2 +
(

2c+a2
)

x+2a = 0.

We must have a 6= 0. We obtain a family of quartic points :

G4,1 =
{(

x, +(1+ax+ cx2)
)
| a, c ∈Q, a 6= 0, x root of B4 (x) = 0

}
.

For m = 6 : by a similar argument as in previous case, we get a family of quartic points :

G4,2 =
{(

x, −(1+ax+ cx2)
)
| a, c ∈Q, a 6= 0, x root of B4 (x) = 0

}
Therefore, we have the firth family : G4 = G4,1∪G4,2.

Case m = 5

It exists F such that div(F) = R1 +R2 +R3 +R4 +P0−5∞, so F ∈L (5∞), then

F (x,y) = u+ vx+wx2 +dy (d 6= 0) .

We have F (P0) = 0, so v = u+w, therefore F (x,y) = u+(u+w)x+wx2 +dy. At points Ri, we have y =−a+(−a− c)x−cx2 with a = u
d

and c = w
d . Substiting y to y2 = x5 +1, we have

(x+1)
(

x4 +
(

c2 +1
)

x3 +
(

c2 +2ac−1
)

x2 +
(

2ac+a2 +1
)

x+a2−1
)
= 0.

Simplifliying by x+1, we have the polynomial

B5 (x) = x4 +
(

c2 +1
)

x3 +
(

c2 +2ac−1
)

x2 +
(

2ac+a2 +1
)

x+a2−1.

We must have a 6=±1, therefore, we have the fifth family :

G5 =
{(

x, (−a+(−a− l)x− cx2)
)
| a, c ∈Q, a 6=±1, x root of B5 (x) = 0

}
.
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