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ABSTRACT

In this study, we formulate and compare two different Lagrangean
relaxation-based decompositions for multicommodity network problems
with penalized constraints. These problems are different versions of
capacitated multicommodity network problems where capacity
constraints can be violated for additional penalty costs. These costs are
reflected as nonlinear terms in the objective function; hence, these
problems turn out to be nonlinear mixed-integer optimization problems.
To the best of our knowledge, there is no exact solution algorithm for this
type of problem. We propose two kinds of Lagrangean relaxation-based
decompositions and solve these problems with the subgradient algorithm.
The resulting subproblems are easy to solve and the proposed algorithms
can reach reasonable solutions where CPLEX solver cannot even find a
solution. In the study, we also conduct a computational analysis where
we compare two relaxations over various performance measures. Even
though two relaxations present similar performances in terms of
computation times and the number of iterations, we observed that
Relaxation 1 statistically outperforms Relaxation 2.

Keywords: Multicommodity Network Design Problem, Lagrangean
Relaxation, Subgradient Algorithm, Decomposition.
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KAPASITE iIHLALLI COKLU MAL SEBEKE DiZAYN PROBLEMI
ICIN LAGRANGEAN GEVSETMESI TABANLI BIR COZUM
YAKLASIMI

0z

Bu ¢alismada, cezalandirict kisitlara sahip ¢oklu mal sebeke problemi igin
Lagrangean gevsetmesi tabanl iki farkli ayristtrma yaklasimi formiile
edilmekte ve karsilagtirilmaktadir. Bu problemler kapasite kisitlarinin ilave
bir ceza maliyeti ile ihlal edilebiledigi kapasite kisitl ¢oklu mal sebeke
problemlerinin farkli versiyonlaridir. Bu maliyetler amag¢ fonksiyonuna
dogrusal olmayan terimler olarak yansitilmakta, bu kapsamda bu
problemler dogrusal olmayan karisik tam sayili eniyileme problemlerine
doniismektedir. Bilgimiz dahilinde, bu tip problemlerin c¢oziimii icin
herhangi bir kesin ¢oziim algoritmast bulunmamaktadir. Bu problemler igin
iki farkli Lagrangean gevsetmesi tabanli ayrigtirma teklif etmekte ve
gradyant alti algoritmast ile ¢ézmekteyiz. Ortaya ¢ikan alt-problemler
kolaylikla ¢oziilebilmekte ve onerilen algoritmalar CPLEX ¢éziiciiniin
herhangi bir ¢oziim bile bulamadigi durumlar i¢in makul sonuglar elde
etmektedir. Calismada ayrica bu iki gevsetmenin farkli performans
metrikleri bazinda karsilagtirmasinin yapildigi bir hesaplamali analiz de
vapmaktayiz. Her ne kadar iki gevsetme de ¢oziim siiresi ve iterasyon adedi
agisindan benzer performanslar gosterse de Gevsetme 1’nin istatistiksel
olarak Gevsetme 2 den daha iistiin oldugunu gézlemledik.

Anahtar Kelimeler: Coklu Mal Sebeke Dizayn Problemi, Lagrangean
Gevsetmesi, Gradyan Alti Algoritmasi, Ayristirma.
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1. INTRODUCTION

Multicommodity network flow (MCNF) problems are used extensively in
operations research or management applications such as production
scheduling and planning, transportation, and routing where more than one
commodity is to be shipped over a network from a designated origin node to
a destination node. There are mainly three types of MCNF problems: max
MCNF problem, the max-concurrent flow problem, and min-cost MNCF
problem (Wang, 2018a). In max MCNF problem sum of all flows of
commodities is aimed to be maximized. Max-concurrent flow problem
maximizes the percentage of satisfied demands of all commodities. Min-
cost MCNF, on the other hand, aims to satisfy all demands for all
commodities by finding a feasible assignment of flows to arcs. For this
problem type, the major variant is incapacitated MCNF where there are no
capacity limits enforced for arcs.

Even though min-cost MCNF models arise in different forms, two of them
are mostly seen. These are network routing and network design problems
(Wang, 2018a). Network routing problems seek a feasible assignment of
flows to arcs for all commodities with a minimum cost without violating the
capacity constraints of arcs. Network routing problems are usually seen in
telecommunication and warehouse management applications ('Yousefi
Nejad Attari et al., 2020). In network design problems, we design a network
on a given graph by determining which arcs to include in the network and
the amount of flow on a given arc by satisfying the demands of all
commodities. In capacitated version, the capacities of arcs cannot be
violated. Network design problems have numerous applications in
transportation, postal services, and telecommunication (Ghaffarinasab et al.,
2020).

In this study, we consider a min-cost multicommodity network design
problem where arc capacities can be violated for a penalty cost. The penalty
cost for excess flow on an arc is reflected in the objective function on
quadratic form; hence, the problem turns out to be a nonlinear mixed-integer
multicommodity network flow problem. As Bektas et al. (2010) remark,
there is no exact solution method for this type of problem. In this respect,
we consider two types of Lagrangean-based decompositions, one of which
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was proposed by Bektas et al. (2010) as flow decomposition. These
decompositions yield subproblems that can be solved efficiently compared
to the original problem. To find solutions for these decompositions, we
employ a subgradient algorithm. With this study, we aim to contribute to the
MNCEF literature by introducing various solution techniques.

The study is organized as follows: Section 2 provides a literature review for
the problem. In section 3 we formulate the problem and present two
different decompositions. Additionally, we give details of the algorithm
based on subgradient optimization in this section. Section 4 gives details of
an empirical study conducted for comparing two decompositions on a test
set. Finally, we conclude in Section 5.

2. LITERATURE REVIEW

Being very popular among many scheduling, routing, and transportation
applications, MNCF problems are well studied in the literature. In his paper,
Wang (2018a) surveys the last three decades and provides a summary for
applications and various mathematical formulations for MCNF problems.
Focusing mainly on min-cost MCNF problems, he remarks that most of the
MCNF problems are formulated as network routing and network design
problems. In his follow-up paper, Wang (2018b) surveys MCNF solution
methods that are proposed in the literature. He classifies solution methods
as; primal and dual-based solution methods, approximation methods,
interior-point methods, and convex programming methods.

Among solution approaches, Holmberg and Yuan (2000) propose a branch
and bound algorithm for knapsack relaxation of the multicommodity
capacitated network design problem. Utilizing a subgradient algorithm
having additional features such as special penalty tests and cutting criteria,
they show that they obtain optimal solutions in very short computation times
with respect to commercial software packages. Regarding the Lagrangean-
relaxation approach, Crainic et al. (2001) studied different relaxation
techniques for large-scale capacitated MCNF problems. They propose two
types of relaxations for the problem: by relaxing the capacity constraints
they get a shortest path relaxation and by relaxing the network flow
constraints they get knapsack relaxation. They utilize a bundle-based
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algorithm and subgradient method for solving them. They remark that both
solution approaches perform well provided that the subgradient method is
tuned properly. Costa (2005) focuses on applications of Benders
decomposition to MCNF network design problems and presents a review of
these applications. Katayama et al. (2009) propose a capacity scaling
heuristic by utilizing a column generation and row generation technique for
solving multicommodity capacitated network design problems. Combining
row and column generation techniques, their proposed heuristic generates
high-quality results based on computational experiments involving 196
problem instances. Alysson et al. (2009) compare three sets of inequalities
that are used for strengthening the multicommodity capacitated network
design problem formulation. They show that theoretical results apply to any
network design problem for which feasible solutions are obtained by solving
subproblems. Karsten et al. (2015) study a multicommodity network flow
problem where a time constraint is imposed and apply it to a liner shipping
network design case. The problem imposes time limits on the duration of the
transit of the commodities through the network. They remark that ignoring
time constraints results in significant differences in revenues compared to
solving the same problem while these constraints are imposed. Considering
that time constraints make the problem more complex, they propose an
algorithm to reduce computation times. They show that the proposed
technique solves the problem in reasonable times. Moradi et al. (2015)
present a column generation algorithm for solving a bi-objective problem.
Their approach is based on bi-objective simplex and Dantzig-Wolfe
decomposition. They start the methodology by solving a single objective
MCNF problem with Dantzig-Wolfe decomposition. Afterward, the
algorithm moves from one non-dominated extreme point to another, as in
simplex until there is no entering variable left. Gendron and Gouveia (2016)
consider the piecewise linear multicommodity network design problem with
an additional constraint enforcing that the total flow on each arc must be an
integer. These types of problems are common in transportation and logistics
because the total flow might be represented with vehicles or containers.
They propose a formulation by using discretization which is commonly used
in mixed-integer programming. They develop a Lagrangean relaxation
solution approach and show that their approach is efficient and effective.
Chouman et al. (2018) propose a novel branch-and-cut algorithm for solving
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multicommodity capacitated fixed charge network design problem. They
incorporate several filtering methods to the algorithm that exploits the
structure of the problem. Thus, they inhibit combinations of values of some
variables. They show that filtering significantly improves the performance
of the branch-and-cut algorithm. Oguz et al. (2018) consider restricted
continuous facility location problems where location of a facility can be
anywhere on the planet except for in restricted regions. They model the
problem as a MCNF problem and propose Benders decomposition algorithm
to find the optimal solution to the model. They conduct computational
experiments and show that the proposed method outperforms commercial
solvers.

Among newer studies dealing with MNCF problems, Anisi and Fathabadi
(2019) consider the survivable multicommodity network design with node
capacities and flow restrictions. Being a variant of the multicommodity
network design problem, these problems aim to minimize the cost of failure
in addition to design cost. The design aims to ensure a feasible flow in case
of a simultaneous failure on arcs. They utilize Benders decomposition to
solve the problem as well as a new approach that considers particular failure
scenarios. Guimaraes et al. (2020) studied a variant of the MNCF problem
where multiple transport lines and time windows are considered. They
proposed two mixed-integer programming models and two objective
functions, in particular, minimization of network operational costs and
minimization of travel times. Trivella et al. (2021) studied a generalization
of MCNF where transit time restrictions are modeled as soft constraints and
delays are penalized. Kazemzadeh et al. (2021) introduced node-based
Lagrangian relaxation where the resulting subproblem decomposes by
nodes.

There are not many studies that deal with nonlinear integer multicommodity
network design problems. Crainic and Rousseau (1986) study a nonlinear
mixed-integer multicommodity network flow problem. They present an
algorithm combining heuristics and optimization. Belotti et al. (2007)
consider a multicommodity network design problem with discrete node
costs. Costs are defined as stepwise functions of facilities installed at these
nodes. They propose a branch-and-cut algorithm for solving the problem.
Bektas et al. (2010) propose Lagrangean-based decomposition algorithms
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for multicommodity network design problems where arc capacities can be
violated at the expense of a penalty. This penalty adds nonlinear cost to the
min-cost objective function. They propose two decompositions: flow
decomposition that is obtained by relaxing capacity constraints, and arc
decomposition that is obtained by relaxing flow constraints. They show that
with the help of a special algorithm developed to solve subproblems in arc
decomposition, arc decomposition performs better in terms of convergence
but worse in terms of computation time and the number of iterations.
Paraskevopoulos et al. (2016) study a variant of fixed-charge
multicommodity network design problem having additional congestion
costs. They model the problem as a nonlinear integer programming model,
and they propose two solution approaches. The first solution approach is the
reformulation of the problem as a mixed-integer second-order cone
program. The second uses an evolutionary algorithm combining iterated
local search and scatter search. They remark that the first solution approach
provides satisfactory results provided that conic representations of nonlinear
terms are available. Additionally, they observe that the evolutionary
algorithm is not only satisfactory but also achieves good quality solutions in
short computational times.

For a recent survey regarding classification, applications, and solution
methods of MNCF problems, the interested reader is referred to Salimifard
and Bigharaz (2020).

3. PROBLEM FORMULATION AND OPTIMIZATION WITH
LAGRANGEAN RELAXATION

We formulate the min-cost multicommodity network flow problem with
capacity violations in harmony with the definition of Bektas et al. (2010).
We have a graph of G = (N, A) where N corresponds to set of nodes and A
corresponds to set of arcs. Two different sets N = {j € N|(i,j) € A} and
N7 ={j € N|(j,i) € A} are defined for each node. We have a set of
commodities P. In this respect, we formulate the problem as follow:

Parameters:
B;;: Upper bound on the amount of excess flow on each arc
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fij+ Fixed cost of activating a network

wP: Quantity of commodity p that is to be sent from o(p) to d(p)

d¥ =wPifi = o(p),d? = —wPifi = d(p)

ci’}: The unit cost of routing the demand for commodity p over arc (i, j)
u;;: Capacity of arc (i, )

C;;: Penalty cost for excess flow on arc (i, j)

Decision Variables:

x{: The amount of commodity p flowing on arc (i, j) where x; > 0
yij- Design variable for selecting arc (i, j) where y;; € {0,1}

e;j. Excess flow on arc (i, j) where e;; = 0.

The Model:
(F) Minimize Z fijyij + Z z Cipj xfj
(i,j)eA (i,j)eA peP (1)
+ Z Cij(eij)?
(i,)eA
Subject to
— N
Z xi;? Z X = d; VieN,p €EP (2)
jen;* JEN;~
xf; < wPy;; v(i,j)EAp €P @)
z xii? Swjyij + e v(i,j) €A (4)
pEP
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eij < Bjjyij v(i,j) €A (%)

The penalty term (e;;)? adds nonlinearity to the formulation. This term is
quadratic in our formulation, however, the power of this term could be cubic
or higher, as well (Bektas et al., 2010). Constraint (2) is the flow
conservation constraint, Constraint (3) ensures that flow of an arc is positive
provided that it is selected, Constraint (4) enforces that total flow on an arc
should be less than and equal to the sum of the capacity of that arc and
excess flow on that arc, Constraint (5) imposes that maximum amount of
excess flow on an arc cannot be more than a predefined value and can be
positive unless it is selected.

This problem is a nonlinear mixed-integer problem and as Bektas et al.
(2010) remark, there exists no exact solution method proposed in the
literature. In this respect, we define two different Lagrangean relaxations for
the problem. Lagrangean relaxation aims to get rid of complicating
constraints by adding them to the objective function by multiplying them
with Lagrengean multipliers so that the resulting problem can be partitioned
into small subproblems which can be solved relatively easily. The
Lagrangean relaxation approach is classified as price-directive methods
since Lagrangean multipliers place prices on the dualized constraints (Ahuja
et al., 1993). In this respect, this technique aims to find proper prices so that
an optimal solution to the Lagrangean subproblem provides a solution to the
main problem.

3.1. Relaxation 1

This relaxation is proposed by Bektas et al. (2010) and obtained by relaxing
capacity constraints (Constraint sets (3) and (4)). By defining Lagrangean
variables ufj and a;; for these constraint sets respectively, we formulate the

relaxed problem as follows.
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(LR1) Min z [fij — z ﬂlpj wP —o;u;i]yij

(i,))ed pEP
(i,j)EA peP
+ Z [Cij(e1))? = aije]
(i.pea
Subject to (2), (5), (6) (8)

We can decompose (LR1) into two subproblems. The first subproblem is
defined over y and e variables. As shown by Bektas et al. (2010), this
problem can be solved by inspection.

(SP1) Min Z [fij — Z i wP = ayulyi + Cij(e)?

(.ea peP (9)
~ 0ij€ij
Subject to (5) (10)
We define the second problem over x variables as shown below.
(SP2) Min Z Z(cfj +uf; + o)) x]) (11)
(i,j)EA peP
Subject to 2 (12)

This problem can be decomposed into |P| single commodity minimum cost
network problems. We know that this problem is well-solved in the sense
that an efficient algorithm is known. We can use the shortest path algorithm
to solve each of these problems.

3.2. Relaxation 2

The second relaxation dualizes constraint sets (3), (4), and (5). We define
nonnegative Lagrangean variables ufj, o;j, and y;; for these constraint sets

respectively and formulate the relaxed problem as follows.
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(LR2) Min Z [fij = Bijvij — z i wP = oyulyi;

(i,j)ed pEP
(i,j)EA peP
+ z [Cij(ei)? — (vij — 0i)es]
(i.))eA
Subject to 2 (14)

This problem can be decomposed into 3 subproblems. The first problem is
defined over x variables.

(SP1)  Min Z Z(cfj + pp; + 03) X (15)
(i,j)EA peP
Subject to (2) (16)

This subproblem decomposes into a set of minimum cost network flow
problems for each commodity p. Therefore, we need to solve |P| minimum
cost network flow problems.

The second subproblem is defined over y variables and formulated as
follows. This problem is an unconstrained binary optimization problem and
can be solved by inspection easily.

(SP2) Min Z [fij — Bijvij — Z ij wP — o u;;]yij (17)
(i,))€A pEP

The last subproblem is defined over e variables.

(SP3) Min Z [Cii(ei)? — (vij — 0i))eij] (18)
(L.))eA

This problem is a quadratic nonlinear programming problem. Since e;;

nonnegative, this is a convex function with a unique minimum. That is, the

second derivative is positive and thus the solution to the first derivative

gives the unique minimum. Therefore, this problem is easy to solve, too
(Bektas et al., 2010).
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3.3. Optimization with Subgradient Algorithm

The subgradient algorithm is an easy and simple technique to solve non-
differentiable Lagrangean multiplier problems. For a given set of
multipliers, the relaxed problem provides a Lower Bound (LB) for the
original problem. To obtain an Upper Bound (UB), problem F is solved
while (y,q) is fixed to (y*,q*) where these values correspond to the
solution to the relaxed problem. In this case, the resulting problem turns out
to be a linear programming problem. The subgradient algorithm is shown in
Figure 1.

Define:

t: Number of iterations

st: Step size at each iteration

SP;, SP,, SP;: Optimal objective values for SP1, SP2, SP3, respectively.
W, p: Optimal objective value for the Lagrangean problem.

Pt = (Z”Z) : Vector of Lagrangean multipliers for Relaxation 1.
ij

tiP
¢t = | o;;° |: Vector of Lagrangean multipliers for Relaxation 2.
Yii?
Gijp"
gt =1 g9i;* |: Vector of subgradients for SP1,SP2,SP3 , respectively.
3
Yij

1. Initialize ¢t = ¢°
LB = —oand UB = o
t=1

> w0

While gap = == > £ do
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4.1 Solve Lagrangean dual
4.1.1 Solve SP1, get y;; and ¢&;; (Relaxation 1)
Solve SP1, get %}; (Relaxation 2)
4.1.2  Solve SP2, get x;, (Relaxation 1)
Solve SP2, get y;; (Relaxation 2)
4.1.3 Solve SP3, get g;; (Relaxation 2)

4.2 W,p = SP; + SP, (Relaxation 1)
W.p = SP; + SP, + SP; (Relaxation 2)

4.3 If W, > LB then
LB = WLD

4.4 Solve {F. = F|y;; and ¢;; values are fixed} and get Fr*,xijp*

45 yp=pr— z fi; where R = {(i,)) € Aly;*
(i,))ER
=1 and injp* = 0}
pEP

4.6 Calculate subgradients

46.1 gt =X, —wPy,; V(Q,j)EApEP

gij2 =lepj—uij37ij—e_ij V(i,j)EA
pEP

gii>=¢e;—B;y; V(Gj€EA
. 1

gt = (i}‘{?’z ) (Relaxation 1)

Y
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Yijp'
gt =| gi* | (Relaxation 2)
gij3
4.7 Calculate step length
st = UB = Wip
llg*ll?

4.8 Update Lagrangean multipliers
¢t+1 — ¢t + Stgt
49 t=t+1
5. End while

Figure 1. Subgradient algorithm for the relaxations.

Simplicity of the subgradient algorithm has made it a popular option for
solving Lagrangean multiplier problems. At each iteration, the algorithm
takes a small step from the current point in the direction opposite to a
subgradient. The most important parameter in the algorithm is the step
length. One option is to use a constant step length. This option guarantees
convergence; however, the convergence is too slow. In this respect, we
employ a dynamic step length which provides faster convergence (Wolsey,
1998).

4. COMPUTATIONAL ANALYSIS

We have performed a computational analysis to compare the performances
of these two relaxations. For this purpose, we used the first 36 instances
defined in Crainic et al. (2001) which are also used by Bektas et al. (2010).
As done by Bektas et al. (2010), we reduced capacities of arcs in the
instances as u;; = u;;/2 and set penalty costs C;; to twice the flow cost of
each arc. Subproblems are solved by using IBM ILOG CPLEX 12.5.
Additionally, original problem is solved with IBM ILOG CPLEX 12.5 to
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evaluate lower bounds achieved. For both relaxations, subgradient algorithm
is stopped whenever the gap does not improve for 30 consecutive iterations.
The algorithm is coded with Java and run using an Intel Core i7 2.6 GHz. 8
GB RAM computer. Computational results are shown in Table 1.

Table 1. Computational results.

Relaxation 1 Relaxation 2

Inst. N A P i t Js 9o i t Is Jo

11 10 35 10 128 6.90 0.67 0.67 154 5.10 0.24 0.24
1.2 10 35 10 29 3.14 2.63 0.62 50 3.34 1.80 1.01
13 10 35 10 14 183 16.61 6.43 22 1.89 9.34 4.99

1.4 10 35 10 18 187 29.19 - 18 1.78 28.81 -
1.5 10 35 10 81 3.84 3586 3156 94 4.37 3386 32.22
1.6 10 35 10 95 552 2731 - 92 3.90 27.24 -
2.1 10 35 25 25 357 5378 48.02 22 2.98 1990 1848
2.2 10 35 25 102 556 7163 - 102 5.56 32.93 -

2.3 10 35 25 64 6.54 6794 65.30 62 431 4191 40.53
2.4 10 35 25 33 430 7278 5432 43  3.125 4555 45.16
2.5 10 35 25 52 538 7066 52.72 37 3.57 50.01 49.48
2.6 10 35 25 33 404 6020 42.06 117 7.20 4046 39.94
31 10 35 50 25 471 7092 4845 33 6.45 3756 35.02
3.2 10 35 50 32 529 6356 3145 100 10.09 3298 32.04
3.3 10 35 50 52 857 6943 - 77  6.187 39.29 -
34 10 35 50 32 559 7527 5297 31 3.39 56.93 53.56
35 10 35 50 48 576 67.75 4743 85 5.62 45.67 4453
3.6 10 35 50 52 6.52  50.27 - 149 1125 36.99 -
41 10 60 10 44 4.33 6.99 3.50 67 6.00 11.33 0.66
4.2 10 60 10 27 344 1961 1017 23 2.10 12.39 0.98
4.3 10 60 10 132 5.92 925 1445 178 6.60 8.49 8.49
4.4 10 60 10 45 4.53 4.87 0.32 46 3.26 8.36 1.07
45 10 60 10 150 6.63 8.81 7.45 34 2.73 12.83 0.47
4.6 10 60 10 17 256 3886 12.78 70 3.85 3225 13.10
5.1 10 60 25 41 564 2801 17.39 37 4.2 2032 1261
5.2 10 60 25 115 13.2  20.38 7.73 34 3.73 20.29 3.11
5.3 10 60 25 70 741 5030 10.85 59 5.14 1554 10.24

5.4 10 60 25 45 432 7449 - 45 4.32 22.79 -
5.5 10 60 25 44 5.69 67.46 - 59 5.73 49.68 -
5.6 10 60 25 54 6.2 60.84 - 48  3.406 58.12 -
6.1 10 60 50 34 712 6738 23.22 88  12.39 2715 22.87
6.2 10 60 50 62 118 63.52 - 44 7.03 35.69 -
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-Continuation of the Table 1.

6.3 10 60 50 74 1402  40.25 - 69 5.68 25.77
6.4 10 60 50 34 554  81.09 - 84 1517 36.33
6.5 10 60 50 42 7.24 7578 - 82  13.23 40.62
6.6 10 60 50 69 7.76 7751 - 69 7.77 37.46

In Table 1, columns 2-4 correspond to the size of the instance in terms of
the number of arcs, nodes, and commodities, respectively. Next two main
columns present results for Relaxation 1 and 2. Under these columns, we
provide the number of iterations performed for solution (i), computation
time (CPU time) of the algorithm in seconds (t), gap value (in %) calculated
based on UB and LB difference (g,) and gap value (in %) calculated based
on optimal value achieved by CPLEX solver and LB difference (g,). The
dashed lines under the last columns indicate those instances for which
CPLEX cannot obtain optimal values. As clearly seen, CPLEX fails to find
an optimal solution for 13 problems (36% of the problem set). As problem
size increases, the performance of the CPLEX decreases, as expected. Table
1 indicates that computation times for both relaxations are less than a
minute (maximum being 16 seconds) while we observe a slight increase as
problems get more complex. To compare performances of these two
relaxations visually, we plot performance measures vs. instances as shown
in Figures 2-5. The gap g, is computed and graphed only for those instances
that CPLEX solves optimally.
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5. CONCLUSION

In this study, we consider a min-cost multicommodity network design
problem where arc capacities can be violated for a penalty cost. When the
penalty term is quadratic or has higher power, the problem turns out to be a
nonlinear mixed-integer problem that does not have an exact solution
method proposed in the literature. To solve this problem efficiently, we
consider two different Lagrangean relaxations which decompose the
original problem into smaller and easy to solve subproblems. One of these
relaxations was proposed by Bektas et al. (2010). We propose another
relaxation and compare this relaxation with the former one. We
implemented a computational study over a set of instances and solved these
instances with the CPLEX solver and two relaxation approaches. Our
computational study has shown that the CPLEX solver cannot obtain a
solution for %36 of the test instances while two relaxation-based approaches
achieve solutions with reasonable gaps. We also observe from the
computational study that, our relaxation (Relaxation 2) outperforms that of
Bektas et al. (2010) (Relaxation 1) in terms of performance measures gap g,
and gap g,. Hence, this relaxation can be used for solving aforementioned
problems which do not have exact solution methods and cannot be solved
by on-the-shelf optimizers efficiently.

We used a subgradient algorithm to optimize the Lagrangean problem. One
of the drawbacks of this algorithm is that it requires fine-tuning of
parameters to achieve satisfactory results. Particularly, we observed that
parameter A that is used to calculate step length should be tuned carefully
and values varying between 0.05 and 0.9 provide good results. Additionally,
initial values of Lagrangean multipliers have a dramatic impact on the
performance of the algorithm. Hence, as future work, a starting heuristic
that will find suitable parameter settings would increase the performance of
the algorithm.

As we stated previously, gap g, improves better than the gap g, as problem
size increases. This result indicates that we need to have a better procedure
to generate UBs for the algorithm. Therefore, this could be another future
work for this study.
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