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Abstract

We introduce the geometry of pseudo-totally umbilical lightlike submanifold M of a semi-
Riemannian manifold M. In line with the above, we give a complete classification of
pseudo-totally umbilical 1-lightlike submanifolds, such as the lightlike hypersurfaces and
half-lightlike submanifolds. Furthermore, pseudo-totally umbilical screen distributions are
also investigated, with a complete classification for any lightlike hypersurfaces whose screen
distributions are pseudo-totally umbilical. Closely linked to the above we also show, under
some geometric conditions, that some pseudo-totally umbilical leaves M™, of the screen
distribution over M, as non-degenerate submanifolds of M, are either contained in semi-
Euclidean spheres or the hyperbolic spaces. Moreover, tangible examples are constructed
in this case. Finally, we introduce the notion of mean lightlike sectional curvatures and
relate them to the well-known tensors used in the characterisation of lightlike hypersurfaces
in space-times.
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1. Introduction

Let (M, g) be a non-degenerate submanifold of a semi-Riemannian manifold (M,g),
where g and g are semi-Riemannian metric tensors on M and M. Then, M is called
pseudo-totally umbilical [5-7,14] if there exist a smooth function f such that

g(h(Xv Y)?C) = fg(Xv Y)7

for any X and Y tangent to M, where h denotes the second fundamental form of M in M,
and ( is the mean curvature vector field of M, given by ( = mtracegh. It is obvious
that any minimal, i.e. ¢ = 0, semi-Riemannian submanifold is trivially pseudo-totally
umbilical with f = 0. Pseudo-totally umbilical submanifolds are an important class of
non-degenerate submanifolds, with many interesting results been discovered about them.
For example, see Theorems 1, 2 and 3 in [5], and also Theorems 1 and 2 of [14], and many
more results in the literature.

In this paper, we extend the notion of pseudo-totally umbilical submanifolds to lightlike

submanifolds of a semi-Riemannian manifold. Lightlike submanifolds differs significantly
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from non-degenerate submanifolds in that, for a lightlike submanifold, the normal bun-
dle to a lightlike submanifold is a subbundle of the tangent bundle of the submanifold.
This posses a challenge to the study of lightlike submanifolds since the classical Gauss-
Weingarten equations do not apply to lightlike submanifolds. K. L. Duggal and A. Bejancu
[8] (also see [11]) have overcame this challenge by introducing a non-degenerate distribu-
tion over the submanifold, called the screen distribution. Although screen distributions
are, in general, not unique, they are canonically isomorphic to the factor bundle intro-
duced by D. N. Kupeli in [15]. With such a screen distribution, many interesting results
have been discovered on lightlike submanifolds. for an up to-date information on these
results, we refer to the book [11], as well as some of these papers: [1-3,9,10,12,13,16-20].
In reality lightlike submanifolds in particular lightlike hypersurfaces are an important set
of geometric objects. For instance, in General Relativity, lightlike hypersurfaces represent
different models of blackhole horizons [§].

The rest of the paper is arranged as follows: In Section 2, we quote some basic notions
on lightlike geometry required in the rest of the paper. In Section 3, we introduce pseudo-
totally umbilical lightlike submanifolds of a semi-Riemannian manifold. In Section 4,
we study lightlike submanifolds whose screen distributions are pseudo-totally umbilical
submanifolds. In Section 5, we study pseudo-totally umbilical leaves, and in Section 6
we define the notion of mean lightlike sectional curvatures of a lightlike submanifold of a
semi-Riemannian manifold.

2. Preliminaries

Let (M, g) be an m-dimensional lightlike submanifold of a semi-Riemannian manifold
(M, g) of dimension m + n. Then, the radical distribution RadTM = TM NTM* is a
subbundle of the tangent bundle TM and the normal bundle TM=*, of rank r, where 1 <
r < min{m,n}. Moreover, there exist two complementary non-degenerate distributions
S(TM) and S(TM~*) of RadTM in TM and TM~ respectively, called the screen and
co-screen distributions on M, such that TM = RadTM L,y S(TM) and TM+ =
RadTM Lgpp, S(TM?1Y), where L., denotes the orthogonal direct sum. More often,
such a lightlike submanifold is denoted by M = (M, g, S(TM),S(TM*1)). Let tr(TM)
and Itr(T'M) denote complementary (but not orthogonal) vector bundlesto T'M in T'M|,
and TM~ in S(TM)*, respectively, and let {Ny,..., N,} be a lightlike basis of Itr(TM)
consisting of smooth sections of S(TM)* such that g(&;, N;) = d;, g(Ni, N;) = 0, 1 <
i,7 <r,where {{,...,& }is alightlike basis of Rad T'M. Then, we have the decomposition

TMy =TM & tr(TM)
= {Rad TM @ ltr(TM)} Lopn S(TM) Lop S(TM™),
where @ denotes the direct (non-orthogonal) sum.
A lightlike submanifold (M, g) is called:
(1) r-lightlike if 1 <7 < min{m,n};
(2) co-isotropic if 1 <r=n<m, S(TM*')={0};
(3) isotropicif 1 <r=m<n, S(TM)={0};
(4) totally lightlike if r =n=m, S(TM)={0}=S(TM").
Throughout this paper, we denote by F(M) the algebra of smooth functions on M and
I'(Z) the F(M) module of smooth sections of a vector bundle = (same notation for any
other vector bundle) over M. For all X,Y € I'(T'M) and V € I'(tr(T'M)), the Gauss and
Weingarten formulae are given by
VxY =VxY +h(X,Y), (2.1)
VxV = Ay X + V4V, (2.2)
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where {VxY, Ay X} and {h(X,Y), Vi V} belongs to I'(T'M) and T'(tr(T'M)) respectively.
Further, V and V* are linear connections on M and tr(T'M), respectively. The second fun-
damental form h is a symmetric F'(M)-bilinear form on I'(T'M) with values in I'(tr(7M))
and the shape operator Ay is a linear endomorphism of I'(T'M). Moreover, from (2.1)
and (2.2), we have (cf. [11, p. 196-198]):

VxY =VxY +0(X,Y) + h*(X,Y), (2.3)
VxN = —AnX + V5N + D*(X,N), (2.4)
VxW = —AwX + V5 W + DX, W), (2.5)

for any X, Y tangent to M, N tangent to itr(T'M) and W tangent to S(T'M*). Further-
more, Ay and Ay are called the shape operators of M, while h* and h® are called the
lightlike second fundamental form and the screen second fundamental form, respectively.
Also, V! and V* are, respectively, linear connections on ltr(TM) and S(TM™1), called
the lightlike connection and the screen Otsuki connections on ltr(TM) and S(TM™),
respectively.

Denote the projection of TM onto S(T'M) by P. Then, for any X,Y € I'(T'M) and
¢ eT(RadTM), we have

VxPY = V5% PY + h*(X,PY),
Vx¢& =—AfX + V¥, (2.6)

where V* and Aj are, respectively, the linear connection and shape operator of S (TM).

Furthermore, h* and V*' are the second fundamental form and a linear connection on
Rad T M, respectively. Furthermore, by using (2.3)-(2.6), we obtain, for any X,Y €
[(TM), ¢ e T(RadTM), N,N' € T(ltr(TM)) and W € T'(S(TM+)):

g(h*(X,Y), W) + g(Y, D"(X,W)) = g(Aw X, Y), (2.7)
g(h'(X,Y).€) +g(h'(X,€),Y) = —g(VxEY), (2.8)
§(D*(X,N), W) = §(N, AwX), g(h"(X,PY),€) = g(A{X, PY), (2.9)
g(h'(X,€),6) =0, g(h*(X,PY),N) = g(AyX, PY). (2.10)

Since V is a metric connection, by a direct calculations, using (2.3) we get
(Vxg)(Y, Z2) = g(h'(X,Y), Z) + g(h"(X, 2),Y), (2.11)

forall X,Y,Z € I'(T'M). It is important to note that V* is a metric connection on S(TM).
Let R be the curvature tensor of M. Then, we have (cf. [8, p. 171]):

R(X,Y)Z =R(X.Y)Z + Apex.2)Y — Ay 2y X + Apsx,2)Y
— Apsviy X + (Vxh)(Y, Z) = (Vyh)(X, Z) + D"(X, h*(Y, 2))
— DYY,h*(X, Z)) + (Vxh*)(Y, Z) — (Vyh*)(X, Z)
+ D3(X,hY(Y, Z)) — D*(Y, ' (X, Z)), (2.12)
g(R(X,Y)PZ,N) = g((Vxh")(Y,PZ) — (Vyh")(X,PZ),N), (2.13)
where VhY, Vh* and Vh* are given by
(Vxh)(Y, Z) = Vb (Y, Z) = B (VxY, Z) = B (Y, Vx Z), (2.14)
(Vxh)Y,Z) = Vih*(Y, Z) — h*(VxY, Z) — h*(Y,Vx Z), (2.15)
(Vxh*)(Y,PZ) = V¥h*(Y,PZ) — h*(VxY,PZ) — h*(Y,V%PZ), (2.16)
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for all X,Y,Z € T'(TM), N € T(lte(TM)) and W € T'(S(TM')). Taking the inner
product of (2.12) with respect to W and &, in turns, we have

g(R(X’ Y)Z’ W) = g((ﬁth)(K Z) - (@Yhs)(X’ Z)7 W)
+ §(D*(X, WYY, Z)) — D*(Y,h* (X, Z)), W), (2.17)

J(R(X,Y)Z, &) = g(Vxh')(Y, Z) — (Vyh)(X, Z),€)
+ g(DYX, h*(Y, Z)) — D'(Y,h*(X, Z)),€). (2.18)

A semi-Riemannian manifold of constant curvature ¢, everywhere, is called a space form
and denoted by M (c). Moreover, the curvature tensor R satisfies the relation

for any X, Y and Z tangent to M. Let M(c) be a semi-Riemannian space form, then
(2.12), (2.13), (2.17), (2.18) and (2.19) leads to:
= g9((Vyh")(X, PZ),N) — cg(X, PZ)g(Y, N)

+g(h“(X,PZ), ANY) — g(h*(X,PZ),D*(Y,N)), (2.20)
g(Vxh*)(Y, Z),W) + g(D*(X,h"(Y, Z)), W)

= g((Vyh*)(X, 2),W) + g(D*(Y, h"(X, Z)), W), (2.21)
g(Vxh)(Y, 2),€) + g(D"(X, h*(Y, 2)),€)

= 3(Vyh)(X, 2),&) + g(D"(Y, h*(X, Z)), €). (2.22)

for any X, Y and Z tangent to M.

Definition 2.1. Let (M, g) be a lightlike submanifold of a semi-Riemannian manifold
(M,g). Then:
(1) M is said to be totally umbilical [11, Definition 5.3.1], in M, if there exist a smooth
transversal vector field H € I'(tr(T'M)), such that

h(X,Y) = g(X,Y)H, (2.23)

for any X and Y tangent to M. In case H = 0 (resp. H # 0) then M is said to be
totally geodesic (resp. proper totally umbilical). Moreover, from (2.23), it is easy
to see that M is totally umbilical, if and only if on each coordinate neighborhood
U there exist smooth vector fields H* € T'(Itr(TM)) and H® € T'(S(TM+)) such
that

RY(X,Y)=g(X,Y)H"* and R*(X,Y)=g(X,Y)H®. (2.24)

It is well-known that this definition does not depend on the screen distribution
and the screen transversal vector bundle of M.

(2) S(TM) is totally umbilical [9, Definition 2], in M, if there is a smooth vector field
K' € T'(RadTM) on M, such that

W (X,PY) = g(X,PY)K', (2.25)

for any X and Y tangent to M. In case K’ = 0 (resp. K’ # 0) we say that S(T'M)
is totally geodesic (resp. proper totally umbilical).

For more information on the general theory of lightlike submanifolds, we refer the reader
to the books [8] and [11].
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3. Pseudo-totally umbilical submanifolds

In this section, we introduce the notion of a pseudo-totally umbilical r-lightlike sub-
manifold M of a semi-Riemannian manifold M. First, let us consider two vector fields L
and S of ltr(TM) and S(T M), respectively, given by

1 m-—-r

> eih(Ei, Ey), (3.1)
i=1
1 m-—r
Z Sihs(Ei, El), (32)
i=1
where {E;, ..., Epn_y} is an orthonormal basis of S(T'M), and ¢; = g(E;, E;). Note that,
for a totally umbilical lightlike submanifold M, the vector fields H® and H*® in (2.24)
coincides, respectively, with the vector fields L and S above.

The transversal vector field H = L + S is called the mean curvature vector field of
M in M. In [11, p. 221], K. L. Duggal and B. Sahin have defined a minimal lightlike
submanifold isometrically immersed in a semi-Riemannian manifold M as one satisfying
the conditions: (a) h* = 0 on RadT'M and (b) trace|graryh = 0. From (3.1) and (3.2),
we note that the second condition in this definition, i.e. (b), is equivalent to H = 0. We
say that M has parallel mean curvature vector field, H, if VPH = 0. Note that this is
equivalent to VL = 0 and V*S = 0.

Next, assume that S(TM) is an integrable distribution over M. In this case, it is well-
known (see [11, Theorem 5.1.5, p. 200]), that h* is symmetric on S(T'M). Now, consider
the vector field K € I'(Rad T'M ), given by

L:

trace|s(rar) ht =

m—-r m—-r

S = trace|s(r) h® =
T

m — m—-r

1 m—-r

Z Eih*(Ei,Ei), (3.3)
i=1

K:

trace|grary ' =
m—r

m—r
where ¢; = g(E;, E;). Note that, for a totally umbilical screen distribution S(TM), the
vector field K’ in (2.25) coincides with the vector field K above. The vector field K, in
(3.3), is called the mean curvature vector field of S(T'M) in M. We say that S(T'M) is
minimal, in M, if K = 0. For example, any lightlike submanifold with a parallel screen
distribution, with respect to V (cf. [11, Theorem 5.1.6, p. 200]), is trivially minimal in M
since h* = 0. We, also, say that K is parallel if V'K = 0.
Next, let us define two smooth functions p and o, on M, by:

ng(HvK):g(KaL)> O‘:‘Z](H,S):g(S,S)

Then, we shall call the sum p + o the mean curvature function of M. Furthermore, M
has constant curvature if the function p 4 ¢ is constant on M.

Now, with the help of the functions p and ¢ above, we define a pseudo-totally umbilical
lightlike submanifold of a semi-Riemannian manifold as follows:

Definition 3.1. Let (M, g) be a lightlike submanifold of a semi-Riemannian manifold
(M, g). We say that M is pseudo-totally umbilical if on every coordinate neighbourhood
U, of M, there exists smooth functions p and ¢ such that

g(h*(X,PY),L) = pg(X,PY) and g(h*(X,Y),S) =09(X,Y), (3.4)

for any X and Y tangent to M. In case p = o = 0, we say that M is pseudo-totally
geodesic.

Example 3.2. A minimal lightlike submanifold is clearly pseudo-totally umbilical with
p =0 =0, i.e. pseudo-totally geodesic.
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Example 3.3. Let us consider the future-directed lightlike cone Ag of R} with signature
(—,+,+,+), with respect to a canonical basis {0y, 01, 02,03}, given by

Ap = {(930,9517902,903) Lo = \/m > 0}.

By a direct calculation we have Rad TM = Span{¢{}, where

€= 00+ 20y + 20, + 205, (3.5)
i) i) i)
On the other hand, S(T'M) = Span{X, Y}, where
X =X101 + Xo0s + X303, Y =Y101 + Yo0s + Y305, (3.6)
such that
3 3
i=1 i=1
Using (3.5), (3.6) and (3.7)
_ _ 1
Ve€ =0 and Vx§= x—X, (3.8)
0

for all X tangent to S(T'Ag), where V is the connection on R}. It follows from (3.8), (2.3)
and (2.6) that

Ve€ =0, RhYE € =0, Vx£=0, RYX,€) =0,

1
and V=0, Ai£=0, V¥£=0, A X= —;(JX. (3.9)

Thus, we see that £ is a geodesic lightlike vector field and Ay is totally umbilical. Next,
ltr(T'M) is spanned by N, where

1
N = {—304—:“814—3:2824-3:383}. (3.10)
2 i) i) Zo
From (3.10), (3.6), (3.5) and (3.7), we find
_ _ 1
VgN =0 and V)(N = 7X, (3.11)
21‘0
for all X tangent to S(T'Ag). Hence, from (2.4) and (3.11), we have
1
VEN =0, Ané=0, VXN=0, AnyX= —5 X (3.12)
0

Therefore, S(T'Ag) is totally umbilical. The mean curvature vector field L of Ag, in R},
follows from (3.9) as

1 , 1 . 1
L= itracew(TM)h =3 (trace‘S(TM)Aa N = —x—ON. (3.13)

On the other hand, from (3.12), we have
R (X,Y) = (X,Y)E. (3.14)

o
It follows from (3.14) and (3.13) that

s 1
g(h (X7Y)7L) = Fg(Xa Y)a
Ty

showing that Ay is pseudo-totally umbilical with p = i and o = 0.
0

In general, we have the following example:
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Example 3.4. A totally umbilical lightlike submanifold, with a totally umbilical screen
distribution is pseudo-totally umbilical, such that p = g(K’, HY) and o = g(H®, H®).

Remark 3.5. Although every totally umbilical lightlike submanifold, with a totally um-
bilical screen distribution is also pseudo-totally umbilical, we note that the converse is
generally not true.

Taking into account of (2.7), (2.10) and (3.4), we note that on any pseudo-totally
umbilical lightlike submanifold M of a semi-Riemannian manifold M, the following holds:

Proposition 3.6. A lightlike submanifold M of a semi-Riemannian manifold M is pseudo-
totally umbilical if and only if on each coordinate neighbourhood U there exists smooth
functions p and o such that the following holds:

g(h*(§, PX),L) =0, g(h*(§,X),S) =0,
DYX,S)=0, PALX =pPX, PAgX =oPX,
for any X tangent to M and & tangent to Rad T M.
Proposition 3.7. Let M be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian manifold M, such that h* and h® are parallel, i.e. Vh* = 0 and Vh® = 0.

If W¥(K,PX) = h*(K,X) =0, for any X tangent to M, then M is either pseudo-totally
geodesic, i.e. p =0 =0 or the screen shape operator Ag satisfies A} = 0.

Proof. Suppose that Vh* = 0 and Vh® = 0, then (2.15) and (2.16), together with the
assumptions h* (K, PX) = h*(K, X) = 0, gives
W (VxK,PY)=0, h(VxK,Y)=0, (3.15)

for any X and Y tangent to M. Taking the inner product of the equations in (3.15) with
L and S, respectively, and then apply (3.4) and (2.6), we get

gh*(VxK,PY),L) = pg(VxK,PY) = —pg(Ax X, PY) =0,
g(h*(VxK,Y),8) =0g(VxK,Y) = —0g(Ax X,Y) =0,
from which our result follows. O

Proposition 3.8. Let M be a_1-lightlike pseudo-totally umbilical lightlike submanifold of
a semi-Riemannian manifold M. Then, either L =0 or S(T'M) is totally umbilical in M.

Proof. As dimRadTM = 1, we may write the vector fields in (3.1) and (3.3) as K =
af and L = BN, where £ and N are the lightlike vector fields spanning the lightlike
distributions Rad T'M and ltr(T'M), respectively. Here, a and [ are smooth functions on
M. Hence, p = g(K, L) = af, and from (3.4) we have

Blg(h*(X,PY),N) — ag(X, PY)} =0, (3.16)
for any X and Y tangent to M. Therefore, from (3.16), we see that either 5 = 0
which means that L = SN = 0 or g(h*(X,PY),N) = ag(X, PY), which implies that
(X, PY) = g(X,PY)(af) = g(X, PY)K, which shows that S(T'M) is totally umbilical
in M. U
In particular, if M is a lightlike hypersurface, Proposition 3.8 leads to the following result:

Theorem 3.9. Any pseudo-totally umbilical lightlike hypersurface M of a semi-Riemannian
manifold M is either minimally immersed in M, i.e. L =0, or a non-minimal hypersur-
face whose screen distribution S(TM) is totally umbilical in M, i.e. h* = g® K.

Proposition 3.10. Let M be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian manifold M, such that dim S(TM~) = 1. Then, either S =0 or h®* = g® S.
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Proof. As dim S(TM+*) =1, we put S = yW, where 7 is some smooth function and W
the vector field spanning S(TM™). Tt follows that o = g(S, S) = ey?, where € = g(W, W).
Then, from the second relation in (3.4), we have

Ha(*(X,Y), W) —evg(X,Y)} =0, (3.17)

for any X and Y tangent to M. Then, from (3.17), we have v = 0 and thus, S =YW =0
or g(h*(X,Y), W) = eyg(X,Y), which leads to h*(X,Y) = ¢g(X,Y)7W) = ¢g(X,Y)S,
completing the proof. O

Let M be a half-lightlike submanifold, i.e. one in which dim Rad TM = 1 and dim S(TM*) =
1. Then, in view of Propositions 3.8 and 3.10, we have the following result:

Theorem 3.11. Let M be a pseudo-totally umbilical half-lightlike submanifold of a semi-
Riemannian manifold M. Then, M falls in one of the following categories:

(1) A non-totally umbilical pseudo-totally geodesic submanifold such that L = S = 0,
and with a nowhere totally umbilical screen distribution;

(2) A non-minimal submanifold satisfying L =0 and h® = g ® S;

(3) A non-minimal submanifold whose screen distribution S(TM) is totally umbilical
ie. " =g K and S =0;

(4) A non-minimal submanifold whose screen distribution S(TM) is totally umbilical
te. " =g K and h* =g® S.

Next, we give some examples in support of Theorem 3.11.

Example 3.12. Let us denote by (Rf,(,)), the Minkowski space with the signature
(+, +, +, —) with respect to the canonical basis (91, ...,0s). Let S3 = {p € R}|(p,p) = 1}
be the 3-dimensional unit pseudosphere of index 1, which is a Lorentzian hypersurface of
R$. Now, denote by M = (S x R?,3) the semi-Riemannian cross product, where R? is
semi-Euclidean space with the signature (4, —), with respect to the canonical basis {05, 06 }
and g is the inner product of R§ = R} x R? restricted to M. Then, the half-lightlike sub-
manifold (M, gar, S(TM), S(TM™L)), given by M = S'xHxR = {(p,t,t) € S}xR?|t € R},
where p = g(cos 6,sin 6, cosh w, sinhw) € R} such that @ € [0,27] and w € R and ¥ is a
hyperbola, is known to be minimal [11, Example 9, p. 221]. Therefore, this half-lightlike
submanifold is pseudo-totally umbilical and falls in the first category in Theorem 3.11,
since L =5 = 0.

Example 3.13. Let M be a surface of the Minkowski spaceR}, and given by the equations
2! = 2% and 22 = (1—(2*)?)Y/2. Then, by a direct calculation, we find that 7'M is spanned
by € = 01 + 03 and E = —2*0s + 220,, while TM* is spanned by ¢ and W = 220, + 2*9,.
It follows that Rad TM = Span{¢}, S(TM) = Span{E} and S(TM~) = Span{W}. On
the other hand, ltr(TM) = Span{N}, where N = 1{—0; + d3}. It has been shown in
[11, Example 5, p. 189] that A{E = ANE =0, h' =0, h*(£,X) = 0, for any X tangent
to M, and h*(E,FE) = g(E, E)W. Clearly, M is a non-minimal pseudo-totally umbilical
half-lightlike submanifold such that L = 0 and h®* = ¢ ® W, and hence a submanifold of
the second category in Theorem 3.11.

Lemma 3.14. On any pseudo-totally umbilical r-lightlike submanifold M of a semi-
Riemannian manifold M (c), the following holds:

Xp— (C+p)§(X7 L) - g(K7 vg{L) - g(DS(Xa L),S)

1 m—r

1
PXp— —— Ag(W (X, E;),V% L
p m_r;é‘{g( (X, E;), Vi, L)

m—r

— §(ALE, h'(X, Ey)) + g(h°(X, E;), D°(E;, L))},
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Xo — 2U§(Xa L) + Qg(Ds(Xv L),S)

e g(h (X, B), V%, S) — (D" (Ew b (X, 1)), S)},

m—r m—

for all X tangent to M.

Proof. By a direct calculation, while considering (3.4) and (2.11), we derive
g(Vxh)(Y, PZ),L) = (Xp)g(Y, PZ) — g(h*(Y, PZ),V L) + pg(h*(X, PZ),Y), (3.18)

I(Vxh®)(Y, Z),S) = (Xo)g(Y, 2)
—g(h*(Y, Z),V5S) + o{g(h* (X, Z2),Y) + g(h'(X,Y), Z)}, (3.19)
for all X, Y and Z tangent to M. Then, from (3.18), (3.19), (2.21) and (2.20) that
(Xp)g(Y, PZ) — pg(h*(Y, PZ),X) — cg(Y, PZ)g(X, L)
—g(h*(Y, PZ), VL) + §(ALX, h'(Y, PZ))
—g(h*(Y, PZ),D*(X, L)) = (Y p)g(X, PZ) — pg(h*(X, PZ),Y)
—cg(X,P2)g(Y,L) — g(h*(X,PZ),V4%L) + (ALY, h' (X, PZ))
—g(h*(X,PZ),D*(Y, L)), (3.20)
and for o, we have
(X0)g(Y, Z) = ag(h"(Y. Z), X) = g(h*(Y, Z), V% S)
+g(D¥ (X, h(Y, 2)),8) = (Yo)g(X, Z) — 0g(h"(X, Z),Y)

—g(hS(X,Z), ;S)—I—Q(DS(Y,hE(X,Z)),S) (321)
Then, Lemma 3.14 follows from (3.20) and (3.21) by tracing over Y and Z, with respect
to S(T'M), and using (3.1) and (3.3). O

Then, from Lemma 3.14, the following is immediate:

Corollary 3.15. Let M be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian space form M(c). Then, p and o of (3.4) satisfies the following partial dif-
ferential equations:

€p — (C+P) (€, L) — g(K,VeL) — g(D*(¢, L), S)
=T Z El{g vé ) g(ALEZ'a hé(gaEl))

+ §(hs(£, Ei), D*(E;, L))},
§O' - 20@(67 L) + 2§(Ds(§7 L)?’S)

= —% S (€. 5, Vi, ) — (D (B W (6, 5). S)),
i=1

m

(m—r—1)PXp—(m—r)g(K,VpxL) - (m—r)g(D*(PX,L),5)
mz:r&{g (PX,E;), V% L) — g(ALE;, h'(PX, E;))
i=1
+g(h*(PX, E;), D*(E;;, L))},
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(m—r—2)PXo+2(m—r)g(D*(PX,L),S5)
=2 Tnirei{g(hs(PX, E;),V%.S) — g(D*(E;, h'(PX, E))), S)},
i=1

for any X tangent to M and & tangent to RadT M.

Theorem 3.16. There does not exist any non-minimal pseudo-totally umbilical lightlike
hypersurface M in a semi-Riemannian space form M(c) : ¢ # 0 such that S(T'M) is totally
geodesic in M.

Proof. As M is a lightlike hypersurface, we have K = a£ and L = SN, for some smooth
functions « and S. It follows that p = g(K, L) = a3. On the other hand, Corollary 3.15
gives £p — (e +p)g(€, L) — g(K, VéL) = 0, which reduces to

B{éa — (c+ap) — ag(é, VEN)} = 0. (3.22)

But, from Theorem 3.9, we note that either M is minimal i.e. L = SN = 0, which means
B =0 or S(TM) is totally umbilical with K/ = K = €. Thus, if M is non-minimal, that
is B # 0 and S(TM) totally geodesic, that is K’ = 0, equivalently o = 0, we see from
(3.22) that ¢ = 0. This contradiction completes the proof. ]

Theorem 3.17. There does not exist any pseudo-totally umbilical half-lightlike submani-
fold M of the third kind in Theorem 3.11 of a semi-Riemannian space form M(c) : ¢ # 0
such that S(T'M) is totally geodesic.

Proof. Let M be of the third type in Theorem 3.11, then M is non-minimal, with a
totally umbilical screen distribution and S = 0. Thus, if we let K = o, L = BN, for some
smooth functions @ and 8 # 0 (since M is non-minimal), then we have p = g(K, L) = af.
Hence, as S = 0, Corollary 3.15 leads to (o — (¢ + af8) — ag(, VgN) = 0. TIt, then,
follows that if S(T'M) is totally geodesic, that is K/ = K = o = 0, we get ¢ = 0. This
contradiction completes the proof. O

A lightlike submanifold M of a semi-Riemannian manifold M is called irrotational [11, p.
245] if for any X tangent to M and £ tangent to Rad T'M, one has Vx¢& tangent to M.
This, further, implies that (X, £) = 0 and h*(X,€) = 0.

Theorem 3.18. Let M be a pseudo-totally umbilical irrotational r-lightlike submanifold
of a semi-Riemannian space form M (c). If the mean curvature vector fields H = L + S
and K are parallel, then either p =0 or M has constant mean curvature —c.

Proof. By the assumption H = L+ and K parallel, we deduce that V&L =0,VS=0
and VXK = 0, for any X tangent to M. It then follows that Xp = X - g(K,L) =
G(VEK, L)+ g(K,V&L) = 0 and Xo = X - §(S,5) = 2§(V%S,S) = 0. Now, using the
first two differential equations in Corollary 3.15, we get (c+p)g(&, L) +g(D®(&,L),S) =0
and 0g(&¢,L)—g(D*(, L), S) =0, for any £ tangent to Rad T'M. From these two relations,
we get (c+p+0)g(&, L) =0. With £ = K in the last relation, we have (¢4 p+0)p =0,
which proves our result. O

Corollary 3.19. Under the same hypothesis as in Theorem 3.18, if M is co-isotropic,
then M is pseudo-totally geodesic or has constant mean curvature —c.

4. Pseudo-totally umbilical screen distribution

Let M be a lightlike submanifold of a semi-Riemannian manifold M, and let K be the
mean curvature vector field of S(T'M) as given in (3.3). Then, we have the following
definition:
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Definition 4.1. Let (M, g) be a lightlike submanifold of a semi-Riemannian manifold
(M, g). We say that the screen distribution S(7M) is pseudo-totally umbilical, in M, if
on each coordinate neighbourhood U of M there exists a smooth function A such that, for
any X and Y tangent to M, the following holds:

g(h'(X,Y), K) = Ag(X,Y), (4.1)
where K is the smooth vector field of Rad T'M, called the mean curvature vector field of

S(T'M) in M, and given by (3.3). In case A = 0 (resp. A # 0), we say that S(T'M) is
pseudo-totally geodesic (resp. proper pseudo-totally umbilical).

Example 4.2. A lightlike submanifold of a semi-Riemannian manifold with a minimal
screen distribution, i.e. K = 0, carries a pseudo-totally geodesic screen distribution, i.e.

A=0.

Example 4.3. The lightlike cone of Example 3.2 has a pseudo totally umbilical screen
distribution with A = ﬁ In fact, using (3.3) and (3.14), we have K = —52-¢. On the
0

2x0

other hand, using (3.9), we have h(X,Y) = —%g(X, Y)N, for any X and Y tangent

to M. It then follows from (4.1) that g(h*(X,Y),K) = 2—;29(X,Y), which confirms our
0

claims.

Example 4.4. We may generalise Example 4.3 as follows: A totally umbilical lightlike

submanifold of a semi-Riemannian manifold has a pseudo-totally umbilical screen distri-
bution, such that A = g(H*, K).

Remark 4.5. Although every totally umbilical lightlike submanifold carries a pseudo-
totally umbilical screen distribution, we stress that the converse is generally not true.

In view of relations (2.8), (2.9) and (4.1), we have the following:

Proposition 4.6. A lightlike submanifold M of a semi-Riemannian manifold M has a
screen distribution S(T'M) which is pseudo-totally umbilical if and only if on each co-
ordinate neighbourhood W there exists a smooth function \ such that h*(X,K) = 0 and
A X = APX, for any X tangent to M.

Theorem 4.7. Let M be a lightlike submanifold of a semi-Riemannian manifoldj\], such
that S(T'M) is pseudo-totally umbilical in M. Suppose that ht is parallel, i.e. Vht =0,
then S(TM) is pseudo-totally geodesic, i.e. X = 0.

Proof. Suppose that VA’ = 0. Then, relation (2.14) gives
V&R Y, Z) — hY(VxY, Z) — WYY, Vx Z) = 0, (4.2)

for any X, Y and Z tangent to M. Taking Z = K in (4.2), and using Proposition 4.6, we
have —h!(Y,VxK) = 0. It then follows from this relation and the relation in (2.6), that

—hH(Y,VxK) = hY (Y, A% X) — kY (Y, ViEK) = 0. (4.3)

Tanking the inner product of (4.3) with respect to K, and then using (4.1) and Proposition
4.6, we have

Mg(X,Y) — g(h (Y, VK), K) = 0. (4.4)

On the other hand, using (2.8) and Proposition 4.6, we have
—g(hY (Y, VK), K) = g(h* (Y, K), Vi K) = 0. (4.5)
Finally, from (4.4) and (4.5), we have \2g(X,Y) = 0, which gives A = 0. O

Corollary 4.8. There are no any lightlike submanifold M of a semi-Riemannian manifold
M, with a proper pseudo-totally umbilical screen distribution such that ht is parallel.
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Proposition 4.9. Let M be a 1-lightlike submanifold of a semi-Riemannian manifold M,
with a pseudo-totally umbilical screen distribution S(TM). Then, either

(1) the screen distribution S(T'M) is minimal in M, i.e. K =0, and therefore pseudo-
totally geodesic, or
(2) there exist a smooth transversal vector field H® of Itr(TM), such that h* = g H*.

Proof. Assume that dimRadTM = 1, we may write K = «f and L = SN, where &
spans RadTM and N spans ltr(TM), o and 8 are smooth functions on M. It follows
that A = g(L, K) = af. Then, from (4.1), we get

a{g(h"(X,Y),€) — Bg(X,Y)} = 0. (4.6)

So, from(4.6), we either have o = 0, which means that K = a{ =0 and A = a8 =0 or
g(hW(X,Y),€) = Bg(X,Y). Tt follows from the last relation that h*(X,Y) = g(X,Y)BN =
g(X,Y)H!, with H* = BN. O

Corollary 4.10. Any lightlike hypersurface of a semi-Riemannian manifold with a pseudo-
totally umbilical screen distribution has either a pseudo-totally geodesic screen distribution,
i.e. A =0, which is minimal in M, i.e. K =0, or is totally umbilical, i.e. h* = g @ H*.

Corollary 4.11. The only lightlike hypersurfaces of a semi-Riemannian manifold with a
proper pseudo-totally umbilical screen distributions are the proper totally umbilical ones.

Lemma 4.12. On a lightlike submanifold of a semi-Riemannian space form M (c) with a
pseudo-totally umbilical screen distribution, the following holds:

1
XA =Ag(X, L) = g(VXK, L) + g(K, D'(X, $)) = ——PX)

LN e SV KX, B) — (K, DB (X))

m r -
1=

for any X tangent to M.
Proof. Using (4.1) and (2.11), we have
G(TxhO)(Y, 2), K) = (XNg(Y, 7) - §(VELE, W(Y, 2))
+Ma(h'(X,2),Y) - g(h"(Y, Z), X)}, (4.7)
for any X, Y and Z tangent to M. It then follows from (4.7) and (2.22) that
(XNg(Y, Z) = Ag(X, (Y, 2)) — (VR K, h'(Y, 2)) + g(K, D' (X, h°(Y, 2)))

= (YA)Q(Xv Z) - )\Q(Y, hé(Xv Z)) - g(v;(/tfg hé(Xv Z))
+ (K, DYY, h*(X, Z))). (4.8)

Then, letting Y = Z = E; in (4.8) and summing over all i € {1,...,m—r}, we get Lemma
4.12. g

In view of Lemma 4.12, we have the following:

Proposition 4.13. Let M be a lightlike submanifold of a semi-Riemannian space form
M(c). If S(TM) is pseudo-totally umbilical, then X\ satisfy the following partial differential
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equations:

EX—Ag(&, L) — g(VE'K, L) + §(K, D'(¢, S))

(m—7—1)PX\— (m—1)g§(VixK, L)+ (m —r)g(K,D'(PX,S))
=Y = {g(VE K. h(PX, ) - g(K, D' (i, i*(PX, E0))) }
=1

for any & tangent to RadTM and X tangent to M.

When M is irrotational, we see from relation (2.7) that (¢, DY(X,W)) = 0, for any
X tangent to M. It follows from this relation that D’ = 0. With this fact, we have the
following:

Corollary 4.14. With the same hypothesis as in Proposition 4.13, if M is irrotational
then:

EX—AG(E, L) — g(VE'K, L) = 0,
(m—r—1)PXX\—(m—r)g(VexK,L)+ Y g(Vi,K,h'(PX, E;)) =0,
i=1
for any & tangent to RadTM and X tangent to M.

By a direct calculation, while using (2.3), (2.4) and (2.6), we have
XA=X-§(K, L) =g(V¥K, L)+ §(K, VL),
for all X tangent to M. Now, if M is irrotational, we see from the first relation in Corollary
4.14 and the above relation, with X = &, that g(K, VEL) = Ag(§, L), for any £ tangent to

Rad TM. Taking ¢ = K in this relation, we get (K, V%L) = A\g(K, L) = A\2. Therefore,
we have the following result:

Theorem 4.15. Let M be an irrotational lightlike submanifold of a semi-Riemannian
space form M/(c), such that S(TM) is pseudo-totally umbilical. If L is a parallel vector
field, then A =0, i.e. S(T'M) is pseudo-totally geodesic.

Next, suppose that the mean curvature vector field K is a parallel, i.e. V*K = 0, then
Corollary 4.14 gives €\ — Ag(&,L) = 0 and (m —r — 1)PX\ = 0, for any £ tangent to
Rad T M and X tangent to M. These equations suggest the following;:

Theorem 4.16. Let M be an irrotational lightlike submanifold of a semi-Riemannian
space form M(c), such that S(T'M) is pseudo-totally umbilical. If K is a parallel vector
field, then K\ —\? = 0. Moreover, either diim S(TM) =1 or ) is constant function along
S(TM).

5. Pseudo-totally umbilical leaves of S(T'M)

Let M be a lightlike submanifold of a semi-Riemannian manifold M. Through out this
section we assume that S(T'M) is integrable and the connections D and D? vanishes on
S(TM). Now, we have the following lemma:

Lemma 5.1. Let M be a lightlike submanifold of a semi-Riemannian manifold M, such
that S(T'M) is integrable. Let M* be a leaf of S(T'M), immersed as an (m—r)-dimensional
submanifold of M. Then, the following holds:

VxY =ViY +1(X,Y), VxU=—-AyX + ViU, (5.1)
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for any X and Y tangent to M* and U tangent to TM*+. Here, I/, Ay and V*L denotes
the second fundamental form, the shape operator and normal connction of M*, and given

by

W(X,Y)=h*(X,Y) + h'(X,Y) + h*(X,Y), (5.2)
/UX = A%rX + AUeX + Ays X,
VidU = VElU™ + V& UL + V5 U?, (5.3)

where UT, U* and U* are the components of U tangent to Rad T M, ltr(T M) and S(TM™L),
respectively.

Proof. The relations in the lemma follows directly from (2.3), (2.5) and (2.6). O

Using relations (5.2), (3.2), (3.2) and (3.3) we see that the mean curvature vector field H*
of M*, in M, is given by

H* = trace|5(TM)h’ =K + L + S (54)

We say that M* is minimal, in M, if H* = 0. Obviously this is equivalent to K =
L = 8 = 0. On the other hand, we say that H* is parallel if V**H* = 0. Using (5.3)
and (5.4), this is equivalent to VK = V4L = V55 = 0, for any X tangent to M*.
Next, we denote by S%(co,r0) = {z € RITg(x — o,z — cp) = r§} and Hl(co,r0) = {a €

d+1
Rq—i—l

spaces of constant curvatures g 2 and -7y 2 respectively, and ¢y € Rg is the center. Then,
we have the following result:

|g(x — co,z — cg) = —r3} the d-dimensional semi-Euclidean sphere and hyperbolic

Theorem 5.2. Let (M, g) be a pseudo-totally umbilical lightlike submanifold of a semi-
Riemannian space form R,’I’””. Suppose that S(T'M) is also pseudo-totally umbilical.
Then, each (m — r)-dimensional leaf M* of S(TM) is pseudo-totally umbilica in RZ"‘*”,
i.e. for any X and Y tangent to M*, we have g(h(X,Y), H*) = pg(X,Y), where ¢ is
some smooth function. Moreover, if ¢ # 0 and the mean curvature vector fields K and
H = L+S are parallel, then M* is either contained in Sptn=Y(co, o) orin Hglfl"_l(cm 70)
as a minimal submanifold, for some cqy € ]RZ”JF” and ro > 0.

Proof. From (3.4), (4.1), (5.2) and (5.4), we have
g (X, Y), H*) = g(h*(X,Y), H*) + g(h'(X,Y), H*) + g(h*(X,Y), H")
=g(h*(X,Y), L) + g(h"(X,Y), K) + §(h*(X,Y), S)
=(p+A+0)9(X,Y), (5.5)
for any X and Y tangent to M*. It follows from (5.5) that each leaf M* is pseudo-totally
umbilic in RZ“‘”, with
p=p+A+o=g(H" H). (5.6)

Next, as K and L + S are parallel, we see that H* is parallel too. The rest of the proof
will follow exactly as given in Lemma 2 of [4, p. 361]. In fact, from (5.6), we have (5.1)
to derive

Xo=X-g(H*,H*) =25(VxH*, H*) = 25(V¥ H*, H*) = 0,

for any X tangent to M*. Thus, ¢ is a constant function on the leaves M*. Set
€

_ 5.7
© 2 (5.7)

where € = £1. On the other hand, as M* is pseudo-totally umbilic, it follows from (5.5)
and (5.1), that

A X = (p+ A+ 0)X = pX. (5.8)
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Next, let us set v = = + erd H*, where x is the position vector of M* in Rg’””. Then, in
view of (5.1) and (5.8), we have

Vxv=Vxz+erdVxH" =X —erdAy. X =0, (5.9)
for any X tangent to M*. Relation (5.9) shows that v is a constant vector along the leaves
in RZ”JF”. Denote this vector by cy. Hence, we have g(x — co,x — co) = rgg(H*, H*) =
erd, in which we have sed (5.6) and (5.7). Thus, M* lies in either S;”+"_1(co,r0) or in

Hgl_‘*'l”_l(co, r9), and by Lemma 1 of [4, p. 360], M* is minimal in these spaces. O

Example 5.3. Consider the lightlike cone of Example 3.3. Clearly S(T'Ao) is integrable

and its leaves are totally umbilical in R}. Furthermore, it is clear that these leaves are

pseudo-totally umbilical in R}, with ¢ = % As V*¢ = VN = 0 and PXzg = 0, we see
0

that the mean curvature vector field H* = —i (%5 + N ) of these leaves is parallel, i.e.

PXxo (1 1 /1
1 * 0 *t l
VixH" = 2 <2§+ N) T % <2VPX§ + VPXN> =0,
for any X tangent to Ag. Therefore, the leaves of S(T'Ag) are contained in the pseudo-
Euclidean sphere S3(cg, 79). Furthermore, it is easy to show that these leaves are minimally
immersed in S3(c, zo).

6. Mean lightlike sectional curvatures

Let z € M and ¢ be a lightlike vector of T, M. A plane II of T, M is called a lightlike
plane directed by & if it contains &, g,(§, E) = 0 for any E € II and there exist Ey € 11
such that g(Ep, Eo) # 0. Then, the lightlike sectional curvature [11] of IT with respect to
¢ and V as a real number

- §(R(E, )¢ E)
(I)§ (H) = )
9(E,E)
where E is an arbitrary non-lightlike vector in II. In a similar way, we define lightlike

sectional curvature ®¢(II) of the lightlike plane II of the tangent space T, M with respect
to £ and V, as a real number

(6.1)

o1 _ IREOEE)

=" 5
9(E, E)

It is well-known that both lightlike sectional curvatures in (6.1) and (6.2) above are inde-

pendent of the non-lightlike section F, but quadratically dependent on the lightlike section

¢.

Definition 6.1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M. We define the mean lightlike sectional curvatures Q¢[II] and Q¢[II] of M and M,
respectively, directed by a lightlike vector field &, as

_ 1 m—-r _ 1 m—-r
Q] = ——— 3" ®(ly) and el = —— Y Be(TTy),
i=1 =1

(6.2)

m

where the sum is over all lightlike planes II; spanned by the lightlike vector field £ and
non-lightlike orthonormal vector fields E; tangent to S(TM).

Geometrically, the mean lightlike sectional curvatures Qg [II} and Q[II] are, up to a
multiplicative constant, the Ricci tensors Ric(&, €) and Ric(€, €) of M and M, respectively,
restricted to S(T'M). These tensors play a fundamental role in the characterisation of
lightlike hypersurfaces in sapcetimes (see, for instance, K. L. Duggal and B. Sahin [11,
Theorem 3.1.8, p. 106]). Furthermore, we note that the vanishing of ®¢(Il;) (resp. ®¢(11;))
implies the vanishing of Q¢[II] (resp. Q¢[I1]), but the converse is, generally, not true.
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Proposition 6.2. Let (M, g) be an irrotational lightlike submanifold of a semi- Riemannian
manifold M. If S(TM) is pseudo-totally umbilical then Qi [II] and Qg [II] satisfy:

Q] = KX =\ = g(VEK, L) = Qgl[1I],
where K is the mean curvature vector field in (3.3).
Proof. As M is irrotational, we see from from (2.12) that
GR(X, )€, PY) = g(R(X, )€, PY), (63

for any X and Y tangent to M, and £ tangent to Rad T'M. On the other hand, using the
curvature relation in [11, p. 218], we have

9(R(X, €&, PY) = g((Veh) (X, PY),€) = g((Vxh)(&, PY), ). (6:4)

Taking £ = K in (6.4) and using (4.1) and (2.11), we derive
g(R(X,K)K,PY) = {KX - \2g(X,PY) — g(ViLK,h* (X, PY)). (6.5)
Tracing (6.5) over X and Y, with respect to S(T'M), and using (6.3) together with Defi-
nition 6.1, we obtain our result. ]

Corollary 6.3. With the same hypothesis as in Proposition 6.2, the mean lightlike sec-
tional curvatures Qg [I1] and Qg [II] vanishes if and only if X satisfy the partial differential
equation K\ — X2 — g(VitK,L) = 0.

When M is a space of constant curvature c, then ®¢(II;) = ®¢(II;) = 0, and hence we
have the following:

Theorem 6.4. Let M be an irrotational lightlike submanifold of a semi-Riemannian space
form M(c). If S(TM) is pseudo-totally umbilical then the mean lightlike sectional curva-
tures Qi [I1] and Qi [IT] vanishes.
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References

[1] C. Atindogbé, Scalar curvature on lightlike hypersurfaces, Balkan Society of Geome-
ters, Applied Sciences, 11, 9-18, 2009.

[2] C. Atindogbe and K.L. Duggal, Conformal screen on lightlike hypersurfaces. Int. J.
Pure Appl. Math. 11(4), 421-442, 2004.

[3] C. Calin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi-
Romania, 1998.

[4] B.Y. Chen, Finite type submanifolds in pseudo-euclidean spaces and applications,
Kodai Math. J. 8, 358-374, 1985.

[5] B.Y. Chen, Some results of Chern-do carmo-Kobayashi type and the length of second
fundamental form, Indiana Univ. Math. J. 20, 1175-1185, 1971.

[6] B.Y. Chen, Pseudo-umbilical submanifolds of a Riemannian manifold of constant
curvature, II, J. Math. Soc. Japan, 25(1), 105-114, 1973.

[7] B.Y. Chen and K. Yano, Pseudo-umbilical submanifolds of a Riemannian manifold of
constant curvature, Differential Geometry, in honour of K. Yano, Tokyo, 61-71, 1972.

[8] K.L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds
and applications, Mathematics and Its Applications, vol. 364, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1996.

[9] K.L. Duggal and D.H. Jin, Totally umbilical lightlike submanifolds. Kodai Math. J.
26, 49-68, 2003.



1320 S. Ssekajja

[10] K.L. Duggal and D.H. Jin, Lightlike curves and hypersurfaces of semi-Riemannian
manifolds, World Scientific Publishing, Hackensack, NJ, USA, 2007.

[11] K.L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers
in Mathematics, Birkhauser, Basel, Switzerland, 2010. .

[12] K.L. Duggal and B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds,
Int. J. Math. Math. Sci. 2007, Article ID 57585, 21 pages, 2007.

[13] R.S. Gupta and A. Sharfuddin, Generalised Cauchy-Riemann lightlike submanifolds
of indefinite Kenmotsu manifolds, Note Mat. 30(2), 49-59, 2010.

[14] S. Huafei, Pseudo-umbilical submanifolds of a space form N™*P(C'), Tsukuba J. Math.
20(1), 45-50, 1996.

[15] D.N. Kupeli, Singular semi-Riemannian geometry, Mathematics and Its Applications,
Vol. 366, Kluwer Academic Publishers, Dordrecht, 1996.

[16] B. Sahin and C. Yildirim, Slant lightlike submanifolds of indefinite Sasakian mani-
folds, Filomat, 26(2), 277-287, 2012.

[17] B. Sahin, Screen transversal lightlike submanifolds of Indefinite Kaehler Manifolds,
Chaos Solitons Fractals, 38, 1439-1448, 2008.

[18] S. Ssekajja, Some results on null hypersurfaces in (LCS)-manifolds, Kyungpook
Math. J. 59, 783-795, 2019.

[19] S. Ssekajja, A note on null hypersurfaces of indefinite Kaehler space forms, Balkan
J. Geom. Appl. 25(2), 94-105, 2020.

[20] S. Ssekajja, Geometry of isoparametric null hypersurfaces of Lorentzian manifolds, J.
Korean Math. Soc. 57(1), 195-213, 2020.



