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Abstract 

In this study, the solutions of Simplified Magnetohyrodynamics (SMHD) equations by finite element method are examined 

with nonlinear time relaxation term. The differential filter 𝜅(|𝑢 − �̅�|(𝑢 − �̅�)) term is added to SMHD equations. Also 

SMHD Nonlinear Time Relaxation Model (SMHDNTRM) is introduced. The model is discretized by Backward-Euler (BE) 
method to obtain the finite element solutions. Moreover, the stability of the method is proved. The method is found 
unconditionally stable. The effectiveness of the method is exemplified by several cases with comparing different methods. 
FreeFem++ is used for all computations. 
Keywords: MagnetoHydroDynamics, Backward-Euler Method, Nonlinear Time Relaxation, Finite Element Method 

DOĞRUSAL OLMAYAN ZAMAN RAHATLAMALI BASİTLEŞTİRİLMİŞ 
MANYETOHİDRODİNAMİKLER İÇİN BACKWARD-EULER YÖNTEMİ 

ÇÖZÜMLERİ VE KARARLILIK ANALİZİ 

Özet 

Bu çalışmada, Basitleştirilmiş Manyetohidrodinamik (SMHD) denklemlerinin sonlu elemanlar yöntemiyle çözümleri lineer 

olmayan zaman rahatlatma terimi ile incelenmiştir. SMHD denklemlerine diferansiyel filtre 𝜅(|𝑢 − �̅�|(𝑢 − �̅�)) terimi 

eklenmiş ve SMHD Lineer Olmayan Zaman Rahatlatma Modeli (SMHDNTRM) tanıtılmıştır. Model, sonlu elemanlar 
çözümlerinin elde edilmesi için Backward-Euler (BE) yöntemi ile ayrıklaştırılmıştır. Yöntemin kararlılığı da 
kanıtlanmıştır. Sunulan yöntem koşulsuz olarak kararlıdır. Yöntemin etkinliği, farklı yöntemlerin karşılaştırılmasıyla 
birkaç örnek ile gösterilmiştir. Tüm hesaplamalar FreeFem++ kullanılarak yapılmıştır. 
Anahtar Kelimeler: MagnetoHydroDynamics, Backward-Euler Method, Nonlinear Time Relaxation, Finite Element Method 
Cite 
Yüksel, G., Yaman, M, H., (2021). “Solutions and Stability Analysis of Backward-Euler Method for Simplified 
Magnetohydrodynamics with Nonlinear Time Relaxation”, Mugla Journal of Science and Technology, 7(2), 45-51. 

 

1.  Introduction 

MagnetoHydroDynamics (MHD) deals with mostly 
dynamics of magnetic fields for electrically conducting 
fluids, such as plasmas and liquid metals. The MHD 
modeling consists of a coupling between the Navier-
Stokes equations of fluid dynamics and the Maxwell 
equations of electromagnetism. The theoretical analysis 
and mathematical modeling of the MHD equations can be 
found in [1]. When magnetic Reynolds number 𝑅𝑚 is 
small, the induced field being negligible by comparison 
with the imposed field. In this case the magnetic field 
behaves quite differently. For example, in most 
experiments or industrial process 𝑅𝑚 changes between 
0.001 to 0.1. Magnetic damping of jets, vortices or 
turbulence, magnetic stirring using a rotating magnetic 

field, magnetic levitation are typical examples of this [1]. 
The simplified MHD is obtained by eliminating magnetic 
Reynolds number. Thus, fluid and magnetic equations are 
uncoupled in MHD. The existence and uniqueness of the 
weak form of simplified MHD (SMHD) is introduced by 
Janet Peterson in [2]. In that paper, a finite element 
algorithm is also given for the approximate solution of the 
SMHD. There are several paper for numerical solutions of 
MHD with small 𝑅𝑚 in literature. The stability analysis of 
partitioned methods for MHD at small magnetic Reynolds 
number is presented by Layton et al. in [3]. Numerical 
analysis of finite element method with Crank-Nicolson 
discretization [4] and Backward-Euler discretization [5] 
are performed by Yuksel et. al. for SMHD. Numerical 
analysis of two partitioned methods for uncoupling 
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evolutionary MHD flows are presented in [6]. A second 
order algorithm is performed by Rong et al in [7]. 

We consider a time relaxation regularization which is 
obtained by adding nonlinear time relaxation term to the 
SMHD in the current paper. The time relaxation operator 
is introduced as a numerical regularization in [8,9,10,21] 
which are based on the study Chapman-Enskog 
expansions by Rosenau [11], Schochet and Tadmor [12]. 
In [13], studies are summarized for development and 
implementations of time relaxation and time relaxation 
models. In their studies Brekling and his colleagues show 
that these techniques can be used to advance the accuracy 
and stability of fluid flow problems with higher Reynolds 
numbers. In [14], Pakzad examines time averaged energy 
dissipation rate for the Time Relaxation Model for 3d 
turbulence with periodic boundary conditions. The 
studies about the time relaxation regularization can be 
found in the literature, such as [15,16,17]. The effects of 
the linear and nonlinear time relaxation terms to SMHD 
equations with BE finite element method is presented in 
[18].  

In this paper, SMHD equations are handled with nonlinear 
time relaxation term to get more accurate solutions. The 
stability analysis is also conducted. The unconditionally 
stability of the method is proved. In the numerical 
examples the effectiveness of the method is presented. 
The solutions of the present method are compared with 
BE and CN solutions for SMHD and BE solutions for SMHD 
with linear time relaxation model (SMHDLTRM). 

SMHDNTRM is obtained by adding the nonlinear term 

κ(|u − u̅|(u − u̅)) into SMHD as follows 

 

𝑁−1(𝑢𝑡 + 𝑢 ∙ 𝛻𝑢)
= 𝑓 + 𝑀−2∆𝑢 − 𝛻𝑝 + 𝐵 × 𝛻𝜙
+ (𝑢 × 𝐵) × 𝐵 

𝛻 ∙ 𝑢 = 0  

−𝛥𝜙 + 𝛻 ∙ (𝑢 × 𝐵) = 0. 

(1) 

where κ, δ>0 and u is the unique solution of 

 

�̅�𝑡 =
|𝑢 − �̅�|(𝑢 − �̅�)

𝛿
, 𝑡 > 0 

�̅�(𝑥, 0) = 𝑢(𝑥, 0). 

(2) 

Let  𝛺 ⊂ ℝ𝑑 (d=2 or 3) be an open, regular domain. The 
dimensionless quasi-static MHD is modelled by the 
system, see, e.g., [4]: Given time T>0, body force 𝑓, 
interaction parameter 𝑁 > 0, Hartmann number 𝑀 > 0,  

and letting 𝛺𝑇: = [0, 𝑇] × 𝛺, find velocity 𝑢:𝛺𝑇 → ℝ𝑑 , 
pressure 𝑝: 𝛺𝑇 → ℝ, electric current density 𝑗: 𝛺𝑇 → ℝ𝑑 , 
magnetic field 𝐵:𝛺𝑇 → ℝ𝑑 , and electric potential 𝜑:𝛺𝑇 →
ℝ satisfying   

 

 

𝑁−1(𝑢𝑡 + 𝑢 ∙ 𝛻𝑢) = 𝑓 +𝑀
−2∆𝑢 − 𝛻𝑝 + 𝑗 × 𝐵,

𝛻 ∙ 𝑢 = 0   
 −𝛥𝜙 + 𝛻 ∙ (𝑢 × 𝐵) = 0, 𝛻 ∙ 𝑗 = 0  

(3) 

∇ × 𝐵 = 𝑅𝑚𝑗, 𝛻 ∙ 𝐵 = 0  

subject to boundary and initial conditions, 

 

𝑢(𝑥, 𝑡) = 0, ∀(𝑥, 𝑡) ∈ 𝜕𝛺 × [0, 𝑡] 
𝜙(𝑥, 𝑡) = 0, ∀(𝑥, 𝑡) ∈ 𝜕𝛺 × [0, 𝑡] 
𝑢(𝑥, 0) = 𝑢0(𝑥), ∀𝑥 ∈ 𝛺. 

 

(4) 

 

Here, 𝑅𝑚 = 𝑈𝐿/𝜂 > 0, U is the characteristic speed, L is 
the length of the problem, η>0 is the magnetic diffusivity, 
𝑢0 ∈ 𝐻0

1(𝛺)𝑑 and 𝛻 ⋅ 𝑢₀ = 0. 𝑗 and 𝛻 × 𝐵 in (3) decouple  
𝑅𝑚 ≪ 1. Supposing B is a magnetic field that is applied 
(and known), (3) reduces to the SMHD system see, e.g., 
[4]:  

 

 

 

We examine full-discretization through Backward-Euler 
(BE) time-stepping of the SMHDNTRM. Let 0 = 𝑡0 < 𝑡1 <
⋯ < 𝑡𝐾 = 𝑇 < ∞ be a discretization of the time interval 
[0, 𝑇] for a constant time step 𝛥𝑡 = 𝑡𝑛 − 𝑡𝑛−1. Write 𝑧𝑛 =
𝑧(𝑡𝑛). The weak form of the SMHDNTRM is presented in 
the following algorithm. 

Algorithm 1 (Backward-Euler Method for 
SMHDNTRM) 

Given 𝑢0 ∈ 𝑉, find (𝑢𝑛+1
ℎ , 𝑝𝑛+1

ℎ , 𝜙𝑛+1
ℎ )∈𝑋ℎ × 𝑄ℎ × 𝑆ℎ for 

each 𝑛 = 0,1,2, … , 𝐾 − 1, satisfying 

 

𝑁−1 [(
𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ

∆𝑡
, 𝑣ℎ) + 𝑏∗(𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ , 𝑣ℎ)]

+ 𝑀−2(∇𝑢𝑛+1
ℎ , ∇𝑣ℎ) − (𝑝𝑛+1

ℎ , ∇ ∙ 𝑣)

+ (−∇𝜙𝑛+1
ℎ

+ 𝑢𝑛+1
ℎ × 𝐵𝑛+1, 𝑣

ℎ × 𝐵𝑛+1)

+ 𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(�̅�𝑛+1
ℎ − �̅�𝑛

ℎ), 𝑣ℎ)

= (𝑓𝑛+1, 𝑣
ℎ), ∀𝑣 ∈ 𝑋ℎ 

(∇ ∙ 𝑢𝑛+1
ℎ , 𝑞) = 0, ∀𝑞 ∈ 𝑄ℎ  

(∇𝜙𝑛+1
ℎ − (𝑢𝑛+1

ℎ × 𝐵𝑛+1), ∇𝜓) = 0, ∀𝜓 ∈ 𝑆ℎ  
�̅�𝑛+1
ℎ − �̅�𝑛

ℎ

∆𝑡
=
𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ

𝛿
 

�̅�0
ℎ = 𝑢0

ℎ 

 

(6) 

 

Also the solutions, stability and convergency analysis of 
the original Algorithm BE method for SMHD was 
presented comprehensively in [5]. This study contains the 
following examinations. In section 2, some necessary 
definitions and lemmas which are referred in [19] are 
given. In section 3, the stability of SMHDNTRM with BE 
method is presented. In Section 4, numerical examples 
are examined to explain the theoretical results. The BE 
and CN methods for SMHD and BE method for 
SMHDLTRM are compared based on the test results. In 
the last section the conclusions are given in the and 
discussed. 



Gamze Yüksel, Mustafa Hicret Yaman 
Solutions and Stability Analysis of Backward-Euler Method for Simplified Magnetohydrodynamics with Nonlinear Time Relaxation 

 

47 

 

2.   Notation and preliminaries 

L²-norm and inner product are denoted by (.,.) and ‖.‖ 
respectively. Then similarly, the 𝑊𝑝

𝑘(𝛺)-norm and the 

𝑊𝑝
𝑘(𝛺)-semi-norm are denoted by ‖. ‖𝑝,𝑘 ≔ ‖. ‖𝑊𝑝𝑘(𝛺) and 

|. |𝑊𝑝𝑘(𝛺), respectively. For p=2, 𝐻𝑘(𝛺) ≔ 𝑊2
𝑘(𝛺) and it is 

denoted that ‖. ‖𝑘 and |. |𝑘 for the corresponding norm 
and semi-norm. All definitions, inequalities, lemmas and 
their proofs are referred in [19]. The pressure, velocity 
and electric potential spaces are presented by  

𝑄:= {𝑞 ∈ 𝐿2(𝛺):∫𝑞
Ω

= 0} , 

 
𝑋:= {𝑣 ∈ 𝐻¹(𝛺)𝑑: 𝑣|𝜕𝛺 = 0}, 

𝑆:= {𝜓 ∈ 𝐻1(𝛺): 𝜓|𝜕𝛺 = 0}. 

 

 

(7) 

 

respectively. 𝑋∗ = 𝐻−1(𝛺) is the closure of L²(Ω) in ‖. ‖₋₁, 
where 

 

‖𝑓‖₋₁: = 𝑠𝑢𝑝
𝑣∈𝑋

(𝑓, 𝑣)

‖𝛻𝑣‖
. 

 

(8) 

 

Let  𝐿𝑞 (0, 𝑇;𝑊𝑝
𝑘(Ω)) denote the space  

 

𝐿𝑞 (0, 𝑇;𝑊𝑝
𝑘(𝛺))

=

{
 

 
𝑣: (0, 𝑇) → 𝑊𝑝

𝑘(𝛺): 𝑣 is measurable

𝑎𝑛𝑑∫‖𝑣(𝑡)‖
𝑊𝑝
𝑘(𝛺)

𝑞
𝑑𝑡

𝑇

0

< ∞
 

(9) 

endowed with the norm 

||𝑣||
𝐿𝑞(0,𝑇;𝑊𝑝

𝑘(𝛺))
≔ (∫‖𝑣(𝑡)‖

𝑊𝑝
𝑘(𝛺)

𝑞
𝑑𝑡

𝑇

0

)

1/𝑞

. 

 

(10) 

Write 𝐿𝑞(𝑊𝑝
𝑘) = 𝐿𝑞 (0, 𝑇;𝑊𝑝

𝑘(𝛺)) and  𝐶𝑚(𝑊𝑝
𝑘) =

𝐶𝑚 ([0, 𝑇];𝑊𝑝
𝑘(𝛺)). For 𝑣(𝑥, 𝑡) and 1 ≤ 𝑝 ≤ ∞, we 

introduce 

‖𝑣‖∞,𝑘 ≔ 𝑒𝑠𝑠𝑠𝑢𝑝0<𝑡<𝑇‖𝑣(𝑡,⋅)‖𝑘 ,. 

‖𝑣‖𝑝,𝑘 ≔ (∫‖𝑣(𝑡,⋅)‖𝑘
𝑝
𝑑𝑡

𝑇

0

)

1/𝑝

. 

 

(11) 

 

Let 𝑉 be the divergence free subspace of X, i.e. 

𝑉 = {𝑣 ∈ 𝑋: (𝑞, 𝛻 ⋅ 𝑣) = 0, ∀𝑞 ∈ 𝑄}. 

Definition 1 Skew-symmetric trilinear form 𝑏∗: 𝑋 × 𝑋 ×
𝑋 → ℝ  is defined as 

𝑏∗(𝑢, 𝑣, 𝑤) =
1

2
(𝑢 ⋅ 𝛻𝑣, 𝑤) −

1

2
(𝑢 ⋅ 𝛻𝑤, 𝑣). (12) 

 

Lemma 1 Let 𝛺 ⊂ ℝ2 or ℝ³. For all 𝑢, 𝑣, 𝑤 ∈ 𝑋 

𝑏∗(𝑢, 𝑣, 𝑤) ≤ 𝐶(𝛺)‖𝛻𝑢‖‖𝛻𝑣‖‖𝛻𝑤‖ (13) 

and 

𝑏∗(𝑢, 𝑣, 𝑤) ≤ 𝐶(𝛺)‖𝑢‖(1/2)‖𝛻𝑢‖(1/2)‖𝛻𝑣‖‖𝛻𝑤‖. 
(14) 

 

Lemma 2 (Discrete Gronwall Lemma) Let 
𝛥𝑡, 𝐵, 𝑎𝑛 , 𝑏𝑛, 𝑐𝑛 , 𝑑𝑛 for integers 𝑛 ≥ 0 be nonnegative 
numbers such that 

𝑎𝑙 + 𝛥𝑡∑𝑏𝑛

𝑙

𝑛=0

≤ 𝛥𝑡∑𝑑𝑛

𝑙

𝑛=0

𝑎𝑛 + 𝛥𝑡∑𝑐𝑛

𝑙

𝑛=0

+ 𝐵 𝑓𝑜𝑟   𝑙

≥ 0. 

(15) 

 

Suppose that 𝛥𝑡𝑑𝑛 < 1 for each n. Then, 

 

𝑎𝑙 + 𝛥𝑡∑𝑏𝑛

𝑙

𝑛=0

≤ (𝛥𝑡∑𝑐𝑛

𝑙

𝑛=0

+ 𝐵) 𝑒𝑥𝑝 (𝛥𝑡∑((𝑑𝑛)

𝑙

𝑛=0

/(1 − 𝛥𝑡𝑑𝑛))) 𝑓𝑜𝑟 𝑙 ≥ 0. 

(16) 

Let 𝜏ℎ be a uniformly regular triangulation of Ω and 

ℎ = 𝑠𝑢𝑝𝐾∈𝜏ℎ𝑑(𝐾). 

 
(17) 

Let 𝑋ℎ ⊂ 𝑋,𝑄ℎ ⊂ 𝑄 and 𝑆ℎ ⊂ 𝑆 be a conforming velocity-
pressure-potential mixed finite element space which 
satisfy the 𝐿𝐵𝐵ℎ condition, 

𝑖𝑛𝑓
𝑞∈𝑄ℎ

𝑠𝑢𝑝
𝑣∈𝑋ℎ

(𝑞, 𝛻 ⋅ 𝑣)

(|𝑣|1‖𝑞‖)
≥ 𝐶 > 0. 

 

(18) 

Let 

𝑉ℎ = 𝑣 ∈ 𝑋ℎ: ∫𝑞𝛻
𝛺

⋅ 𝑣 = 0∀𝑞 ∈ 𝑄ℎ . 

 

(19) 

As known 𝑉ℎ ⊄ 𝑉. The velocity-pressure spaces which 
satisfy the 𝐿𝐵𝐵ℎ condition and the following 
approximation properties; 

𝑖𝑛𝑓𝑣∈𝑋ℎ‖𝑢 − 𝑣‖1 ≤ 𝐶ℎ𝑘+1‖𝑢‖𝑘+1, 𝑢 ∈ 𝐻
𝑘+1(𝛺)𝑑  (20) 

𝑖𝑛𝑓𝑣∈𝑋ℎ‖𝑢 − 𝑣‖1 ≤ 𝐶ℎ𝑘‖𝑢‖𝑘+1, 𝑢 ∈ 𝐻
𝑘+1(𝛺)𝑑   

𝑖𝑛𝑓||𝜑 − 𝜓||
1
≤ 𝐶ℎ𝑟||𝜑||

𝑟+1
, 𝜑 ∈ 𝐻𝑟+1(𝛺)  

infr∈𝑄h‖𝑝 − 𝑟‖ ≤ 𝐶ℎ𝑠+1‖𝑝‖𝑠+1, 𝑝 ∈ 𝐻
𝑠+1(𝛺)  
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If 𝐿𝐵𝐵ℎ  condition is assured, the inequality presented 
below will be used in the proof. For all 𝑢 ∈ 𝑉: 

𝑖𝑛𝑓𝑣∈𝑉ℎ‖𝛻(𝑢 − 𝑣)‖ ≤ 𝐶(𝛺)𝑖𝑛𝑓𝑣∈𝑋ℎ‖𝛻(𝑢 − 𝑣)‖. (21) 

 

Stability of the Backward-Euler Method for 
SMHDNTRM  

Theorem 1 (Stability) The solution 𝑢ℎ obtained by 
Algorithm 1 is unconditionally stable and satisfies the 
following unconditional stability bound 

‖𝑢𝑀
ℎ ‖² + 𝑁𝜅𝛿‖�̅�𝑀

ℎ ‖² + ∑ ‖𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ‖2
𝑀−1

𝑛=0

  

+𝑁𝛿𝜅 ∑‖�̅�𝑛+1
ℎ − �̅�𝑛

ℎ‖
2

𝑀−1

𝑛=0

+ ((2𝛥𝑡𝑁)/(𝑀2)) ∑‖𝛻𝑢𝑛+1
ℎ ‖

2
𝑀−1

𝑛=1

 

 

+2𝛥𝑡𝑁 ∑‖𝑗𝑛+1
ℎ ‖

2
𝑀−1

𝑛=0

+ 2𝑁𝛿𝜅 ∑‖𝜔𝑛+1
ℎ − �̅�𝑛+1

ℎ ‖
2

𝑀−1

𝑛=0

  

≤ ‖𝑢0ℎ‖2 + 𝑁𝜅𝛿‖𝑢0
ℎ‖

2
+ 2𝛥𝑡𝑀2 ∑‖𝑓𝑛+1‖−1

2

𝑀−1

𝑛=0

 (22) 

and also 

𝑚𝑎𝑥
0≤𝑛≤𝐾−1

‖𝛻𝜑𝑛+1
ℎ ‖

2
≤ 𝐵2‖𝑢ℎ‖𝐿∞(𝐿2)

2  (23) 

 or 

𝑚𝑎𝑥
0≤𝑛≤𝑀−1

‖𝛻𝜑𝑛+1
ℎ ‖

2

≤ 𝐵2 (‖𝑢0
ℎ‖

2

+𝑀2𝑁𝛥𝑡 ∑‖𝑓𝑛+1‖−1
2

𝑀−1

𝑖=1

) 

 

where 

𝐵 ≔ ‖𝐵‖𝐿∞(𝐿∞).  

 

Proof Putting 𝑣ℎ = 𝑢𝑛+1
ℎ , 𝑞ℎ = 𝑝𝑛+1

ℎ , 𝜓ℎ = 𝜑𝑛+1
ℎ  into 

Algorithm 1 gives as 

𝑁−1 ((((𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ)/(𝛥𝑡)) , 𝑢𝑛+1
ℎ )

+ 𝑏∗(𝑢𝑛+1
ℎ , 𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ ))

+𝑀−2(𝛻𝑢𝑛+1
ℎ , 𝛻𝑢𝑛+1

ℎ ) 

 

−(𝑝𝑛+1
ℎ , 𝛻. 𝑢𝑛+1

ℎ ) + (−𝛻𝜑𝑛+1
ℎ

+ 𝑢𝑛+1
ℎ × 𝐵𝑛+1, 𝑢𝑛+1

ℎ × 𝐵𝑛+1) + 
 

𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1−�̅�𝑛+1), 𝑢𝑛+1
ℎ ) = (𝑓𝑛+1, 𝑢𝑛+1

ℎ ) (24) 

(𝛻 ⋅ 𝑢𝑛+1
ℎ , 𝑝𝑛+1

ℎ ) = 0, ∀𝑞ℎ ∈ 𝑄ℎ   

(− ▽ 𝜑𝑛+1
ℎ + 𝑢𝑛+1

ℎ × 𝐵𝑛+1, − ▽ 𝜑𝑛+1
ℎ ) = 0 (25) 

�̅�𝑛+1
ℎ − �̅�𝑛

ℎ

∆𝑡
=
𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ

𝛿
 (26) 

�̅�0
ℎ = 𝑢0

ℎ  

Since 𝑗𝑛+1
ℎ = −▽ 𝜑𝑛+1

ℎ + 𝑢𝑛+1
ℎ × 𝐵 and adding (24) and 

(25) we obtain (skew symmetry property is used); 

𝑁−1 (((𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ)/(𝛥𝑡)) , 𝑢𝑛+1
ℎ ) +𝑀−2‖𝛻𝑢𝑛+1

ℎ ‖

+ ‖𝑗𝑛+1
ℎ  ‖2  

+ 𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), 𝑢𝑛+1
ℎ )

= (𝑓𝑛+1, 𝑢𝑛+1
ℎ ) 

(27) 

where   

𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), 𝑢𝑛+1
ℎ )

= 𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), 𝑢𝑛+1
ℎ

+ �̅�𝑛+1
ℎ − �̅�𝑛+1

ℎ ) 
 

= 𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), �̅�𝑛+1
ℎ )

+ 𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), 𝑢𝑛+1
ℎ

− �̅�𝑛+1
ℎ ) 

(28) 

and 

  

𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), 𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ )

= 𝜅 ‖√(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|)(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ )‖
2

 
 

= 𝜅 ‖√(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|)𝑢𝑛+1
ℎ − √(|𝑢𝑛

ℎ − �̅�𝑛
ℎ|)�̅�𝑛+1

ℎ ‖
2

 (29) 

Denoting 𝜔𝑛+1
ℎ = √(|𝑢𝑛

ℎ − �̅�𝑛
ℎ|)𝑢𝑛+1

ℎ  and �̅�𝑛+1
ℎ =

√(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|)�̅�𝑛+1
ℎ in (29) gives as  

 

𝑁−1 ((
𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ

𝛥𝑡
) , 𝑢𝑛+1

ℎ ) +𝑀−2‖𝛻𝑢𝑛+1
ℎ ‖

2

+ ‖𝑗𝑛+1
ℎ ‖

2
 

 

+𝜅‖𝜔𝑛+1
ℎ − �̅�𝑛+1

ℎ ‖
2

+ 𝜅(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), �̅�𝑛+1
ℎ )

= (𝑓𝑛+1, 𝑢𝑛+1
ℎ ) 

(30) 

where  

(𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ, 𝑢𝑛+1
ℎ ) = ((𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ ) − (𝑢𝑛

ℎ , 𝑢𝑛+1
ℎ ))  

(𝑢𝑛
ℎ, 𝑢𝑛+1

ℎ ) =
‖𝑢𝑛+1

ℎ ‖
2
+ ‖𝑢𝑛

ℎ‖2 − ‖𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ‖
2

2
  

(|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ ), 𝑢𝑛+1
ℎ − �̅�𝑛+1

ℎ )

= (|𝑢𝑛
ℎ − �̅�𝑛

ℎ|(𝑢𝑛+1
ℎ

− �̅�𝑛+1
ℎ ),

𝛿

𝛥𝑡
(�̅�𝑛+1

ℎ − �̅�𝑛
ℎ)) 

 

(�̅�𝑛+1
ℎ − �̅�𝑛

ℎ, �̅�𝑛+1
ℎ )

=
‖�̅�𝑛+1

ℎ − �̅�𝑛
ℎ‖

2
+ ‖�̅�𝑛+1

ℎ ‖
2
− ‖�̅�𝑛

ℎ‖2

2
 

 

Now let's put the previous terms into (30) 
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𝑁−1

𝛥𝑡
(
‖𝑢𝑛+1

ℎ ‖
2
− ‖𝑢𝑛

ℎ‖2 + ‖𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ‖
2

2
)

+ 𝑀−2‖𝛻𝑢𝑛+1
ℎ ‖

2
 

 

+‖𝑗𝑛+1
ℎ ‖

2
+ 𝜅‖𝜔𝑛+1

ℎ − �̅�𝑛+1
ℎ ‖

2
+
𝜅𝛿

𝛥𝑡
(
‖�̅�𝑛+1

ℎ − �̅�𝑛
ℎ‖

2

2
)  

  

+
𝜅𝛿

𝛥𝑡

‖�̅�𝑛+1
ℎ ‖

2

2
−
𝜅𝛿

𝛥𝑡

‖�̅�𝑛
ℎ‖2

2
= (𝑓𝑛+1, 𝑢𝑛+1

ℎ )  

multiply by 2𝛥𝑡𝑁 and summing from 𝑛 = 1 to 𝑀 − 1 gives 
the desired result. Similarly, setting 𝜓 = 𝜑𝑛+1

ℎ  in (25) with 
Cauchy-Schwarz and Young’s inequalities are used to 
bound the force term. Then; 

‖𝛻𝜑𝑛+1
ℎ ‖

2
≤ ‖𝑢𝑛+1

ℎ × 𝐵𝑛+1‖
2
≤ 𝐵2‖𝑢𝑛+1

ℎ ‖
2

≤ 𝐵2‖𝑢ℎ‖𝐿∞(𝐿2)
2 . 

(31) 

Apply (22) to (31) to prove (23). 

3.  Numerical Examples 

In this section SMHDNTRM that is introduced by 
Algorithm 1 is tested with some numerical examples. The 
BE and CN methods for SMHD and BE method for 
SMHDLTRM are compared based on the test results. The 
linear time relaxation term 𝜅(𝑢 − �̅�) is added to SMHD 
and its introduced as SMHDLTRM in [20]. In the first 
example a problem which has an exact solution is 
considered. The second example has the same exact 
solution but the initial conditions are different from 
Example 1. These conditions make the problem blow up 
with CN method. The FreeFem++ is used for all 
calculations. T is final time, Δt is time step, M is Hartmann 
Number, Re is Reynolds Number and h is mesh size for all 
examples. 

Example 1 Let 𝛺 = [0, 𝜋]2, 𝑡0 = 0, 𝑇 = 1 and 𝐵 = (0,0,1). 
Then, the true solution of (5) for  (𝑢, 𝑝, 𝜑)  is given below 
[4]; 

𝑢(𝑥, 𝑦, 𝑡) = (−
𝜕𝜓(𝑥, 𝑦)

𝜕𝑦
,
𝜕𝜓(𝑥, 𝑦)

𝜕𝑥
) 𝑒−5𝑡 ,  

𝜑(𝑥, 𝑦, 𝑡) = (𝜓(𝑥, 𝑦) + 𝑥2 − 𝑦2)𝑒−5𝑡 ,  

𝑝(𝑥, 𝑦, 𝑡) = 0  

where 𝜓(𝑥, 𝑦) = 𝑐𝑜𝑠(2𝑥)𝑐𝑜𝑠(2𝑦) and 𝑓 and 𝑢|𝜕𝛺 are 
obtained from the true solution. The convergency of the 
method is analyzed for different values of 𝜅 and 𝛥𝑡 , 
selecting 𝑅𝑒 = 25,𝑀 = 20, 𝑇 = 1, ℎ = 1/50, 𝛿 = 1/10 in 
here. The results are given in Table 1 - 4 . In Table 1, BE 
method for SMHD is presented with κ=0. As seen from the 
Table 1, while κ=1, the errors of SMHDNTRM are smaller 
than BE method for SMHDLTRM and SMHD. It is also 
bigger than CN method for SMHD, since the order of the 
CN method is two. In Table 2, the convergences rates of 
SMHD with CN and BE methods, SMHDLTRM and 
SMHDNTRM with BE method are compared. In Table 3 
and 4, values of  𝑝 and 𝜑 are compared with SMHD, 
SMHDLTRM and SMHDNTRM for different values of 𝛥𝑡 It 

seen from these tables, the pressure and potential errors 
are smaller than the other methods with SMHDNTRM in 
some cases. 

Table 1. Velocity errors of SMHD, SMHDLTRM and 
SMHDNTRM for Example 1. 

‖𝑢 − 𝑢𝑛
ℎ‖ 

𝛥𝑡 CN-SMHD BE-SMHD 
(𝜅 = 0) 

BE-
SMHDLTRM 

(𝜅 = 1) 

BE-
SMHDNTRM 

(𝜅 = 1) 

1/10 0.0184967 0.50428 0.497796 0.382574 

1/20 0.0046309 0.26432 0.261351 0.124133 

1/40 0.0011447 0.13523 0.133857 0.0214929 

1/80 0.0002734 0.06838 0.0677267 0.0836249 

 

Table 2. Convergence rates of SMHD, SMHDLTRM and 
SMHDNTRM for Example 1. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒𝑠 

𝛥𝑡 CN-
SMHD 

BE-SMHD 
(𝜅 = 0) 

BE-SMHDLTRM 
(𝜅 = 1) 

BE-SMHDNTRM 
(𝜅 = 1) 

1/10     

1/20 1.998 0.932 0.930 1.624 

1/40 2.016 0.967 0.965 1.960 

1/80 2.066 0.984 0.983 2.530 

 

Table 3. Potential errors of SMHD, SMHDLTRM and 
SMHDNTRM for Example 1. 

‖𝜑 − 𝜑𝑛
ℎ‖ 

𝛥𝑡 BE-SMHD 
(𝜅 = 0) 

BE-SMHDLTRM 
(𝜅 = 1) 

BE-SMHDNTRM 
(𝜅 = 1) 

1/10 0.277553 0.146518 0.214342 

1/20 0.145644 0.144009 0.071731 

1/40 0.0745424 0.0737849 0.00545451 

1/80 0.0376974 0.0373372 0.0420529 

1/160 0.0189512 0.0187762 0.0612152 

 

Table 4. Pressure errors of SMHD, SMHDLTRM and 
SMHDNTRM for Example 1. 

‖𝑝 − 𝑝𝑛
ℎ‖ 

𝛥𝑡 BE-SMHD 
(𝜅 = 0) 

BE-SMHDLTRM 
(𝜅 = 1) 

BE-SMHDNTRM 
(𝜅 = 1) 

1/10 0.00516417 0.273995 0.00311038 

1/20 0.00157142 0.0015402 0.000998216 

1/40 0.000503184 0.000495084 0.0010316 

1/80 0.000182351 0.000179983 0.00109324 
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1/160 7.56518e-5 7.4825e-5 0.00113279 

 

Example 2 Let 𝛺 = [0, 𝜋]2, 𝑡0 = 0, 𝑇 = 1,2 and 5. 𝐵 =
(0,0,1). In this example, SMHD equation is solved both CN 
and BE methods, SMHDLTRM and SMHDNTRM are solved 
with BE method for ℎ = 1/10 and 𝛥𝑡 = 1/100, 𝑅𝑒 =
6766,𝑀 = 20 , 𝛿 = 1/10  and different values of 𝜅 and 𝑇. 
The boundary condition on 𝜕𝛺 is inhomogeneous 
Dirichlet: 𝑢ℎ = 𝑢. The initial data is given by 

𝑢0(𝑥, 𝑦) = (𝑦, −𝑥, 0)  

𝜑₀(𝑥, 𝑦) = 𝑥𝑦  

and 𝑓 is the same as in Example 1. 

In this example, while CN method for SMHD is blow up, 
BE method is convergent [5]. We consider SMHDLTRM 
and SMHDNTRM for this example to determine how the 
linear time filter effects to the solutions. As seen from the 
Table 5, velocity errors of SMHDNTRM are smaller than 
SMHD and SMHDLTRM for all values of κ. Also, when 
values of κ increases, the errors decrease for different 
values of T. From here, in case the classical methods (CN 
or BE methods) are failed, linear or nonlinear time 
relaxation models can be applied to the problem to get 
more accurate solutions. 

In Table 6, selecting ℎ = 1/10 and 𝛥𝑡 = 1/10, the velocity 
errors are compared for different values of 𝛿 when 𝜅 =
10 and for different values of 𝜅 when 𝛿 = 0.1 for BE 
solutions of SMHDLTRM and SMHDNTRM. When Table 6 
is examined; it is observed that while 𝜅 = 10 , 𝛿 values 
are increasing and similarly for δ = 0.1, 𝜅 values are 
increasing. As a result velocity errors are decreasing. 

 

4.  Conclusion 

In this paper, we have analyzed SMHDNTRM with BE 
method. The BE method for SMHD and its numerical 
analysis are already given in [5], for SMHDTRM and its 
numerical analysis are already given in [20] 
comprehensively by Yüksel and Yaman. In this work, the 

nonlinear differential time filter 𝜅(|𝑢 − �̅�|(𝑢 − �̅�)) term is 

added to SMHD equations to obtain more accurate 
solutions. The stability analysis of the SMHDNTRM with 
BE method are investigated. The present method is 
unconditionally stable from Theorem 1. In the last 
section, numerical tests are given for effectiveness of 
present method. The solutions of the present method are 
compared with both BE and CN methods for SMHD and 
BE method for SMHDLTRM. As seen from the numerical 
examples, the nonlinear differential filter may be relaxed 
the time step of the problem, thus SMHDNTRM can be 
used when the classical methods (BE-CN) does not work 
for SMHD to get more accurate solutions. 
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Table 5. Velocity errors of SMHD, SMHDLTRM and SMHDNTRM for Example 2. 

BE-SMHDLTRM                                                                               BE-SMHDNTRM 

T CN BE(κ=0) κ=1 κ=10 κ=100 κ=1 κ=10 κ=100 

1 4.5372 3.17034 3.16741 3.14119 2.89017 2.46409 1.0276 0.82574 

2 Blow 

Up 

2.52362 2.51909 2.47887 2.12973 1.66875 0.41271 0.327109 

5 Blow 

Up 

1.43754 1.43525 1.40639 0.955979 0.738058 0.155908 0.124238 

Table 6. Velocity errors for SMHDLTRM and SMHDNTRM for Example 2, Δ𝑡 = 1/10, ℎ = 1/10. 

BE-SMHDLTRM BE-SMHDNTRM 

κ=10 δ=0.1 κ=10 δ=0.1 

δ ‖𝑢 − 𝑢ℎ‖ κ ‖𝑢 − 𝑢ℎ‖ δ ‖𝑢 − 𝑢ℎ‖ κ ‖𝑢 − 𝑢ℎ‖ 

0 3.17034 0 3.17034 0 3.17034 0 3.17034 

10⁻³ 2.7954 10⁻¹ 2.79523 10⁻³ 0.0062226 10⁻¹ 0.00635579 

10⁻² 2.77838 1 2.77687 10⁻² 0.00520223 1 0.00606934 

10⁻¹ 2.59849 10¹ 2.59894 10⁻¹ 0.0139712 10¹ 0.0139712 
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