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Abstract

In this study, the solutions of Simplified Magnetohyrodynamics (SMHD) equations by finite element method are examined
with nonlinear time relaxation term. The differential filter K(lu —u|l(u— ﬁ)) term is added to SMHD equations. Also
SMHD Nonlinear Time Relaxation Model (SMHDNTRM) is introduced. The model is discretized by Backward-Euler (BE)
method to obtain the finite element solutions. Moreover, the stability of the method is proved. The method is found
unconditionally stable. The effectiveness of the method is exemplified by several cases with comparing different methods.
FreeFem++ is used for all computations.
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DOGRUSAL OLMAYAN ZAMAN RAHATLAMALI BASITLESTIRILMIS
MANYETOHIDRODINAMIKLER ICiN BACKWARD-EULER YONTEMIi
COZUMLERI VE KARARLILIK ANALIZi

Ozet

Bu calismada, Basitlestirilmis Manyetohidrodinamik (SMHD) denklemlerinin sonlu elemanlar yontemiyle ¢éziimleri lineer
olmayan zaman rahatlatma terimi ile incelenmistir. SMHD denklemlerine diferansiyel filtre K(lu —u|(u— ﬁ)) terimi
eklenmis ve SMHD Lineer Olmayan Zaman Rahatlatma Modeli (SMHDNTRM) tanitilmistir. Model, sonlu elemanlar
coziimlerinin elde edilmesi icin Backward-Euler (BE) yéntemi ile ayriklastirilmistir. Yéntemin kararliligi da
kanitlanmistir. Sunulan yéntem kosulsuz olarak kararlidir. Yéntemin etkinligi, farkli yéntemlerin karsilastirilmastyla
birkag érnek ile gésterilmistir. Ttim hesaplamalar FreeFem++ kullanilarak yapilmistir.

Anahtar Kelimeler: MagnetoHydroDynamics, Backward-Euler Method, Nonlinear Time Relaxation, Finite Element Method
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field, magnetic levitation are typical examples of this [1].
The simplified MHD is obtained by eliminating magnetic
Reynolds number. Thus, fluid and magnetic equations are
) e uncoupled in MHD. The existence and uniqueness of the
fluids, such as plasmas and liquid metals. The MHD o3k form of simplified MHD (SMHD) is introduced by
modeling consists of a coupling between the Navier- Janet Peterson in [2]. In that paper, a finite element
Stokes equations of fluid dynamics and the Maxwell algorithm is also given for the approximate solution of the
equations of electromagnetism. The theoretical analysis  ¢MHD. There are several paper for numerical solutions of
and mathematical modeling of the MHD equations can be  \yp with small R,, in literature. The stability analysis of
found in [1]. When magnetic Reynolds number Rm 1S partitioned methods for MHD at small magnetic Reynolds
small, the induced field being negligible by comparison 1 ber is presented by Layton et al. in [3]. Numerical
with the imposed field. In this case the magnetic field  ;pajysis of finite element method with Crank-Nicolson
behaves quite differently. For example, in most giscretization [4] and Backward-Euler discretization [5]
experiments or industrial process R, changes between .. performed by Yuksel et. al. for SMHD. Numerical

0.001 to 0.1. Magnetic damping of jets, vortices or  anajysis of two partitioned methods for uncoupling
turbulence, magnetic stirring using a rotating magnetic

1. Introduction

MagnetoHydroDynamics (MHD) deals with mostly
dynamics of magnetic fields for electrically conducting
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evolutionary MHD flows are presented in [6]. A second
order algorithm is performed by Rong et al in [7].

We consider a time relaxation regularization which is
obtained by adding nonlinear time relaxation term to the
SMHD in the current paper. The time relaxation operator
is introduced as a numerical regularization in [8,9,10,21]
which are based on the study Chapman-Enskog
expansions by Rosenau [11], Schochet and Tadmor [12].
In [13], studies are summarized for development and
implementations of time relaxation and time relaxation
models. In their studies Brekling and his colleagues show
that these techniques can be used to advance the accuracy
and stability of fluid flow problems with higher Reynolds
numbers. In [14], Pakzad examines time averaged energy
dissipation rate for the Time Relaxation Model for 3d
turbulence with periodic boundary conditions. The
studies about the time relaxation regularization can be
found in the literature, such as [15,16,17]. The effects of
the linear and nonlinear time relaxation terms to SMHD
equations with BE finite element method is presented in
[18].

In this paper, SMHD equations are handled with nonlinear
time relaxation term to get more accurate solutions. The
stability analysis is also conducted. The unconditionally
stability of the method is proved. In the numerical
examples the effectiveness of the method is presented.
The solutions of the present method are compared with
BE and CN solutions for SMHD and BE solutions for SMHD
with linear time relaxation model (SMHDLTRM).

SMHDNTRM is obtained by adding the nonlinear term
K(lu —ul(u— ﬁ)) into SMHD as follows

N7 (u, +u-Vu)
=f+M 2 Au—-Vp+BxV¢

+(uXxB)XB (1)
V-u=20
—-Ap+V-(uxB)=0.
where k, §>0 and u is the unique solution of
lu —u|(u—u)
Uy =——F7,t>0
‘ 5 (2)

i(x,0) = u(x,0).

Let 2 ¢ R% (d=2 or 3) be an open, regular domain. The
dimensionless quasi-static MHD is modelled by the
system, see, e.g, [4]: Given time T>0, body force f,
interaction parameter N > 0, Hartmann number M > 0,
and letting Q;:= [0,T] x 2, find velocity u:Q2; - RY,
pressure p:Q2; — R, electric current density j: 2, — R%,
magnetic field B: 2; — R%, and electric potential ¢: 2 —
R satisfying

N (us+u-Vu)=f+M?Au—Vp+jXB,
V-u=0
—Ap+V-(uxB) =0,

(3)

V-j=0
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VXB=R,j, V-B=0

subject to boundary and initial conditions,

u(x,t) =0,
¢(x,t) =0,
u(x,0) = uo(x),

V(x,t) € 002 x [0, t]
V(x,t) € 002 x [0,t]

Vx € (). (4)

Here, R, = UL/n > 0, U is the characteristic speed, L is
the length of the problem, n>0 is the magnetic diffusivity,
uy € H}(2)% and V- u, = 0. j and V x B in (3) decouple
R,, < 1. Supposing B is a magnetic field that is applied
(and known), (3) reduces to the SMHD system see, e.g.,

[4]:

We examine full-discretization through Backward-Euler
(BE) time-stepping of the SMHDNTRM. Let 0 =¢t, < t; <
<+ <ty =T < oo be a discretization of the time interval
[0, T] for a constant time step At = t, — t,_,. Write z,
z(t,,). The weak form of the SMHDNTRM is presented in
the following algorithm.

Algorithm 1 (Backward-Euler
SMHDNTRM)

Given uy, €V, find (ul,,,pt,1, ¢l )EX" x Q" x S* for
eachn =0,1,2,...,K — 1, satisfying

-1 u7}1l+1 - u% h % h h h
N Y + b"(Uns1, Unsr, V)
+ M_z (Vu2+1l Vvh) - (p2+1! V- U)
+ (;V¢1’1l+1 N
+ Upyr X Bn+1» ve X Bn+1)
+(luf — @l (Eney — 3),v")
= (fn+1; vh): Vv € Xh

Method for

(6)

(V-up,1,9) =0, VgeQ"
(Vo1 — (Uprs1 X Bpit), V) = 0,
Uy — Uy _ Upyr = U
At 5
ul = ud

vy € SP

Also the solutions, stability and convergency analysis of
the original Algorithm BE method for SMHD was
presented comprehensively in [5]. This study contains the
following examinations. In section 2, some necessary
definitions and lemmas which are referred in [19] are
given. In section 3, the stability of SMHDNTRM with BE
method is presented. In Section 4, numerical examples
are examined to explain the theoretical results. The BE
and CN methods for SMHD and BE method for
SMHDLTRM are compared based on the test results. In
the last section the conclusions are given in the and
discussed.
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2. Notation and preliminaries
L%-norm and inner product are denoted by (..) and ||.||
respectively. Then similarly, the VI/pk(.(Z)-norm and the
Vl/pk(.Q)-semi-norm are denoted by ||. ||« = || ||W,§"'(!2) and
| |W;§‘(!2)' respectively. For p=2, H*(2) := W¥() and it is

denoted that ||.||; and |.|; for the corresponding norm
and semi-norm. All definitions, inequalities, lemmas and
their proofs are referred in [19]. The pressure, velocity
and electric potential spaces are presented by

Q:= {q ELz(ﬂ):Lq = 0}.

X:={v € H'(M)%:v|y, =0}, (7)
S:={y € H'(@):Y|gp = 0}

respectively. X* = H~1() is the closure of L%(Q) in ||.||_1,
where

(f v)

A2 = sups ooy (8)

Let L9 (0, T; %"(Q)) denote the space

1 (0, T; Wik (n))
v:(0,T) - W"(.Q)' v is measurable

_ (9)
- and f ||v(t)||Wk(mdt <
endowed with the norm
1/q
191 ) f POIdt | g

Write L1(W)¥) = L (0, T; Vl/pk(.Q)) and cm(w)) =
cm ([0, T];Vl/pk(ﬂ)). For v(x,t) and 1<p <o, we
introduce

IVl ook = esssupo<e<rlv(t, )i
1/p

T
Il = fIIV(t.-)IIidt : (11)
0

Let V be the divergence free subspace of X, i.e.
V={veX:(qV v)=0VqEQ}

Definition 1 Skew-symmetric trilinear form b*: X X X X
X — R is defined as

b*(u,v,w) = %(u -Vv,w) —%(u -Tw,v). (12)

Lemma 1 Let2 c R? or R% Forally,v,w € X
b*(u,v,w) < C()|[Vullllvv|[Ivw]| (13)
and

b*(w,v,w) < CA Il V2 vul| /2| vvll 7wl (14)

Lemma 2  (Discrete Gronwall Lemma) Let
At,B,ay, by, c,,d, for integers n >0 be nonnegative
numbers such that

l

l l
al+Athn SAtZdnan+Athn+Bfor l(15)
n=0 n=0

n=0
> 0.

Suppose that Atd,, < 1 for each n. Then,

l l
a; +Atz b, < (Athn
n=0 n=0
l
+ B |exp (At ((dn) (16)
Jos[2,

/(1 - Atdn))> forl=0.

Let " be a uniformly regular triangulation of Q and
h = supcnd(K). (17)

Let X" ¢ X,Q" c Q and S" c S be a conforming velocity-
pressure-potential mixed finite element space which
satisfy the LBB" condition,

(q.V-v)
inf sup ———<=>C>0.
qeqh vexh (IV111lq1) (18)

Let

Vh=vEXh:f V.-v=0vgeQm
nq q€Q (19)

As known V" ¢ V. The velocity-pressure spaces which
satisfy the LBB"™ condition and the following
approximation properties;

infpexnllu = vll; < CRE lullpr, u € HEF1(@)T (20)
inf pexnllu = vlly < CR*[lullss, u € HE*1(2)?
infllo —wl|, < ch|ll| . ¢ € H*' (@)
nf,conllp = 7ll < Ch¥[pllysr,p € H1(2)
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If LBB" condition is assured, the inequality presented
below will be used in the proof. Forallu € V/:

inf e rllVu —v)|| < CAQ)inf e nllVw —v)ll.  (21)

Stability of the Backward-Euler Method for

SMHDNTRM

Theorem 1 (Stability) The solution u" obtained by
Algorithm 1 is unconditionally stable and satisfies the
following unconditional stability bound

M-1

s 12 + NiSIIG I + ) sy —

n=0
M-1
LY ]
=0 M-1

+ (@A) /() Y |7udy |

M-1 M-1

+24¢N z 7%l + 206k Z ool s — @ |
n=0 n=0

M-1

< [Ju®" 2 + N;c6||u3||2 + 24tM? z Il frsall2s

n=0

(22)

and also

max |||7<pn+1|| (23)

< 2 h||2
0sneR—1 B ”U. ||L°°(L2)

(nuon_

M-1
+ M2NAt Z ”fn+1”2—1>
i=1

B = ||B||L°°(L°°)-

or

B 1||‘7<”n+1||

where

h —

Proof Putting v =ul,, q" =ph,,,Yv"=¢l,, into

Algorithm 1 gives as
N7 ((((uﬁﬂ —u)/(40) k)

+ b*(u2+1'u2+1'ug+1)>
+ M2V, Vipy)
~(@re Vounr) + (Voh
+ Uftiq X Bpir, Ungg X Byyq) +
k(luft = Rl (g1~ Upar), Upe1) = (s Unen)  (24)
(V- uns1, Prsa) = 0,¥q" € Q"

(=V ori +upis X By, =V @) =0 (25)

—=h —=h h 5h
u —Uu u —Uu
n+1 n n+1 n+1 (26)

At é
ul =ud
Since j*,, = —V !, , +ul,, X B and adding (24) and
(25) we obtain (skew symmetry property is used);

N7t (((u2+1 )/(At)) n+1) +M~ 2||‘7un+1||

+ [ne 12 (27)
+ K(lun - unl(un+1 ﬁ7}1l+1)ru2+1)
= (fn+1' n+1)

where

K(lun - unl(un+1 aﬁ+1) un+1)
= K(lun - unl(un+1
+ g =

—h h

Ups1) Untr

n+1)

= K(|un - unl(un+1 ;11+1)» ﬁ2+1)
+x(lug — ap (upyg —
— Upyq)

lig 1), Un i (28)
and

K(|un - unl(un+1 a2+1):uﬁ+1 - az+1)

2
= 1c ||Vt = @D (s, — ) |

2
= 1 ||V Quf = @Dy — V@Dl || 29
Denotin ho =+ (ult —arDul nd @, =
enoting Wn+1 Un — Unl)Un4q a Wn+1

J(lult —at)ul, in (29) gives as

h _ . h
v ((“T)> M7l

+ |
+K”w1’1l+1 - 5n+1”2
+r(lulk — ul|(upyy — ulyy), uly) (30)
= (fn+1:uﬁ+1)
where

(uZH - u7’1l» u2+1) = ((u2+1:u2+1) - (u%,uﬁ‘ﬂ))

[t |I” + 1 = ||ulyy —
2

(uz' u1}’ll+1) =

(lurl‘: - ﬁ’ﬁl(uﬁn - ﬁ2+1): u2+1 - ﬁ2+1)
|un - unl(un+1
8 =h
un+1) (un+1 Uy)
(41 = Tn, )
QN e ey i

2

Now let's put the previous terms into (30)
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N—l
At

(IIuZHIIZ — ]2 + [Jutyy — u2||2>
2

+ M| vul,, ||
K8 (||ahs — |’
At 2
e e

At 2 T = (fn+1'u2+1)

multiply by 24tN and summing fromn = 1to M — 1 gives
the desired result. Similarly, setting ¢ = @, in (25) with
Cauchy-Schwarz and Young’s inequalities are used to
bound the force term. Then;

Hlitall® + wlleotss — Bl +

||V¢2+1||2 = ||u’,§+1 X Bn+1||2 < BZ”“ZHHZ
2 h12 (31)
<B IIu ”L°°(L2)'

Apply (22) to (31) to prove (23).

3. Numerical Examples

In this section SMHDNTRM that is introduced by
Algorithm 1 is tested with some numerical examples. The
BE and CN methods for SMHD and BE method for
SMHDLTRM are compared based on the test results. The
linear time relaxation term x(u — %) is added to SMHD
and its introduced as SMHDLTRM in [20]. In the first
example a problem which has an exact solution is
considered. The second example has the same exact
solution but the initial conditions are different from
Example 1. These conditions make the problem blow up
with CN method. The FreeFem++ is used for all
calculations. T is final time, At is time step, M is Hartmann
Number, Re is Reynolds Number and h is mesh size for all
examples.

Example 1 Let 2 = [0,7]%,t, =0,T =1 and B = (0,0,1).
Then, the true solution of (5) for (u,p,®) is given below

[4];

() e\
u(x'y!t)_<_ ay ’ Ox )e 5;
(p(x'y' t) = (d’(X'Y) + xZ _yz)e_St:
p(x,y,t) =0

where Y(x,y) = cos(2x)cos(2y) and f and u|z, are
obtained from the true solution. The convergency of the
method is analyzed for different values of x and A4t ,
selecting Re = 25,M =20,T =1,h=1/50,6 = 1/10 in
here. The results are given in Table 1 - 4 . In Table 1, BE
method for SMHD is presented with k=0. As seen from the
Table 1, while k=1, the errors of SMHDNTRM are smaller
than BE method for SMHDLTRM and SMHD. It is also
bigger than CN method for SMHD, since the order of the
CN method is two. In Table 2, the convergences rates of
SMHD with CN and BE methods, SMHDLTRM and
SMHDNTRM with BE method are compared. In Table 3
and 4, values of p and ¢ are compared with SMHD,
SMHDLTRM and SMHDNTRM for different values of At It

seen from these tables, the pressure and potential errors
are smaller than the other methods with SMHDNTRM in
some cases.

Table 1. Velocity errors of SMHD, SMHDLTRM and
SMHDNTRM for Example 1.

llu — ugt]

At CN-SMHD  BE-SMHD BE- BE-

(xk=0) SMHDLTRM SMHDNTRM

(k=1) (k=1)

1/10 0.0184967 0.50428 0.497796 0.382574
1/20 0.0046309 0.26432 0.261351 0.124133
1/40 0.0011447 0.13523 0.133857 0.0214929
1/80 0.0002734 0.06838 0.0677267 0.0836249

Table 2. Convergence rates of SMHD, SMHDLTRM and
SMHDNTRM for Example 1.

Convergence Rates

At CN- BE-SMHD BE-SMHDLTRM BE-SMHDNTRM
SMHD (k=0) (xk=1) (k=1)
1/10
1720 1.998 0.932 0.930 1.624
1/40  2.016 0.967 0.965 1.960
1/80  2.066 0.984 0.983 2.530
Table 3. Potential errors of SMHD, SMHDLTRM and
SMHDNTRM for Example 1.
llo — @all
At BE-SMHD BE-SMHDLTRM BE-SMHDNTRM
(k=0) (k=1) (k=1)
1/10 0.277553 0.146518 0.214342
1/20 0.145644 0.144009 0.071731
1/40 0.0745424 0.0737849 0.00545451
1/80 0.0376974 0.0373372 0.0420529
1/160  0.0189512 0.0187762 0.0612152
Table 4. Pressure errors of SMHD, SMHDLTRM and
SMHDNTRM for Example 1.
llp —prl
At BE-SMHD BE-SMHDLTRM BE-SMHDNTRM
(k=0) (k=1) (k=1)
1/10 0.00516417 0.273995 0.00311038
1/20 0.00157142 0.0015402 0.000998216
1/40 0.000503184 0.000495084 0.0010316
1/80 0.000182351 0.000179983 0.00109324
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1/160 7.56518e-5 7.4825e-5 0.00113279

Example 2 Let 2 =[0,7]%t,=0,T=12 and 5. B =
(0,0,1). In this example, SMHD equation is solved both CN
and BE methods, SMHDLTRM and SMHDNTRM are solved
with BE method for h=1/10 and A4t = 1/100,Re =
6766,M = 20,5 = 1/10 and different values of k and T.
The boundary condition on 0£2 is inhomogeneous
Dirichlet: u;, = u. The initial data is given by

uo(x’J’) = (y' —X, 0)
Po(x,y) = xy
and f is the same as in Example 1.

In this example, while CN method for SMHD is blow up,
BE method is convergent [5]. We consider SMHDLTRM
and SMHDNTRM for this example to determine how the
linear time filter effects to the solutions. As seen from the
Table 5, velocity errors of SMHDNTRM are smaller than
SMHD and SMHDLTRM for all values of k. Also, when
values of k increases, the errors decrease for different
values of T. From here, in case the classical methods (CN
or BE methods) are failed, linear or nonlinear time
relaxation models can be applied to the problem to get
more accurate solutions.

In Table 6, selecting h = 1/10 and At = 1/10, the velocity
errors are compared for different values of § when k =
10 and for different values of k when § = 0.1 for BE
solutions of SMHDLTRM and SMHDNTRM. When Table 6
is examined; it is observed that while k = 10, § values
are increasing and similarly for § = 0.1, k¥ values are
increasing. As a result velocity errors are decreasing.

4. Conclusion

In this paper, we have analyzed SMHDNTRM with BE
method. The BE method for SMHD and its numerical
analysis are already given in [5], for SMHDTRM and its
numerical analysis are already given in [20]
comprehensively by Yiiksel and Yaman. In this work, the
nonlinear differential time filter K(lu —u|(u — ﬁ)) term is
added to SMHD equations to obtain more accurate
solutions. The stability analysis of the SMHDNTRM with
BE method are investigated. The present method is
unconditionally stable from Theorem 1. In the last
section, numerical tests are given for effectiveness of
present method. The solutions of the present method are
compared with both BE and CN methods for SMHD and
BE method for SMHDLTRM. As seen from the numerical
examples, the nonlinear differential filter may be relaxed
the time step of the problem, thus SMHDNTRM can be
used when the classical methods (BE-CN) does not work
for SMHD to get more accurate solutions.
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Table 5. Velocity errors of SMHD, SMHDLTRM and SMHDNTRM for Example 2.

BE-SMHDLTRM

BE-SMHDNTRM

T CN BE(x=0) k=1 k=10 «=100 k=1 k=10 k=100
1 45372 3.17034 3.16741 3.14119 2.89017 2.46409 1.0276 0.82574
2 Blow 2.52362 2.51909 2.47887 2.12973 1.66875 0.41271  0.327109
Up
5 Blow 1.43754 1.43525 1.40639 0.955979 0.738058 0.155908  0.124238
Up
Table 6. Velocity errors for SMHDLTRM and SMHDNTRM for Example 2, At = 1/10, h = 1/10.
BE-SMHDLTRM BE-SMHDNTRM
k=10 5=0.1 k=10 8=0.1
0 llu — sl K llu — uyll 5 llu — sl K llu — sl
0 3.17034 0 3.17034 0 3.17034 0 3.17034
1073 2.7954 10 2.79523 1073 0.0062226 10! 0.00635579
102 2.77838 1 2.77687 102 0.00520223 1 0.00606934
10 2.59849 10 2.59894 10! 0.0139712 10t 0.0139712
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