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Abstract
We introduce the geometry of pseudo-totally umbilical lightlike submanifold M of a semi-
Riemannian manifold M̄ . In line with the above, we give a complete classification of
pseudo-totally umbilical 1-lightlike submanifolds, such as the lightlike hypersurfaces and
half-lightlike submanifolds. Furthermore, pseudo-totally umbilical screen distributions are
also investigated, with a complete classification for any lightlike hypersurfaces whose screen
distributions are pseudo-totally umbilical. Closely linked to the above we also show, under
some geometric conditions, that some pseudo-totally umbilical leaves M∗, of the screen
distribution over M , as non-degenerate submanifolds of M̄ , are either contained in semi-
Euclidean spheres or the hyperbolic spaces. Moreover, tangible examples are constructed
in this case. Finally, we introduce the notion of mean lightlike sectional curvatures and
relate them to the well-known tensors used in the characterisation of lightlike hypersurfaces
in space-times.
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1. Introduction
Let (M, g) be a non-degenerate submanifold of a semi-Riemannian manifold (M̄, ḡ),

where g and ḡ are semi-Riemannian metric tensors on M and M̄ . Then, M is called
pseudo-totally umbilical [5–7,14] if there exist a smooth function f such that

ḡ(h(X, Y ), ζ) = fg(X, Y ),

for any X and Y tangent to M , where h denotes the second fundamental form of M in M̄ ,
and ζ is the mean curvature vector field of M , given by ζ = 1

dim M tracegh. It is obvious
that any minimal, i.e. ζ ≡ 0, semi-Riemannian submanifold is trivially pseudo-totally
umbilical with f = 0. Pseudo-totally umbilical submanifolds are an important class of
non-degenerate submanifolds, with many interesting results been discovered about them.
For example, see Theorems 1, 2 and 3 in [5], and also Theorems 1 and 2 of [14], and many
more results in the literature.

In this paper, we extend the notion of pseudo-totally umbilical submanifolds to lightlike
submanifolds of a semi-Riemannian manifold. Lightlike submanifolds differs significantly

Email addresses: samuel.ssekajja@wits.ac.za, ssekajja.samuel.buwaga@aims-senegal.org
Received: 04.05.2021; Accepted: 08.03.2022

https://orcid.org/0000-0003-4247-1989


Pseudo-totally umbilical submanifolds 1305

from non-degenerate submanifolds in that, for a lightlike submanifold, the normal bun-
dle to a lightlike submanifold is a subbundle of the tangent bundle of the submanifold.
This posses a challenge to the study of lightlike submanifolds since the classical Gauss-
Weingarten equations do not apply to lightlike submanifolds. K. L. Duggal and A. Bejancu
[8] (also see [11]) have overcame this challenge by introducing a non-degenerate distribu-
tion over the submanifold, called the screen distribution. Although screen distributions
are, in general, not unique, they are canonically isomorphic to the factor bundle intro-
duced by D. N. Kupeli in [15]. With such a screen distribution, many interesting results
have been discovered on lightlike submanifolds. for an up to-date information on these
results, we refer to the book [11], as well as some of these papers: [1–3,9,10,12,13,16–20].
In reality lightlike submanifolds in particular lightlike hypersurfaces are an important set
of geometric objects. For instance, in General Relativity, lightlike hypersurfaces represent
different models of blackhole horizons [8].

The rest of the paper is arranged as follows: In Section 2, we quote some basic notions
on lightlike geometry required in the rest of the paper. In Section 3, we introduce pseudo-
totally umbilical lightlike submanifolds of a semi-Riemannian manifold. In Section 4,
we study lightlike submanifolds whose screen distributions are pseudo-totally umbilical
submanifolds. In Section 5, we study pseudo-totally umbilical leaves, and in Section 6
we define the notion of mean lightlike sectional curvatures of a lightlike submanifold of a
semi-Riemannian manifold.

2. Preliminaries
Let (M, g) be an m-dimensional lightlike submanifold of a semi-Riemannian manifold

(M̄, ḡ) of dimension m + n. Then, the radical distribution Rad TM = TM ∩ TM⊥ is a
subbundle of the tangent bundle TM and the normal bundle TM⊥, of rank r, where 1 ≤
r ≤ min{m, n}. Moreover, there exist two complementary non-degenerate distributions
S(TM) and S(TM⊥) of Rad TM in TM and TM⊥ respectively, called the screen and
co-screen distributions on M , such that TM = Rad TM ⊥orth S(TM) and TM⊥ =
Rad TM ⊥orth S(TM⊥), where ⊥orth denotes the orthogonal direct sum. More often,
such a lightlike submanifold is denoted by M = (M, g, S(TM), S(TM⊥)). Let tr(TM)
and ltr(TM) denote complementary (but not orthogonal) vector bundlesto TM in TM̄|M
and TM⊥ in S(TM)⊥, respectively, and let {N1, . . . , Nr} be a lightlike basis of ltr(TM)
consisting of smooth sections of S(TM)⊥ such that ḡ(ξi, Nj) = δij , ḡ(Ni, Nj) = 0, 1 ≤
i, j ≤ r, where {ξ1, . . . , ξr} is a lightlike basis of Rad TM . Then, we have the decomposition

TM̄|M = TM ⊕ tr(TM)

= {Rad TM ⊕ ltr(TM)} ⊥orth S(TM) ⊥orth S(TM⊥),

where ⊕ denotes the direct (non-orthogonal) sum.
A lightlike submanifold (M, g) is called:
(1) r-lightlike if 1 ≤ r < min{m, n};
(2) co-isotropic if 1 ≤ r = n < m, S(TM⊥) = {0};
(3) isotropic if 1 ≤ r = m < n, S(TM) = {0};
(4) totally lightlike if r = n = m, S(TM) = {0} = S(TM⊥).

Throughout this paper, we denote by F (M) the algebra of smooth functions on M and
Γ(Ξ) the F (M) module of smooth sections of a vector bundle Ξ (same notation for any
other vector bundle) over M . For all X, Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), the Gauss and
Weingarten formulae are given by

∇̄XY = ∇XY + h(X, Y ), (2.1)
∇̄XV = −AV X + ∇t

XV, (2.2)
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where {∇XY, AV X} and {h(X, Y ), ∇t
XV } belongs to Γ(TM) and Γ(tr(TM)) respectively.

Further, ∇ and ∇t are linear connections on M and tr(TM), respectively. The second fun-
damental form h is a symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM))
and the shape operator AV is a linear endomorphism of Γ(TM). Moreover, from (2.1)
and (2.2), we have (cf. [11, p. 196–198]):

∇̄XY = ∇XY + hℓ(X, Y ) + hs(X, Y ), (2.3)

∇̄XN = −AN X + ∇ℓ
XN + Ds(X, N), (2.4)

∇̄XW = −AW X + ∇s
XW + Dℓ(X, W ), (2.5)

for any X, Y tangent to M , N tangent to ltr(TM) and W tangent to S(TM⊥). Further-
more, AN and AW are called the shape operators of M , while hℓ and hs are called the
lightlike second fundamental form and the screen second fundamental form, respectively.
Also, ∇ℓ and ∇s are, respectively, linear connections on ltr(TM) and S(TM⊥), called
the lightlike connection and the screen Otsuki connections on ltr(TM) and S(TM⊥),
respectively.

Denote the projection of TM onto S(TM) by P . Then, for any X, Y ∈ Γ(TM) and
ξ ∈ Γ(Rad TM), we have

∇XPY = ∇∗
XPY + h∗(X, PY ),

∇Xξ = −A∗
ξX + ∇∗t

Xξ, (2.6)

where ∇∗ and A∗
ξ are, respectively, the linear connection and shape operator of S(TM).

Furthermore, h∗ and ∇∗t are the second fundamental form and a linear connection on
Rad TM , respectively. Furthermore, by using (2.3)-(2.6), we obtain, for any X, Y ∈
Γ(TM), ξ ∈ Γ(Rad TM), N, N ′ ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)):

ḡ(hs(X, Y ), W ) + ḡ(Y, Dℓ(X, W )) = g(AW X, Y ), (2.7)

ḡ(hℓ(X, Y ), ξ) + ḡ(hℓ(X, ξ), Y ) = −g(∇Xξ, Y ), (2.8)

ḡ(Ds(X,N), W ) = ḡ(N, AW X), ḡ(hℓ(X, PY ), ξ) = g(A∗
ξX, PY ), (2.9)

ḡ(hℓ(X, ξ), ξ) = 0, ḡ(h∗(X, PY ), N) = g(AN X, PY ). (2.10)

Since ∇̄ is a metric connection, by a direct calculations, using (2.3) we get

(∇Xg)(Y, Z) = ḡ(hℓ(X, Y ), Z) + ḡ(hℓ(X, Z), Y ), (2.11)

for all X, Y, Z ∈ Γ(TM). It is important to note that ∇∗ is a metric connection on S(TM).
Let R be the curvature tensor of M . Then, we have (cf. [8, p. 171]):

R̄(X, Y )Z = R(X, Y )Z + Ahℓ(X,Z)Y − Ahℓ(Y,Z)X + Ahs(X,Z)Y

− Ahs(Y,Z)X + (∇̃Xhℓ)(Y, Z) − (∇̃Y hℓ)(X, Z) + Dℓ(X, hs(Y, Z))

− Dℓ(Y, hs(X, Z)) + (∇̃Xhs)(Y, Z) − (∇̃Y hs)(X, Z)

+ Ds(X, hℓ(Y, Z)) − Ds(Y, hℓ(X, Z)), (2.12)
ḡ(R(X, Y )PZ, N) = ḡ((∇Xh∗)(Y, PZ) − (∇Y h∗)(X, PZ), N), (2.13)

where ∇̃hℓ, ∇̃hs and ∇h∗ are given by

(∇̃Xhℓ)(Y, Z) = ∇ℓ
Xhℓ(Y, Z) − hℓ(∇XY, Z) − hℓ(Y, ∇XZ), (2.14)

(∇̃Xhs)(Y, Z) = ∇s
Xhs(Y, Z) − hs(∇XY, Z) − hs(Y, ∇XZ), (2.15)

(∇Xh∗)(Y, PZ) = ∇∗t
Xh∗(Y, PZ) − h∗(∇XY, PZ) − h∗(Y, ∇∗

XPZ), (2.16)
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for all X, Y, Z ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Taking the inner
product of (2.12) with respect to W and ξ, in turns, we have

ḡ(R̄(X, Y )Z, W ) = ḡ((∇̃Xhs)(Y, Z) − (∇̃Y hs)(X, Z), W )

+ ḡ(Ds(X, hℓ(Y, Z)) − Ds(Y, hℓ(X, Z)), W ), (2.17)

ḡ(R̄(X, Y )Z, ξ) = ḡ((∇̃Xhℓ)(Y, Z) − (∇̃Y hℓ)(X, Z), ξ)

+ ḡ(Dℓ(X, hs(Y, Z)) − Dℓ(Y, hs(X, Z)), ξ). (2.18)

A semi-Riemannian manifold of constant curvature c, everywhere, is called a space form
and denoted by M̄(c). Moreover, the curvature tensor R̄ satisfies the relation

R̄(X̄, Ȳ )Z̄ = c{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ }, (2.19)

for any X̄, Ȳ and Z̄ tangent to M̄ . Let M̄(c) be a semi-Riemannian space form, then
(2.12), (2.13), (2.17), (2.18) and (2.19) leads to:

ḡ((∇Xh∗)(Y, PZ), N) − cḡ(Y, PZ)ḡ(X, N)

+ ḡ(hℓ(Y, PZ), AN X) − ḡ(hs(Y, PZ), Ds(X, N))
= ḡ((∇Y h∗)(X, PZ), N) − cḡ(X, PZ)ḡ(Y, N)

+ ḡ(hℓ(X, PZ), AN Y ) − ḡ(hs(X, PZ), Ds(Y, N)), (2.20)

ḡ((∇̃Xhs)(Y, Z), W ) + ḡ(Ds(X, hℓ(Y, Z)), W )

= ḡ((∇̃Y hs)(X, Z), W ) + ḡ(Ds(Y, hℓ(X, Z)), W ), (2.21)

ḡ((∇̃Xhℓ)(Y, Z), ξ) + ḡ(Dℓ(X, hs(Y, Z)), ξ)

= ḡ((∇̃Y hℓ)(X, Z), ξ) + ḡ(Dℓ(Y, hs(X, Z)), ξ). (2.22)

for any X, Y and Z tangent to M .

Definition 2.1. Let (M, g) be a lightlike submanifold of a semi-Riemannian manifold
(M̄, ḡ). Then:

(1) M is said to be totally umbilical [11, Definition 5.3.1], in M̄ , if there exist a smooth
transversal vector field H̄ ∈ Γ(tr(TM)), such that

h(X, Y ) = g(X, Y )H̄, (2.23)

for any X and Y tangent to M . In case H̄ = 0 (resp. H̄ ̸= 0) then M is said to be
totally geodesic (resp. proper totally umbilical). Moreover, from (2.23), it is easy
to see that M is totally umbilical, if and only if on each coordinate neighborhood
U there exist smooth vector fields Hℓ ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)) such
that

hℓ(X, Y ) = g(X, Y )Hℓ and hs(X, Y ) = g(X, Y )Hs. (2.24)

It is well-known that this definition does not depend on the screen distribution
and the screen transversal vector bundle of M .

(2) S(TM) is totally umbilical [9, Definition 2], in M , if there is a smooth vector field
K ′ ∈ Γ(Rad TM) on M , such that

h∗(X, PY ) = g(X, PY )K ′, (2.25)

for any X and Y tangent to M . In case K ′ = 0 (resp. K ′ ̸= 0) we say that S(TM)
is totally geodesic (resp. proper totally umbilical).

For more information on the general theory of lightlike submanifolds, we refer the reader
to the books [8] and [11].
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3. Pseudo-totally umbilical submanifolds
In this section, we introduce the notion of a pseudo-totally umbilical r-lightlike sub-

manifold M of a semi-Riemannian manifold M̄ . First, let us consider two vector fields L
and S of ltr(TM) and S(TM⊥), respectively, given by

L = 1
m − r

trace|S(T M) hℓ = 1
m − r

m−r∑
i=1

εih
ℓ(Ei, Ei), (3.1)

S = 1
m − r

trace|S(T M) hs = 1
m − r

m−r∑
i=1

εih
s(Ei, Ei), (3.2)

where {Ei, . . . , Em−r} is an orthonormal basis of S(TM), and εi = g(Ei, Ei). Note that,
for a totally umbilical lightlike submanifold M , the vector fields Hℓ and Hs in (2.24)
coincides, respectively, with the vector fields L and S above.

The transversal vector field H̄ = L + S is called the mean curvature vector field of
M in M̄ . In [11, p. 221], K. L. Duggal and B. Sahin have defined a minimal lightlike
submanifold isometrically immersed in a semi-Riemannian manifold M̄ as one satisfying
the conditions: (a) hs = 0 on Rad TM and (b) trace|S(T M)h = 0. From (3.1) and (3.2),
we note that the second condition in this definition, i.e. (b), is equivalent to H̄ = 0. We
say that M has parallel mean curvature vector field, H̄, if ∇tH̄ = 0. Note that this is
equivalent to ∇ℓL = 0 and ∇sS = 0.

Next, assume that S(TM) is an integrable distribution over M . In this case, it is well-
known (see [11, Theorem 5.1.5, p. 200]), that h∗ is symmetric on S(TM). Now, consider
the vector field K ∈ Γ(Rad TM), given by

K = 1
m − r

trace|S(T M) h∗ = 1
m − r

m−r∑
i=1

εih
∗(Ei, Ei), (3.3)

where εi = g(Ei, Ei). Note that, for a totally umbilical screen distribution S(TM), the
vector field K ′ in (2.25) coincides with the vector field K above. The vector field K, in
(3.3), is called the mean curvature vector field of S(TM) in M . We say that S(TM) is
minimal, in M , if K = 0. For example, any lightlike submanifold with a parallel screen
distribution, with respect to ∇ (cf. [11, Theorem 5.1.6, p. 200]), is trivially minimal in M
since h∗ = 0. We, also, say that K is parallel if ∇∗tK = 0.

Next, let us define two smooth functions ρ and σ, on M , by:

ρ = ḡ(H̄, K) = ḡ(K, L), σ = ḡ(H̄, S) = ḡ(S, S).

Then, we shall call the sum ρ + σ the mean curvature function of M . Furthermore, M
has constant curvature if the function ρ + σ is constant on M .

Now, with the help of the functions ρ and σ above, we define a pseudo-totally umbilical
lightlike submanifold of a semi-Riemannian manifold as follows:

Definition 3.1. Let (M, g) be a lightlike submanifold of a semi-Riemannian manifold
(M̄, ḡ). We say that M is pseudo-totally umbilical if on every coordinate neighbourhood
U, of M , there exists smooth functions ρ and σ such that

ḡ(h∗(X, PY ), L) = ρg(X, PY ) and ḡ(hs(X, Y ), S) = σg(X, Y ), (3.4)

for any X and Y tangent to M . In case ρ = σ = 0, we say that M is pseudo-totally
geodesic.

Example 3.2. A minimal lightlike submanifold is clearly pseudo-totally umbilical with
ρ = σ = 0, i.e. pseudo-totally geodesic.
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Example 3.3. Let us consider the future-directed lightlike cone Λ0 of R4
1 with signature

(−, +, +, +), with respect to a canonical basis {∂0, ∂1, ∂2, ∂3}, given by

Λ0 =
{

(x0, x1, x2, x3) : x0 =
√

x2
1 + x2

2 + x2
3 > 0

}
.

By a direct calculation we have Rad TM = Span{ξ}, where

ξ = ∂0 + x1
x0

∂1 + x2
x0

∂2 + x3
x0

∂3. (3.5)

On the other hand, S(TM) = Span{X, Y }, where
X = X1∂1 + X2∂2 + X3∂3, Y = Y1∂1 + Y2∂2 + Y3∂3, (3.6)

such that
3∑

i=1
xiXi =

3∑
i=1

xiYi = 0. (3.7)

Using (3.5), (3.6) and (3.7)

∇̄ξξ = 0 and ∇̄Xξ = 1
x0

X, (3.8)

for all X tangent to S(TΛ0), where ∇̄ is the connection on R4
1. It follows from (3.8), (2.3)

and (2.6) that

∇ξξ = 0, hℓ(ξ, ξ) = 0, ∇Xξ = 0, hℓ(X, ξ) = 0,

and ∇∗t
ξ ξ = 0, A∗

ξξ = 0, ∇∗t
Xξ = 0, A∗

ξX = − 1
x0

X. (3.9)

Thus, we see that ξ is a geodesic lightlike vector field and Λ0 is totally umbilical. Next,
ltr(TM) is spanned by N , where

N = 1
2

{
−∂0 + x1

x0
∂1 + x2

x0
∂2 + x3

x0
∂3

}
. (3.10)

From (3.10), (3.6), (3.5) and (3.7), we find

∇̄ξN = 0 and ∇̄XN = 1
2x0

X, (3.11)

for all X tangent to S(TΛ0). Hence, from (2.4) and (3.11), we have

∇ℓ
ξN = 0, AN ξ = 0, ∇ℓ

XN = 0, AN X = − 1
2x0

X. (3.12)

Therefore, S(TΛ0) is totally umbilical. The mean curvature vector field L of Λ0, in R4
1,

follows from (3.9) as

L = 1
2

trace|S(T M)h
ℓ = 1

2

(
trace|S(T M)A

∗
ξ

)
N = − 1

x0
N. (3.13)

On the other hand, from (3.12), we have

h∗(X, Y ) = − 1
2x0

g(X, Y )ξ. (3.14)

It follows from (3.14) and (3.13) that

ḡ(h∗(X, Y ), L) = 1
2x2

0
g(X, Y ),

showing that Λ0 is pseudo-totally umbilical with ρ = 1
2x2

0
and σ = 0.

In general, we have the following example:
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Example 3.4. A totally umbilical lightlike submanifold, with a totally umbilical screen
distribution is pseudo-totally umbilical, such that ρ = ḡ(K ′, Hℓ) and σ = ḡ(Hs, Hs).

Remark 3.5. Although every totally umbilical lightlike submanifold, with a totally um-
bilical screen distribution is also pseudo-totally umbilical, we note that the converse is
generally not true.

Taking into account of (2.7), (2.10) and (3.4), we note that on any pseudo-totally
umbilical lightlike submanifold M of a semi-Riemannian manifold M̄ , the following holds:

Proposition 3.6. A lightlike submanifold M of a semi-Riemannian manifold M̄ is pseudo-
totally umbilical if and only if on each coordinate neighbourhood U there exists smooth
functions ρ and σ such that the following holds:

ḡ(h∗(ξ, PX), L) = 0, ḡ(hs(ξ, X), S) = 0,

Dℓ(X, S) = 0, PALX = ρPX, PASX = σPX,

for any X tangent to M and ξ tangent to Rad TM .

Proposition 3.7. Let M be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian manifold M̄ , such that h∗ and hs are parallel, i.e. ∇h∗ = 0 and ∇̃hs = 0.
If h∗(K, PX) = hs(K, X) = 0, for any X tangent to M , then M is either pseudo-totally
geodesic, i.e. ρ = σ = 0 or the screen shape operator A∗

ξ satisfies A∗
K = 0.

Proof. Suppose that ∇h∗ = 0 and ∇̃hs = 0, then (2.15) and (2.16), together with the
assumptions h∗(K, PX) = hs(K, X) = 0, gives

h∗(∇XK, PY ) = 0, hs(∇XK, Y ) = 0, (3.15)

for any X and Y tangent to M . Taking the inner product of the equations in (3.15) with
L and S, respectively, and then apply (3.4) and (2.6), we get

ḡ(h∗(∇XK, PY ), L) = ρg(∇XK, PY ) = −ρg(A∗
KX, PY ) = 0,

ḡ(hs(∇XK, Y ), S) = σg(∇XK, Y ) = −σg(A∗
KX, Y ) = 0,

from which our result follows. □

Proposition 3.8. Let M be a 1-lightlike pseudo-totally umbilical lightlike submanifold of
a semi-Riemannian manifold M̄ . Then, either L = 0 or S(TM) is totally umbilical in M .

Proof. As dim Rad TM = 1, we may write the vector fields in (3.1) and (3.3) as K =
αξ and L = βN , where ξ and N are the lightlike vector fields spanning the lightlike
distributions Rad TM and ltr(TM), respectively. Here, α and β are smooth functions on
M . Hence, ρ = ḡ(K, L) = αβ, and from (3.4) we have

β{ḡ(h∗(X, PY ), N) − αg(X, PY )} = 0, (3.16)

for any X and Y tangent to M . Therefore, from (3.16), we see that either β = 0
which means that L = βN = 0 or ḡ(h∗(X, PY ), N) = αg(X, PY ), which implies that
h∗(X, PY ) = g(X, PY )(αξ) = g(X, PY )K, which shows that S(TM) is totally umbilical
in M . □

In particular, if M is a lightlike hypersurface, Proposition 3.8 leads to the following result:

Theorem 3.9. Any pseudo-totally umbilical lightlike hypersurface M of a semi-Riemannian
manifold M̄ is either minimally immersed in M̄ , i.e. L = 0, or a non-minimal hypersur-
face whose screen distribution S(TM) is totally umbilical in M , i.e. h∗ = g ⊗ K.

Proposition 3.10. Let M be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian manifold M̄ , such that dim S(TM⊥) = 1. Then, either S = 0 or hs = g ⊗ S.
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Proof. As dim S(TM⊥) = 1, we put S = γW , where γ is some smooth function and W
the vector field spanning S(TM⊥). It follows that σ = ḡ(S, S) = ϵγ2, where ϵ = ḡ(W, W ).
Then, from the second relation in (3.4), we have

γ{ḡ(hs(X, Y ), W ) − ϵγg(X, Y )} = 0, (3.17)

for any X and Y tangent to M . Then, from (3.17), we have γ = 0 and thus, S = γW = 0
or ḡ(hs(X, Y ), W ) = ϵγg(X, Y ), which leads to hs(X, Y ) = g(X, Y )(γW ) = g(X, Y )S,
completing the proof. □

Let M be a half-lightlike submanifold, i.e. one in which dim Rad TM = 1 and dim S(TM⊥) =
1. Then, in view of Propositions 3.8 and 3.10, we have the following result:

Theorem 3.11. Let M be a pseudo-totally umbilical half-lightlike submanifold of a semi-
Riemannian manifold M̄ . Then, M falls in one of the following categories:

(1) A non-totally umbilical pseudo-totally geodesic submanifold such that L = S = 0,
and with a nowhere totally umbilical screen distribution;

(2) A non-minimal submanifold satisfying L = 0 and hs = g ⊗ S;
(3) A non-minimal submanifold whose screen distribution S(TM) is totally umbilical

i.e. h∗ = g ⊗ K and S = 0;
(4) A non-minimal submanifold whose screen distribution S(TM) is totally umbilical

i.e. h∗ = g ⊗ K and hs = g ⊗ S.

Next, we give some examples in support of Theorem 3.11.

Example 3.12. Let us denote by (R4
1, ⟨, ⟩), the Minkowski space with the signature

(+, +, +, −) with respect to the canonical basis (∂1, . . . , ∂4). Let S3
1 = {p ∈ R4

1|⟨p, p⟩ = 1}
be the 3-dimensional unit pseudosphere of index 1, which is a Lorentzian hypersurface of
R4

1. Now, denote by M̄ = (S3
1 × R2

1, ḡ) the semi-Riemannian cross product, where R2
1 is

semi-Euclidean space with the signature (+, −), with respect to the canonical basis {∂5, ∂6}
and g is the inner product of R6

2 = R4
1 × R2

1 restricted to M̄ . Then, the half-lightlike sub-
manifold (M, ḡM , S(TM), S(TM⊥)), given by M = S1×H×R = {(p, t, t) ∈ S3

1×R2
1|t ∈ R},

where p =
√

2
2 (cos θ, sin θ, cosh ω, sinh ω) ∈ R4

1 such that θ ∈ [0, 2π] and ω ∈ R and H is a
hyperbola, is known to be minimal [11, Example 9, p. 221]. Therefore, this half-lightlike
submanifold is pseudo-totally umbilical and falls in the first category in Theorem 3.11,
since L = S = 0.

Example 3.13. Let M be a surface of the Minkowski spaceR4
1, and given by the equations

x1 = x3 and x2 = (1−(x4)2)1/2. Then, by a direct calculation, we find that TM is spanned
by ξ = ∂1 + ∂3 and E = −x4∂2 + x2∂4, while TM⊥ is spanned by ξ and W = x2∂2 + x4∂4.
It follows that Rad TM = Span{ξ}, S(TM) = Span{E} and S(TM⊥) = Span{W}. On
the other hand, ltr(TM) = Span{N}, where N = 1

2{−∂1 + ∂3}. It has been shown in
[11, Example 5, p. 189] that A∗

ξE = AN E = 0, hℓ = 0, hs(ξ, X) = 0, for any X tangent
to M , and hs(E, E) = g(E, E)W . Clearly, M is a non-minimal pseudo-totally umbilical
half-lightlike submanifold such that L = 0 and hs = g ⊗ W , and hence a submanifold of
the second category in Theorem 3.11.

Lemma 3.14. On any pseudo-totally umbilical r-lightlike submanifold M of a semi-
Riemannian manifold M̄(c), the following holds:

Xρ − (c + ρ)ḡ(X, L) − ḡ(K, ∇ℓ
XL) − ḡ(Ds(X, L), S)

= 1
m − r

PXρ − 1
m − r

m−r∑
i=1

εi{ḡ(h∗(X, Ei), ∇ℓ
Ei

L)

− ḡ(ALEi, hℓ(X, Ei)) + ḡ(hs(X, Ei), Ds(Ei, L))},
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Xσ − 2σḡ(X, L) + 2ḡ(Ds(X, L), S)

= 2
m − r

PXσ − 2
m − r

m−r∑
i=1

εi{ḡ(hs(X, Ei), ∇s
Ei

S) − ḡ(Ds(Ei, hℓ(X, Ei)), S)},

for all X tangent to M .

Proof. By a direct calculation, while considering (3.4) and (2.11), we derive

ḡ((∇Xh∗)(Y, PZ), L) = (Xρ)g(Y, PZ) − ḡ(h∗(Y, PZ), ∇ℓ
XL) + ρḡ(hℓ(X, PZ), Y ), (3.18)

ḡ((∇̃Xhs)(Y, Z), S) = (Xσ)g(Y, Z)

− ḡ(hs(Y, Z), ∇s
XS) + σ{ḡ(hℓ(X, Z), Y ) + ḡ(hℓ(X, Y ), Z)}, (3.19)

for all X, Y and Z tangent to M . Then, from (3.18), (3.19), (2.21) and (2.20) that

(Xρ)g(Y, PZ) − ρḡ(hℓ(Y, PZ), X) − cḡ(Y, PZ)ḡ(X, L)

− ḡ(h∗(Y, PZ), ∇ℓ
XL) + ḡ(ALX, hℓ(Y, PZ))

− ḡ(hs(Y, PZ), Ds(X, L)) = (Y ρ)g(X, PZ) − ρḡ(hℓ(X, PZ), Y )

− cḡ(X, PZ)ḡ(Y, L) − ḡ(h∗(X, PZ), ∇ℓ
Y L) + ḡ(ALY, hℓ(X, PZ))

− ḡ(hs(X, PZ), Ds(Y, L)), (3.20)

and for σ, we have

(Xσ)g(Y, Z) − σḡ(hℓ(Y, Z), X) − ḡ(hs(Y, Z), ∇s
XS)

+ḡ(Ds(X, hℓ(Y, Z)), S) = (Y σ)g(X, Z) − σḡ(hℓ(X, Z), Y )

− ḡ(hs(X, Z), ∇s
Y S) + ḡ(Ds(Y, hℓ(X, Z)), S). (3.21)

Then, Lemma 3.14 follows from (3.20) and (3.21) by tracing over Y and Z, with respect
to S(TM), and using (3.1) and (3.3). □

Then, from Lemma 3.14, the following is immediate:

Corollary 3.15. Let M be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian space form M̄(c). Then, ρ and σ of (3.4) satisfies the following partial dif-
ferential equations:

ξρ − (c + ρ)ḡ(ξ, L) − ḡ(K, ∇ℓ
ξL) − ḡ(Ds(ξ, L), S)

= − 1
m − r

m−r∑
i=1

εi{ḡ(h∗(ξ, Ei), ∇ℓ
Ei

L) − ḡ(ALEi, hℓ(ξ, Ei))

+ ḡ(hs(ξ, Ei), Ds(Ei, L))},

ξσ − 2σḡ(ξ, L) + 2ḡ(Ds(ξ, L), S)

= − 2
m − r

m−r∑
i=1

εi{ḡ(hs(ξ, Ei), ∇s
Ei

S) − ḡ(Ds(Ei, hℓ(ξ, Ei)), S)},

(m − r − 1)PXρ − (m − r)ḡ(K, ∇ℓ
P XL) − (m − r)ḡ(Ds(PX, L), S)

= −
m−r∑
i=1

εi{ḡ(h∗(PX, Ei), ∇ℓ
Ei

L) − ḡ(ALEi, hℓ(PX, Ei))

+ ḡ(hs(PX, Ei), Ds(Ei, L))},
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(m − r − 2)PXσ + 2(m − r)ḡ(Ds(PX, L), S)

= −2
m−r∑
i=1

εi{ḡ(hs(PX, Ei), ∇s
Ei

S) − ḡ(Ds(Ei, hℓ(PX, Ei)), S)},

for any X tangent to M and ξ tangent to Rad TM .

Theorem 3.16. There does not exist any non-minimal pseudo-totally umbilical lightlike
hypersurface M in a semi-Riemannian space form M̄(c) : c ̸= 0 such that S(TM) is totally
geodesic in M .

Proof. As M is a lightlike hypersurface, we have K = αξ and L = βN , for some smooth
functions α and β. It follows that ρ = ḡ(K, L) = αβ. On the other hand, Corollary 3.15
gives ξρ − (c + ρ)ḡ(ξ, L) − ḡ(K, ∇ℓ

ξL) = 0, which reduces to

β{ξα − (c + αβ) − αḡ(ξ, ∇ℓ
ξN)} = 0. (3.22)

But, from Theorem 3.9, we note that either M is minimal i.e. L = βN = 0, which means
β = 0 or S(TM) is totally umbilical with K ′ = K = αξ. Thus, if M is non-minimal, that
is β ̸= 0 and S(TM) totally geodesic, that is K ′ = 0, equivalently α = 0, we see from
(3.22) that c = 0. This contradiction completes the proof. □

Theorem 3.17. There does not exist any pseudo-totally umbilical half-lightlike submani-
fold M of the third kind in Theorem 3.11 of a semi-Riemannian space form M̄(c) : c ̸= 0
such that S(TM) is totally geodesic.

Proof. Let M be of the third type in Theorem 3.11, then M is non-minimal, with a
totally umbilical screen distribution and S = 0. Thus, if we let K = αξ, L = βN , for some
smooth functions α and β ̸= 0 (since M is non-minimal), then we have ρ = ḡ(K, L) = αβ.
Hence, as S = 0, Corollary 3.15 leads to ξα − (c + αβ) − αḡ(ξ, ∇ℓ

ξN) = 0. It, then,
follows that if S(TM) is totally geodesic, that is K ′ = K = αξ = 0, we get c = 0. This
contradiction completes the proof. □

A lightlike submanifold M of a semi-Riemannian manifold M̄ is called irrotational [11, p.
245] if for any X tangent to M and ξ tangent to Rad TM , one has ∇̄Xξ tangent to M .
This, further, implies that hℓ(X, ξ) = 0 and hs(X, ξ) = 0.

Theorem 3.18. Let M be a pseudo-totally umbilical irrotational r-lightlike submanifold
of a semi-Riemannian space form M̄(c). If the mean curvature vector fields H̄ = L + S
and K are parallel, then either ρ = 0 or M has constant mean curvature −c.

Proof. By the assumption H̄ = L+S and K parallel, we deduce that ∇ℓ
XL = 0, ∇s

XS = 0
and ∇∗t

XK = 0, for any X tangent to M . It then follows that Xρ = X · ḡ(K, L) =
ḡ(∇∗t

XK, L) + ḡ(K, ∇ℓ
XL) = 0 and Xσ = X · ḡ(S, S) = 2ḡ(∇s

XS, S) = 0. Now, using the
first two differential equations in Corollary 3.15, we get (c + ρ)ḡ(ξ, L) + ḡ(Ds(ξ, L), S) = 0
and σḡ(ξ, L)− ḡ(Ds(ξ, L), S) = 0, for any ξ tangent to Rad TM . From these two relations,
we get (c + ρ + σ)ḡ(ξ, L) = 0. With ξ = K in the last relation, we have (c + ρ + σ)ρ = 0,
which proves our result. □

Corollary 3.19. Under the same hypothesis as in Theorem 3.18, if M is co-isotropic,
then M is pseudo-totally geodesic or has constant mean curvature −c.

4. Pseudo-totally umbilical screen distribution
Let M be a lightlike submanifold of a semi-Riemannian manifold M̄ , and let K be the

mean curvature vector field of S(TM) as given in (3.3). Then, we have the following
definition:
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Definition 4.1. Let (M, g) be a lightlike submanifold of a semi-Riemannian manifold
(M̄, ḡ). We say that the screen distribution S(TM) is pseudo-totally umbilical, in M , if
on each coordinate neighbourhood U of M there exists a smooth function λ such that, for
any X and Y tangent to M , the following holds:

ḡ(hℓ(X, Y ), K) = λg(X, Y ), (4.1)
where K is the smooth vector field of Rad TM , called the mean curvature vector field of
S(TM) in M , and given by (3.3). In case λ = 0 (resp. λ ̸= 0), we say that S(TM) is
pseudo-totally geodesic (resp. proper pseudo-totally umbilical).

Example 4.2. A lightlike submanifold of a semi-Riemannian manifold with a minimal
screen distribution, i.e. K = 0, carries a pseudo-totally geodesic screen distribution, i.e.
λ = 0.

Example 4.3. The lightlike cone of Example 3.2 has a pseudo totally umbilical screen
distribution with λ = 1

2x2
0
. In fact, using (3.3) and (3.14), we have K = − 1

2x0
ξ. On the

other hand, using (3.9), we have hℓ(X, Y ) = − 1
x0

g(X, Y )N , for any X and Y tangent
to M . It then follows from (4.1) that ḡ(hℓ(X, Y ), K) = 1

2x2
0
g(X, Y ), which confirms our

claims.

Example 4.4. We may generalise Example 4.3 as follows: A totally umbilical lightlike
submanifold of a semi-Riemannian manifold has a pseudo-totally umbilical screen distri-
bution, such that λ = ḡ(Hℓ, K).

Remark 4.5. Although every totally umbilical lightlike submanifold carries a pseudo-
totally umbilical screen distribution, we stress that the converse is generally not true.

In view of relations (2.8), (2.9) and (4.1), we have the following:

Proposition 4.6. A lightlike submanifold M of a semi-Riemannian manifold M̄ has a
screen distribution S(TM) which is pseudo-totally umbilical if and only if on each co-
ordinate neighbourhood U there exists a smooth function λ such that hℓ(X, K) = 0 and
A∗

KX = λPX, for any X tangent to M .

Theorem 4.7. Let M be a lightlike submanifold of a semi-Riemannian manifold M̄ , such
that S(TM) is pseudo-totally umbilical in M . Suppose that hℓ is parallel, i.e. ∇̃hℓ = 0,
then S(TM) is pseudo-totally geodesic, i.e. λ = 0.

Proof. Suppose that ∇̃hℓ = 0. Then, relation (2.14) gives

∇ℓ
Xhℓ(Y, Z) − hℓ(∇XY, Z) − hℓ(Y, ∇XZ) = 0, (4.2)

for any X, Y and Z tangent to M . Taking Z = K in (4.2), and using Proposition 4.6, we
have −hℓ(Y, ∇XK) = 0. It then follows from this relation and the relation in (2.6), that

−hℓ(Y, ∇XK) = hℓ(Y, A∗
KX) − hℓ(Y, ∇∗t

XK) = 0. (4.3)

Tanking the inner product of (4.3) with respect to K, and then using (4.1) and Proposition
4.6, we have

λ2g(X, Y ) − ḡ(hℓ(Y, ∇∗t
XK), K) = 0. (4.4)

On the other hand, using (2.8) and Proposition 4.6, we have

−ḡ(hℓ(Y, ∇∗t
XK), K) = ḡ(hℓ(Y, K), ∇∗t

XK) = 0. (4.5)

Finally, from (4.4) and (4.5), we have λ2g(X, Y ) = 0, which gives λ = 0. □
Corollary 4.8. There are no any lightlike submanifold M of a semi-Riemannian manifold
M̄ , with a proper pseudo-totally umbilical screen distribution such that hℓ is parallel.
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Proposition 4.9. Let M be a 1-lightlike submanifold of a semi-Riemannian manifold M̄ ,
with a pseudo-totally umbilical screen distribution S(TM). Then, either

(1) the screen distribution S(TM) is minimal in M , i.e. K = 0, and therefore pseudo-
totally geodesic, or

(2) there exist a smooth transversal vector field Hℓ of ltr(TM), such that hℓ = g ⊗Hℓ.

Proof. Assume that dim Rad TM = 1, we may write K = αξ and L = βN , where ξ
spans Rad TM and N spans ltr(TM), α and β are smooth functions on M . It follows
that λ = ḡ(L, K) = αβ. Then, from (4.1), we get

α{ḡ(hℓ(X, Y ), ξ) − βg(X, Y )} = 0. (4.6)

So, from(4.6), we either have α = 0, which means that K = αξ = 0 and λ = αβ = 0 or
ḡ(hℓ(X, Y ), ξ) = βg(X, Y ). It follows from the last relation that hℓ(X, Y ) = g(X, Y )βN =
g(X, Y )Hℓ, with Hℓ = βN . □

Corollary 4.10. Any lightlike hypersurface of a semi-Riemannian manifold with a pseudo-
totally umbilical screen distribution has either a pseudo-totally geodesic screen distribution,
i.e. λ = 0, which is minimal in M , i.e. K = 0, or is totally umbilical, i.e. hℓ = g ⊗ Hℓ.

Corollary 4.11. The only lightlike hypersurfaces of a semi-Riemannian manifold with a
proper pseudo-totally umbilical screen distributions are the proper totally umbilical ones.

Lemma 4.12. On a lightlike submanifold of a semi-Riemannian space form M̄(c) with a
pseudo-totally umbilical screen distribution, the following holds:

Xλ − λḡ(X, L) − ḡ(∇∗t
XK, L) + ḡ(K, Dℓ(X, S)) = 1

m − r
PXλ

− 1
m − r

m−r∑
i=1

εi

{
ḡ(∇∗t

Ei
K, hℓ(X, Ei)) − ḡ(K, Dℓ(Ei, hs(X, Ei)))

}
,

for any X tangent to M .

Proof. Using (4.1) and (2.11), we have

ḡ((∇̃Xhℓ)(Y, Z), K) = (Xλ)g(Y, Z) − ḡ(∇∗t
XK, hℓ(Y, Z))

+ λ{ḡ(hℓ(X, Z), Y ) − ḡ(hℓ(Y, Z), X)}, (4.7)

for any X, Y and Z tangent to M . It then follows from (4.7) and (2.22) that

(Xλ)g(Y, Z) − λḡ(X, hℓ(Y, Z)) − ḡ(∇∗t
XK, hℓ(Y, Z)) + ḡ(K, Dℓ(X, hs(Y, Z)))

= (Y λ)g(X, Z) − λḡ(Y, hℓ(X, Z)) − ḡ(∇∗t
Y K, hℓ(X, Z))

+ ḡ(K, Dℓ(Y, hs(X, Z))). (4.8)

Then, letting Y = Z = Ei in (4.8) and summing over all i ∈ {1, . . . , m−r}, we get Lemma
4.12. □

In view of Lemma 4.12, we have the following:

Proposition 4.13. Let M be a lightlike submanifold of a semi-Riemannian space form
M̄(c). If S(TM) is pseudo-totally umbilical, then λ satisfy the following partial differential
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equations:
ξλ − λḡ(ξ, L) − ḡ(∇∗t

ξ K, L) + ḡ(K, Dℓ(ξ, S))

= 1
m − r

m−r∑
i=1

εi

{
ḡ(ξ, hℓ(∇∗t

Ei
K, Ei)) + ḡ(K, Dℓ(Ei, hs(ξ, Ei)))

}
,

(m − r − 1)PXλ − (m − r)ḡ(∇∗t
P XK, L) + (m − r)ḡ(K, Dℓ(PX, S))

= −
m−r∑
i=1

εi

{
ḡ(∇∗t

Ei
K, hℓ(PX, Ei)) − ḡ(K, Dℓ(Ei, hs(PX, Ei)))

}
,

for any ξ tangent to Rad TM and X tangent to M .

When M is irrotational, we see from relation (2.7) that ḡ(ξ, Dℓ(X, W )) = 0, for any
X tangent to M . It follows from this relation that Dℓ = 0. With this fact, we have the
following:

Corollary 4.14. With the same hypothesis as in Proposition 4.13, if M is irrotational
then:

ξλ − λḡ(ξ, L) − ḡ(∇∗t
ξ K, L) = 0,

(m − r − 1)PXλ − (m − r)ḡ(∇∗t
P XK, L) +

m−r∑
i=1

ḡ(∇∗t
Ei

K, hℓ(PX, Ei)) = 0,

for any ξ tangent to Rad TM and X tangent to M .

By a direct calculation, while using (2.3), (2.4) and (2.6), we have

Xλ = X · ḡ(K, L) = ḡ(∇∗t
XK, L) + ḡ(K, ∇ℓ

XL),
for all X tangent to M . Now, if M is irrotational, we see from the first relation in Corollary
4.14 and the above relation, with X = ξ, that ḡ(K, ∇ℓ

ξL) = λḡ(ξ, L), for any ξ tangent to
Rad TM . Taking ξ = K in this relation, we get ḡ(K, ∇ℓ

KL) = λḡ(K, L) = λ2. Therefore,
we have the following result:

Theorem 4.15. Let M be an irrotational lightlike submanifold of a semi-Riemannian
space form M̄(c), such that S(TM) is pseudo-totally umbilical. If L is a parallel vector
field, then λ = 0, i.e. S(TM) is pseudo-totally geodesic.

Next, suppose that the mean curvature vector field K is a parallel, i.e. ∇∗tK = 0, then
Corollary 4.14 gives ξλ − λḡ(ξ, L) = 0 and (m − r − 1)PXλ = 0, for any ξ tangent to
Rad TM and X tangent to M . These equations suggest the following:

Theorem 4.16. Let M be an irrotational lightlike submanifold of a semi-Riemannian
space form M̄(c), such that S(TM) is pseudo-totally umbilical. If K is a parallel vector
field, then Kλ − λ2 = 0. Moreover, either dim S(TM) = 1 or λ is constant function along
S(TM).

5. Pseudo-totally umbilical leaves of S(TM)
Let M be a lightlike submanifold of a semi-Riemannian manifold M̄ . Through out this

section we assume that S(TM) is integrable and the connections Dℓ and Ds vanishes on
S(TM). Now, we have the following lemma:

Lemma 5.1. Let M be a lightlike submanifold of a semi-Riemannian manifold M̄ , such
that S(TM) is integrable. Let M∗ be a leaf of S(TM), immersed as an (m−r)-dimensional
submanifold of M̄ . Then, the following holds:

∇̄XY = ∇∗
XY + h′(X, Y ), ∇̄XU = −A′

U X + ∇∗⊥
X U, (5.1)
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for any X and Y tangent to M∗ and U tangent to TM∗⊥. Here, h′, A′
U and ∇∗⊥ denotes

the second fundamental form, the shape operator and normal connction of M∗, and given
by

h′(X, Y ) = h∗(X, Y ) + hℓ(X, Y ) + hs(X, Y ), (5.2)
A′

U X = A∗
Ur X + AUℓX + AUsX,

∇∗⊥
X U = ∇∗t

XU r + ∇ℓ
XU ℓ + ∇s

XU s, (5.3)

where U r, U ℓ and U s are the components of U tangent to Rad TM , ltr(TM) and S(TM⊥),
respectively.
Proof. The relations in the lemma follows directly from (2.3), (2.5) and (2.6). □
Using relations (5.2), (3.2), (3.2) and (3.3) we see that the mean curvature vector field H∗

of M∗, in M̄ , is given by
H∗ = trace|S(T M)h

′ = K + L + S. (5.4)

We say that M∗ is minimal, in M̄ , if H∗ = 0. Obviously this is equivalent to K =
L = S = 0. On the other hand, we say that H∗ is parallel if ∇∗⊥H∗ = 0. Using (5.3)
and (5.4), this is equivalent to ∇∗t

XK = ∇ℓ
XL = ∇s

XS = 0, for any X tangent to M∗.
Next, we denote by Sd

q(c0, r0) = {x ∈ Rd+1
q |ḡ(x − c0, x − c0) = r2

0} and Hd
q(c0, r0) = {x ∈

Rd+1
q+1|ḡ(x − c0, x − c0) = −r2

0} the d-dimensional semi-Euclidean sphere and hyperbolic
spaces of constant curvatures r−2

0 and −r−2
0 , respectively, and c0 ∈ Rd

q is the center. Then,
we have the following result:
Theorem 5.2. Let (M, g) be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian space form Rm+n

q . Suppose that S(TM) is also pseudo-totally umbilical.
Then, each (m − r)-dimensional leaf M∗ of S(TM) is pseudo-totally umbilica in Rm+n

q ,
i.e. for any X and Y tangent to M∗, we have ḡ(h′(X, Y ), H∗) = φg(X, Y ), where φ is
some smooth function. Moreover, if φ ̸= 0 and the mean curvature vector fields K and
H̄ = L+S are parallel, then M∗ is either contained in Sm+n−1

q (c0, r0) or in Hm+n−1
q−1 (c0, r0)

as a minimal submanifold, for some c0 ∈ Rm+n
q and r0 > 0.

Proof. From (3.4), (4.1), (5.2) and (5.4), we have
ḡ(h′(X, Y ), H∗) = ḡ(h∗(X, Y ), H∗) + ḡ(hℓ(X, Y ), H∗) + ḡ(hs(X, Y ), H∗)

= ḡ(h∗(X, Y ), L) + ḡ(hℓ(X, Y ), K) + ḡ(hs(X, Y ), S)
= (ρ + λ + σ)g(X, Y ), (5.5)

for any X and Y tangent to M∗. It follows from (5.5) that each leaf M∗ is pseudo-totally
umbilic in Rm+n

q , with
φ = ρ + λ + σ = ḡ(H∗, H∗). (5.6)

Next, as K and L + S are parallel, we see that H∗ is parallel too. The rest of the proof
will follow exactly as given in Lemma 2 of [4, p. 361]. In fact, from (5.6), we have (5.1)
to derive

Xφ = X · ḡ(H∗, H∗) = 2ḡ(∇̄XH∗, H∗) = 2ḡ(∇∗⊥
X H∗, H∗) = 0,

for any X tangent to M∗. Thus, φ is a constant function on the leaves M∗. Set

φ = ϵ

r2
0

, (5.7)

where ϵ = ±1. On the other hand, as M∗ is pseudo-totally umbilic, it follows from (5.5)
and (5.1), that

A′
H∗X = (ρ + λ + σ)X = φX. (5.8)
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Next, let us set v = x + ϵr2
0H∗, where x is the position vector of M∗ in Rm+n

q . Then, in
view of (5.1) and (5.8), we have

∇̄Xv = ∇̄Xx + ϵr2
0∇̄XH∗ = X − ϵr2

0A′
H∗X = 0, (5.9)

for any X tangent to M∗. Relation (5.9) shows that v is a constant vector along the leaves
in Rm+n

q . Denote this vector by c0. Hence, we have ḡ(x − c0, x − c0) = r4
0 ḡ(H∗, H∗) =

ϵr2
0, in which we have sed (5.6) and (5.7). Thus, M∗ lies in either Sm+n−1

q (c0, r0) or in
Hm+n−1

q−1 (c0, r0), and by Lemma 1 of [4, p. 360], M∗ is minimal in these spaces. □

Example 5.3. Consider the lightlike cone of Example 3.3. Clearly S(TΛ0) is integrable
and its leaves are totally umbilical in R4

1. Furthermore, it is clear that these leaves are
pseudo-totally umbilical in R4

1, with φ = 1
x2

0
. As ∇∗tξ = ∇ℓN = 0 and PXx0 = 0, we see

that the mean curvature vector field H∗ = − 1
x0

(
1
2ξ + N

)
of these leaves is parallel, i.e.

∇∗⊥
P XH∗ = PXx0

x2
0

(1
2

ξ + N

)
− 1

x0

(1
2

∇∗t
P Xξ + ∇ℓ

P XN

)
= 0,

for any X tangent to Λ0. Therefore, the leaves of S(TΛ0) are contained in the pseudo-
Euclidean sphere S3

1(c0, x0). Furthermore, it is easy to show that these leaves are minimally
immersed in S3

1(c0, x0).

6. Mean lightlike sectional curvatures
Let x ∈ M and ξ be a lightlike vector of TxM̄ . A plane Π of TxM̄ is called a lightlike

plane directed by ξ if it contains ξ, ḡx(ξ, E) = 0 for any E ∈ Π and there exist E0 ∈ Π
such that ḡ(E0, E0) ̸= 0. Then, the lightlike sectional curvature [11] of Π with respect to
ξ and ∇̄ as a real number

Φ̄ξ(Π) = ḡ(R̄(E, ξ)ξ, E)
g(E, E)

, (6.1)

where E is an arbitrary non-lightlike vector in Π. In a similar way, we define lightlike
sectional curvature Φξ(Π) of the lightlike plane Π of the tangent space TxM with respect
to ξ and ∇, as a real number

Φξ(Π) = g(R(E, ξ)ξ, E)
g(E, E)

. (6.2)

It is well-known that both lightlike sectional curvatures in (6.1) and (6.2) above are inde-
pendent of the non-lightlike section E, but quadratically dependent on the lightlike section
ξ.

Definition 6.1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ . We define the mean lightlike sectional curvatures Ω̄ξ[Π] and Ωξ[Π] of M̄ and M ,
respectively, directed by a lightlike vector field ξ, as

Ω̄ξ [Π] = 1
m − r

m−r∑
i=1

Φ̄ξ(Πi) and Ωξ[Π] = 1
m − r

m−r∑
i=1

Φξ(Πi),

where the sum is over all lightlike planes Πi spanned by the lightlike vector field ξ and
non-lightlike orthonormal vector fields Ei tangent to S(TM).

Geometrically, the mean lightlike sectional curvatures Ω̄ξ[Π] and Ωξ[Π] are, up to a
multiplicative constant, the Ricci tensors R̄ic(ξ, ξ) and Ric(ξ, ξ) of M̄ and M , respectively,
restricted to S(TM). These tensors play a fundamental role in the characterisation of
lightlike hypersurfaces in sapcetimes (see, for instance, K. L. Duggal and B. Sahin [11,
Theorem 3.1.8, p. 106]). Furthermore, we note that the vanishing of Φ̄ξ(Πi) (resp. Φξ(Πi))
implies the vanishing of Ω̄ξ[Π] (resp. Ωξ[Π]), but the converse is, generally, not true.
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Proposition 6.2. Let (M, g) be an irrotational lightlike submanifold of a semi-Riemannian
manifold M̄ . If S(TM) is pseudo-totally umbilical then Ω̄K [Π] and ΩK [Π] satisfy:

Ω̄K [Π] = Kλ − λ2 − ḡ(∇∗t
KK, L) = ΩK [Π],

where K is the mean curvature vector field in (3.3).

Proof. As M is irrotational, we see from from (2.12) that

ḡ(R̄(X, ξ)ξ, PY ) = g(R(X, ξ)ξ, PY ), (6.3)
for any X and Y tangent to M , and ξ tangent to Rad TM . On the other hand, using the
curvature relation in [11, p. 218], we have

g(R(X, ξ)ξ, PY ) = ḡ((∇̃ξhℓ)(X, PY ), ξ) − ḡ((∇̃Xhℓ)(ξ, PY ), ξ). (6.4)

Taking ξ = K in (6.4) and using (4.1) and (2.11), we derive

g(R(X, K)K, PY ) = {Kλ − λ2}g(X, PY ) − ḡ(∇∗t
KK, hℓ(X, PY )). (6.5)

Tracing (6.5) over X and Y , with respect to S(TM), and using (6.3) together with Defi-
nition 6.1, we obtain our result. □
Corollary 6.3. With the same hypothesis as in Proposition 6.2, the mean lightlike sec-
tional curvatures Ω̄K [Π] and ΩK [Π] vanishes if and only if λ satisfy the partial differential
equation Kλ − λ2 − ḡ(∇∗t

KK, L) = 0.

When M̄ is a space of constant curvature c, then Φ̄ξ(Πi) = Φξ(Πi) = 0, and hence we
have the following:

Theorem 6.4. Let M be an irrotational lightlike submanifold of a semi-Riemannian space
form M̄(c). If S(TM) is pseudo-totally umbilical then the mean lightlike sectional curva-
tures Ω̄K [Π] and ΩK [Π] vanishes.
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