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Abstract
This paper proposes smooth goodness of fit test statistic and its components to test the
distributional assumption of the unit-Lindley regression model, which is useful for describ-
ing data measured between zero and one. Orthonormal polynomials on the unit-Lindley
distribution, score functions and Fisher’s information matrix are provided for the smooth
test. Deviance and Pearson’s chi-square tests are also adapted to the unit-Lindley re-
gression model. A parametric bootstrap simulation study is conducted to compare type I
errors and powers of the tests under different scenarios. Empirical findings demonstrate
that the first smooth component, deviance, and chi-square tests have undesirable behavior
for the unit-Lindley regression model. A real data set is analyzed by using the developed
tests to show the adequacy of the unit-Lindley regression model. Model selection criteria
and residual analysis prove that the unit-Lindley regression model provides a better fit
than the Beta and simplex regression models for the real data set.
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Keywords. Chi-square test, deviance test, power of test, smooth test, unit-Lindley
distribution, parametric bootstrap

1. Introduction
Regression models describe the relationship between response variable and independent

variables. A linear regression model assumes that the error term follows a normal distri-
bution with homogeneous variance and the response variable is a linear function of a set
of independent variables.

In applied sciences, some data types can be expressed as proportions, percentages, rates,
or fractions. Point rates of football teams [27], body fat percentage of a human body [40],
biomass percentages of plant organs [31], cover proportion of a specific plant type [11] can
be given as examples of such data. The linear regression model is not appropriate for data
with response variables bounded on the unit interval since it may produce fitted values
outside the unit interval.

In the literature, there are many regression models to model data on the unit interval.
The Beta regression model is the most widely used model for modeling proportions in
economics, actuarial, ecology, and environmental sciences [14]. The simplex regression
model is used in several fields of science [8, 19]. The ToppLeone and Kumaraswamy
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models are known models when a response variable is measured continuously on the unit
interval [32, 42]. In recent years, alternative regression models have been provided for
the bounded response variable. For instance, unit-gamma [26], unit-inverse Gaussian
[16], unit-improved second-degree Lindley [3], log-Bilal [4], log-weighted exponential [2],
quantile log exponential-power [20] regression models. Further, Mazucheli et al. [24]
introduced the unit-Lindley (UL) regression model by applying a transformation to the
original Lindley distribution [23]. Although several versions of the Lindley distribution
such as generalized Lindley [44], extended Lindley [5], exponential Poisson Lindley [6],
power Lindley [15], generalized weighted Lindley [33], inverse weighted Lindley [34] have
been proposed, the UL distribution [24] has gained popularity due to its flexible properties.
The probability density function (pdf) and cumulative distribution function (cdf) of the
UL distribution are, respectively, given by

f (y; θ) = θ2

1 + θ
(1 − y)−3 exp

(
− θy

1 − y

)
and

F (y; θ) = 1 −
(

1 − θy

(1 + θ) (y − 1)

)
exp

(
− θy

1 − y

)
,

where 0 < y < 1, θ > 0. The corresponding UL regression model is proposed as an alterna-
tive to the Beta regression model which is frequently used for modeling unit bounded data
[24]. An important difference between the Beta and UL regression models is that while the
UL regression model has only mean parameter, the Beta regression model has mean and
precision parameters and includes separate submodels for each parameter [39]. Although
the UL regression model is restricted in this respect, the UL regression model has some
advantages over the Beta regression model. The main advantage of the UL distribution is
that its cdf and quantile function can be expressed in closed form [24]. However, the cdf
and quantile function of the Beta distribution are not available in closed form. Moreover,
the UL regression model can provide a better fit than the Beta regression model for a
data set on the unit interval. Therefore, the UL regression model draws attention as an
alternative to the Beta regression model.

In the UL regression model, the response variable yj is assumed to follow the density
function

f(yj ; µj) = (1 − µj)2

µj(1 − yj)3 exp
(

−yj(1 − µj)
µj(1 − yj)

)
,

where 0 < yj < 1 and µj is the mean of the response yj . The moments about the origin
of the response variable are presented in Appendix A.

The UL regression model specifies the relationship between the mean of yj and linear
predictor such that

g (µj) = xT
j β,

where β = (β1, β2, . . . , βp)T denotes a p × 1 vector of parameters and xj = (xj1, xj2,

. . . , xjp)T is a p × 1 vector of covariates.
It is assumed that the link function g(.) is a strictly monotonic and twice differentiable

link function that maps (0, 1) into R. Several link functions are avaliable in the literature
such as logit, probit, complementary log-log and log-log link functions which ensures that
the estimated mean stays within bounds (0,1). Specifically, we consider the logit link
function logit (µj) = log

(
µj

1−µj

)
, since it provides interpretable regression parameters. It is

noteworthy that the UL regression model with link function is similar to generalized linear
models [12, 25]. However, the UL distribution of the response variable is not a member
of canonical exponential family; therefore, the UL regression model is not a generalized
linear model.
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Although many regression models have been proposed for bounded response on the
unit interval, none of them has proposed new goodness of fit test to test suitability of a
model. Before making statistical inferences about model parameters, goodness of fit tests
should be used to test the hypothesis assuming that an examined model is suitable or a
distribution of a response variable is correct for a data set. Therefore, goodness of fit tests
are crucial as they determine suitability of a model.

Our main goal in this study is to propose new tests based on the smooth goodness of
fit test for the distributional assumption of the UL regression model. In order to test the
distributional assumption of the UL regression model, null and alternative hypotheses are
expressed as below:

H0 : Response variable follows the UL distribution
H1 : Response variable does not follow the UL distribution.

The smooth test was introduced by [28] for uniform distribution and extended to test
composite hypothesis for location-scale families by several authors [18,21,22,35]. In order
to derive an optimal test in a large sample size, Rayner et al. [36] developed the smooth
test as a score test statistic, and this form of the smooth test has been applied to many
distributions such as Gamma [10], Logistic [36], zero-inflated poisson [41], Nakagami [30]
and Lindley [7] distributions. Rippon [37] adapted the smooth test to generalized linear
models. Ozonur et al. [29] compared some goodness of fit tests with the smooth test
for Poisson regression model. In this study, the smooth test statistic and its components
are derived for the UL regression model. It is known that the deviance and Pearson’s
chi-square tests are two well-known goodness of fit tests for generalized linear models and
the well-known tests are applied to the UL regression model in this study.

The motivations of this study can be given as follows: (i) to construct tests for a different
regression model that is not a member of the generalized linear models, (ii) to empirically
investigate the applicability of the proposed tests for the UL regression model, (iii) to
provide better fits than alternative regression models with responses on the unit interval.

The remainder of the paper is organized as follows. In Section 2, the methodology of
the smooth tests is presented for composite null hypothesis. In Section 3, the smooth
goodness of fit tests are introduced and the well-known deviance and chi-square tests are
adapted to the UL regression model. In Section 4, a parametric bootstrap simulation
study is conducted to evaluate the performances of the goodness of fit tests. In Section 5,
a real data set is analyzed to test the distributional assumption of a fitted UL regression
model and the UL regression model is compared with the Beta and simplex regression
models using model selection criteria and residual analysis. In Section 6, some conclusions
are offered. Some details are given in three appendices.

2. Methodology
In this section, the basic process of the smooth tests is given for composite null hypoth-

esis. A more detailed description of the methodology can be found in [36].
Let f (y; θ) be a probability density function, where θ = (θ1, θ2, ..., θp)T is a vector of

nuisance parameters. The smooth goodness of test can be derived by embedding the null
probability density function in an order k alternative probability density function,

fk (y; τ, θ) = C (τ, θ) exp
{

k∑
i=1

τihi (y; θ)
}

f (y; θ) ,

where τ = (τ1, τ2, ..., τk)T is a vector of real parameters, C (τ, θ) is a normalisation constant
guarantees that the integral of alternative density functions is 1 and hi (y; θ) is a set of
orthonormal functions on f (y; θ) with h0 (y; θ) = 1. The inner product of the functions
hi and hj is defined as follows:
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⟨hr, hs ⟩ =
∞∫

−∞

hr (y; θ) hs (y; θ) f (y; θ) dy =δrs, (r, s = 0, 1, 2, 3, . . .)

where δrs = 1 if r = s and 0 otherwise. Let E0 be expectation with respect to the f (y; θ).
The orthonormality implies that E0 [hr (y; θ) hs (y; θ)] = δrs. The assumption here is that
all expectations exist. Assume that Y1, . . . , Yn is a random sample from the distribution
with probability density function fk (y; τ, θ). Testing for f (y; θ) is equivalent to testing
H0 : τ = 0 against H1 : τ ̸= 0. The log-likelihood function using the alternative density
function is given by

log L = n log C (τ, θ) +
k∑

i=1

n∑
j=1

τihi (yj ; θ) +
n∑

j=1
logf (yj ; θ) .

The partial derivatives of the log-likelihood function with respect to τ and θ are assumed
to exist up to second order. The score statistic for testing H0 : τ = 0 against H1 : τ ̸= 0 is
S = UT

τ Σ−1Uτ . Using the partial derivative of the log-likelihood function with respect to
τ , the score vector Uτ = Uτ (θ) has rth element {hr (y1; θ) + hr (y2; θ) + · · · + hr (yn; θ)}.
The asymptotic covariance matrix Σ of Uτ is given by

Σ = Iττ − IτθI−1
θθ Iθτ = nM,

where

M = Ik − Cov0

[
hr,

∂ log f

∂θ

]{
V ar0

(
∂ log f

∂θ

)}−1
Cov0

[
∂ log f

∂θ
, hr

]
,

in which Ik is the k × k identity matrix and zero subscripts indicate evaluations under
the null hypothesis [36]. Let θ̂ be the maximum likelihood estimator of θ under the null
hypothesis. Therefore, the score statistic is given by

S =


n∑

j=1
hr

(
yj ; θ̂

)
/
√

n


T

M−1
(
θ̂
)

n∑
j=1

hr

(
yj ; θ̂

)
/
√

n

 .

The matrix M is required to be non-singular. When the matrix M is reduced to the k × k
identity matrix Ik, the score statistic takes the form

S =
k∑

r=1
V 2

r

(
θ̂
)
,

where Vr

(
θ̂
)

= 1√
n

n∑
j=1

hr

(
yj , θ̂

)
. Under the null hypothesis, the components Vr are

asymptotically mutually independent and asymptotically standard normal. Therefore,
the score test statistic S is asymptotically χ2

k distributed [36].

3. Goodness of fit tests
In this section, the smooth goodness of fit test statistic of order three and its components

are firstly provided for the UL regression model. Secondly, the most widely used deviance
and chi-square goodness of fit tests are adapted to the UL regression model.

3.1. Smooth test
To construct a smooth test, the UL probability density function f (yj ; µj) is nested in

the following smooth density function

fk (yj ; τ, µj) = C (τ, µj) exp
{

k∑
i=1

τihi (yj ; µj)
}

f (yj ; µj) , (3.1)
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where τ = (τ1, τ2, ..., τk)T is a k × 1 vector of parameters, C (τ, µj) is a normalisation
function so that the smooth density function integrates to one, hi (yj ; µj) are orthonormal
polynomials up to order k on the UL distribution and fk is the smooth alternative of
order k. When τ = 0, fk collapses to original response distribution f in Equation (3.1).
Therefore, testing the H0 : τ = 0 against the H1 : τ ̸= 0 is equivalent to testing goodness
of fit of the UL distribution.

Let γ̂0 = (τT
0 = 0T , β̂T )T denotes the maximum likelihood estimate (mle) of the full

parameter vector γ = (τT , βT )T under the H0 where β is the vector of regression param-
eters.

Following the smooth test structure for generalized linear models in [37], the smooth
test statistic is derived as a score test statistic

S = UT
τ (γ̂0) B−1 (γ̂0) Uτ (γ̂0) , (3.2)

where Uτ (γ̂0) =
√

n(V1, . . . , Vk)T is the score vector with Vr = 1√
n

n∑
j=1

hr (yj , µ̂j) and

B (γ̂0) =
[
Iττ − IτβI−1

ββ Iβτ

]
γ̂0

is the asymptotic covariance matrix of Uτ (γ̂0) under the
H0. The derivation of the score vector and elements of the asymptotic covariance matrix
are given in Appendix B.

As seen from Equation (3.2), the convenient sums of squares structure of the smooth test
statistic has been lost. However, it is possible to recover the structure by decomposing
the B matrix. By using singular value decomposition, an orthogonal matrix Q and a
diagonal matrix D = diag

(
d2

1, ..., d2
k

)
can be obtained and the B matrix is partitioned as

B =
[
Iττ − IτβI−1

ββ Iβτ

]
γ̂0

= QDQT . Therefore, the smooth test statistic is converted into
its convenient sums of squares structure as below:

S =
√

n (V1, V2, . . . , Vk) QD−1QT (V1, V2, . . . , Vk)T √
n

= U2
1

d2
1

+ U2
2

d2
2

+ · · · + U2
k

d2
k

,

where (U1, U2, . . . , Uk) =
√

n (V1, V2, . . . , Vk) Q and the U2
r

d2
r

(r = 1, 2, ..., k) is the rth

squared component of the smooth test statistic. For simplicity, the component U2
r

d2
r

is
denoted as C2

r .
Since the smooth test statistic is developed as a score test statistic, it has the asymp-

totic χ2
k distribution under the null hypothesis [36]. The components C2

1 , C2
2 , ..., C2

k are
asymptotically independent and asymptotically follow the χ2

1 distribution under the null
hypothesis [36]. The squared components of the smooth test statistic can be used as
goodness of fit test statistics [36].

Note that in order to calculate the smooth test statistic, the orthonormal polynomials
up to order k on the UL distribution are required. In this study, we consider k = 3, since
the sixth central moment of the response variable is needed in the even third orthonormal
polynomial [7]. The orthonormal polynomials up to order three on the UL distribution
are obtained by applying the Gram-Schmidt orthogonalization process and presented in
Appendix C.

3.2. Deviance test
As a type of likelihood ratio test statistic, McCullagh and Nelder [25] defined the de-

viance test statistic (D) to compare saturated model with interested model for a general-
ized linear model (GLM).
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The deviance statistic is calculated as follows:
D = 2

(
lS
(
β̃
)

− l
(
β̂
))

,

where lS
(
β̃
)

and l
(
β̂
)

are the maximum value of the log-likelihood functions for the
saturated and interested models, respectively.

For the saturated UL regression model, the maximum likelihood estimates µ̃j are ob-
tained by differentiating the log-likelihood function l (β) with respect to each µj and solving
the estimating equations. Therefore, the maximum value of the log-likelihood function for
the saturated model is lS

(
β̃
)

=
n∑

j=1
lj (µ̃j).

For the interested UL regression model, the fitted values µ̂j are calculated by using

inverse logit link function exp(xT
j β̂)

1+exp(xT
j β̂) where β̂ is the mle of the regression parameter

vector β. Thus, the maximum value of the log-likelihood function for the interested model
is l

(
β̂
)

=
n∑

j=1
lj (µ̂j). The mle of β is computed by Fisher scoring algorithm using the

score function Uβ and the information matrix Iββ in Appendix B.

3.3. Chi-square test
McCullagh and Nelder [25] proposed Pearsons chi-square test statistic for generalized

linear models and we applied the statistic to UL regression model as follows:

χ2 =
n∑

j=1

(yj − µ̂j)2

σ̂2
j

,

where µ̂j and σ̂2
j = (1 − µ̂j)2

[
1

µj
exp ((1 − µ̂j) /µ̂j ) E1 ((1 − µ̂j) /µ̂j ) − 1

]
are the esti-

mated mean and variance of the response yj , respectively.

4. Simulation study
In this section, we compare the smooth goodness of fit test and its squared components

with the deviance and Pearson chi-square tests according to their simulated type I errors
and powers by using R 3.5.1 software.

In the simulation study, we consider two different models. As the first model, we use
logit (µj) = −0.4 + 0.3x1j + 0.8x2j

model and as the second model, we examine
logit (µj) = 1.8 − 1.2x1j + 0.6x2j

model. In each model, sample sizes are taken as n = 15, 30, 60 and the covariate values
are obtained as random draws from the uniform distribution U(0, 1).

Although the smooth test statistic and its components have asymptotic distributions
under the null hypothesis, unpresented simulation study shows that empirical levels based
on their asymptotic null distributions are much smaller than the nominal level for small
sample sizes. The simulation code used in the analysis of the asymptotic distributions of
smooth test statistics is available from the author upon request. Furthermore, in the gen-
eralized linear model context, the deviance and chi-square test statistics asymptotically
follow the χ2

n−p distribution under null hypothesis where p is the number of estimated pa-
rameters. However, the UL regression model is not a generalized linear model as mentioned
in Section 1 and the asymptotic distributions of the deviance and chi-square statistics are
not clear for the UL regression model. Therefore, parametric bootstrap procedure is rec-
ommended to obtain type I errors and powers of the tests. The procedure is conducted
by the following steps:



888 D. Ozonur

(i) Calculate the means µj of the considered regression model by using the inverse link
function.

(ii) Simulate response variables yj using the UL or alternative distribution with the
calculated means µj and any other required parameters.

(iii) Fit the UL regression model to the simulated response variables and calculate the
test statistic Tm based on the fitted UL regression model.

(iv) Simulate response variables yj
∗ from the UL distribution using the estimated means

in step (iii). Fit the UL regression model to the simulated response variables yj
∗ and

calculate the test statistic T ∗ from the fitted model.
(v) Repeat step (iv) B number of times and obtain B test statistics Tb

∗ for b = 1, 2, .., , B.
(vi) Calculate the bootstrap p-value as p = #(Tb

∗≥Tm)
B and reject the null hypothesis if

the p-value is smaller than the nominal level.
(vii) Repeat steps (ii)-(vi) M number of times and obtain rejection rate of the null hy-

pothesis.
The parametric bootstrap procedure is performed with M=B=2000 replications and

the response variables are generated from the UL distribution with means µj in step (ii)
to obtain the type I errors of the tests. In order to generate response variables from
the UL distribution, random numbers zj are generated from the Lindley distribution via
LindleyR package in R software and the transformation zj/(1 + zj) is used. Moreover,
the Fisher scoring algorithm is implemented to obtain parameter estimates of the UL
regression model. The estimates of regression parameters of the beta regression model are
used as initial values for the UL regression model and fifty iterations are allowed in the
algorithm. Empirical type I errors of the tests are presented in Table 1 for nominal levels
α = 0.10, 0.05, 0.01.

Table 1. Empirical type I errors of the tests for two models.

Model n Level S C2
1 C2

2 C2
3 χ2 D

logit (µj) = −0.4 + 0.3x1j + 0.8x2j

15
0.10 0.096 0.083 0.098 0.099 0.097 0.096
0.05 0.054 0.046 0.047 0.053 0.049 0.044
0.01 0.009 0.013 0.011 0.014 0.007 0.006

30
0.10 0.098 0.078 0.097 0.091 0.099 0.101
0.05 0.055 0.058 0.051 0.050 0.044 0.046
0.01 0.011 0.008 0.016 0.010 0.007 0.010

60
0.10 0.101 0.106 0.109 0.106 0.097 0.103
0.05 0.057 0.055 0.064 0.053 0.046 0.046
0.01 0.015 0.015 0.012 0.016 0.008 0.009

logit (µj) = 1.8 − 1.2x1j + 0.6x2j

15
0.10 0.088 0.081 0.099 0.099 0.092 0.093
0.05 0.051 0.057 0.038 0.060 0.056 0.042
0.01 0.010 0.010 0.013 0.011 0.006 0.015

30
0.10 0.093 0.095 0.095 0.096 0.091 0.099
0.05 0.043 0.047 0.046 0.043 0.049 0.049
0.01 0.008 0.011 0.006 0.007 0.010 0.007

60
0.10 0.096 0.091 0.107 0.100 0.086 0.094
0.05 0.045 0.040 0.066 0.044 0.040 0.048
0.01 0.013 0.011 0.011 0.008 0.006 0.011
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As seen from Table 1, the empirical type I errors of the tests are close to the nominal
levels irrespective of the models and sample sizes.

In order to evaluate performances of the tests in terms of power, we consider Beta distri-
bution Beta(µj , ϕ) with means µj and precision parameters ϕ = 3, 5, 8, 10, 15, 20, 50, 100
and simplex distribution Simplex(µj , σ) with means µj and dispersion parameters σ =
0.05, 1, 1.5, 3, 3.5, 4, 5, 10 as alternative distributions with the probability density func-
tions in Table 2. For the empirical powers of the tests, the nominal level is considered as
0.05 and the power results are summarized in Table 3 and Table 4. The simulation codes
based on the parametric bootstrap method are available from the author on request.

Table 2. The probability density functions of the alternative distributions in the simu-
lation study.

Alternative Distribution Probability Density Function Parameters

Beta f (yj ; µj , ϕ) = Γ(ϕ)y
µj ϕ−1
j

(1−yj)(1−µj)ϕ−1

Γ(µjϕ)Γ((1−µj)ϕ) 0 < µj < 1, ϕ > 0

Simplex f (yj ; µj , σ) =
exp

(
−1
2σ2

(yj −µj)2

yj(1−yj)µ2
j(1−µ2

j)

)
(2πσ2(yj(1−yj))3)1/2 0 < µj < 1, σ > 0

Table 3 presents the empirical powers of the tests under the Beta(µj , ϕ) distribu-
tion with the same means µj as in the UL distribution. The power results are ob-
tained for nominal level α = 0.05, sample sizes n = 15, 30, 60 and precision parameters
ϕ = 3, 5, 8, 10, 15, 20, 50, 100. As the value of ϕ increases, the powers of C2

1 , χ2, and
D tests dramatically decrease and converge to 0.000 regardless of the models and sam-
ple sizes. This situation shows the problems of the C2

1 , χ2, and D tests when ϕ is large.
Therefore, the C2

1 , χ2, and D tests should not be used as goodness of fit tests for the UL
regression model. When S, C2

2 , and C2
3 tests are compared, their powers first decrease and

then increase as the value of ϕ increases. Although the power of the S test is higher than
that of the C2

2 and C2
3 tests for ϕ = 3, 5, the C2

2 test can show better performance among
them for larger ϕ values and small sample size (see Table 3, n = 15, 30, ϕ = 15, 20, 50).
The C2

3 test can outperform the S and C2
2 tests (see Table 3, Model 2, ϕ = 8, 10). As

the value of ϕ increases, the powers of S and C2
2 tests converge to 1.000 and the C2

3 test
becomes the least powerful test among the S, C2

2 , and C2
3 tests.

Table 4 presents empirical powers of the tests under Simplex(µj , σ) distribution with
the same means µj as in the UL distribution. The power results are obtained for α =
0.05, n = 15, 30, 60 and σ = 0.05, 1, 1.5, 3, 3.5, 4, 5, 10. As expected, the powers of all
tests increase as the sample size increases. The powers of C2

1 , χ2, and D tests are close
to 0.0000 for small σ values regardless of models and sample sizes. Although their powers
increase as the value of σ and sample size increase, these tests give no rejection for small
σ values. It means that these tests are problematic; therefore, the C2

1 , χ2, and D tests
are not applicable for the UL regression model. As the value of σ increases, the powers of
S, C2

2 , and C2
3 tests first decrease and then increase up to 1.000. The C2

3 test is the least
powerful test among the three tests. Although the C2

2 test provides better results than
the S test for some small σ values (see Table 4, σ = 1, 1.5), the S test becomes the most
powerful test among S, C2

2 , and C2
3 tests as the value of σ increases.
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Table 3. Empirical powers of the tests under the Beta(µj , ϕ) distribution for α = 0.05,
n = 15, 30, 60 and ϕ = 3, 5, 8, 10, 15, 20, 50, 100.

Model n ϕ S C2
1 C2

2 C2
3 χ2 D

logit (µj) = −0.4 + 0.3x1j + 0.8x2j

15

3 0.4940 0.1610 0.3490 0.4690 0.4650 0.4840
5 0.1840 0.0870 0.0980 0.1780 0.0790 0.0900
8 0.2200 0.0700 0.2540 0.1260 0.0020 0.0040
10 0.3140 0.0270 0.4100 0.0930 0.0000 0.0000
15 0.6540 0.0010 0.8180 0.0650 0.0000 0.0000
20 0.9010 0.0010 0.9510 0.1042 0.0000 0.0000
50 0.9990 0.0000 1.0000 0.2780 0.0000 0.0000
100 1.0000 0.0000 1.0000 0.7150 0.0000 0.0000

30

3 0.8030 0.1830 0.6790 0.7440 0.7130 0.8120
5 0.4510 0.3170 0.1640 0.3750 0.0800 0.1690
8 0.4300 0.2740 0.3080 0.1620 0.0000 0.0030
10 0.6680 0.1020 0.6350 0.1030 0.0000 0.0000
15 0.9240 0.0360 0.9590 0.0740 0.0000 0.0000
20 0.9780 0.0040 0.9990 0.1490 0.0000 0.0000
50 1.0000 0.0000 1.0000 0.7480 0.0000 0.0000
100 1.0000 0.0000 1.0000 0.9840 0.0000 0.0000

60

3 0.9730 0.2400 0.9470 0.9330 0.8670 0.9540
5 0.7990 0.7160 0.2730 0.6730 0.0800 0.2690
8 0.8820 0.7530 0.4800 0.3240 0.0000 0.0030
10 0.9900 0.6390 0.8700 0.2320 0.0000 0.0000
15 1.0000 0.1920 1.0000 0.1720 0.0000 0.0000
20 1.0000 0.0330 1.0000 0.2830 0.0000 0.0000
50 1.0000 0.0000 1.0000 0.9960 0.0000 0.0000
100 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000

logit (µj) = 1.8 − 1.2x1j + 0.6x2j

15

3 0.9390 0.4950 0.8950 0.8260 0.9170 0.9670
5 0.7680 0.1520 0.5750 0.7290 0.6160 0.7960
8 0.4220 0.0520 0.1850 0.4800 0.2120 0.4280
10 0.2450 0.0110 0.1580 0.3220 0.0790 0.2080
15 0.1290 0.0050 0.3380 0.1370 0.0060 0.0500
20 0.1320 0.0000 0.6260 0.0530 0.0010 0.0100
50 0.6060 0.0000 0.9900 0.1260 0.0000 0.0000
100 0.9900 0.0000 1.0000 0.2290 0.0000 0.0000

30

3 0.9990 0.6980 0.9890 0.9520 0.9970 0.9990
5 0.9770 0.2330 0.8300 0.9700 0.8320 0.9730
8 0.7910 0.1500 0.2300 0.8300 0.2550 0.6910
10 0.6310 0.0400 0.1720 0.6940 0.0970 0.4320
15 0.4300 0.0020 0.5890 0.3210 0.0090 0.0790
20 0.4240 0.0000 0.9080 0.1160 0.0010 0.0150
50 0.9890 0.0000 1.0000 0.2930 0.0000 0.0000
100 1.0000 0.0000 1.0000 0.8650 0.0000 0.0000

60

3 1.0000 0.8860 0.9975 0.9830 1.0000 1.0000
5 1.0000 0.5070 0.9760 1.0000 0.9650 0.9995
8 0.9825 0.6130 0.3315 0.9885 0.3760 0.8990
10 0.9480 0.2170 0.1660 0.9400 0.0795 0.6370
15 0.9205 0.0050 0.8650 0.6060 0.0015 0.0925
20 0.9800 0.0010 0.9970 0.2020 0.0000 0.0090
50 1.0000 0.0000 1.0000 0.7543 0.0000 0.0000
100 1.0000 0.0000 1.0000 0.9990 0.0000 0.0000
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Table 4. Empirical powers of the tests under the Simplex(µj , σ) distribution for α =
0.05, n = 15, 30, 60 and σ = 0.05, 1, 1.5, 3, 3.5, 4, 5, 10.

Model n σ S C2
1 C2

2 C2
3 χ2 D

logit (µj) = −0.4 + 0.3x1j + 0.8x2j

15

0.05 1.0000 0.0000 1.0000 0.9870 0.0000 0.0000
1 0.8240 0.0000 0.9230 0.5237 0.0000 0.0000

1.5 0.2730 0.0280 0.3420 0.1032 0.0000 0.0000
3 0.3010 0.0680 0.2700 0.1780 0.3290 0.3100

3.5 0.5520 0.1620 0.4800 0.2640 0.6280 0.5980
4 0.7000 0.2900 0.6120 0.3770 0.7720 0.7360
5 0.8960 0.6170 0.7900 0.5640 0.9360 0.9250
10 0.9960 0.9820 0.9566 0.9150 0.9990 0.9990

30

0.05 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000
1 0.9970 0.0050 0.9980 0.8240 0.0000 0.0000

1.5 0.4030 0.1470 0.4400 0.2431 0.0000 0.0000
3 0.6450 0.0880 0.6290 0.3340 0.5560 0.6110

3.5 0.8630 0.1360 0.8640 0.4850 0.8720 0.8930
4 0.9460 0.4350 0.9380 0.6320 0.9710 0.9740
5 0.9990 0.8540 0.9920 0.8820 1.0000 0.9980
10 1.0000 1.0000 0.9917 1.0000 1.0000 1.0000

60

0.05 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000
1 1.0000 0.0480 1.0000 0.9890 0.0000 0.0000

1.5 0.9230 0.5770 0.7230 0.4570 0.0000 0.0000
3 0.9470 0.1330 0.9300 0.5450 0.7760 0.8770

3.5 0.9960 0.1750 0.9950 0.7610 0.9920 0.9960
4 0.9990 0.6190 0.9990 0.9140 0.9990 0.9990
5 1.0000 0.9820 1.0000 0.9930 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

logit (µj) = 1.8 − 1.2x1j + 0.6x2j

15

0.05 1.0000 0.0000 1.0000 0.8610 0.0000 0.0000
1 0.6660 0.0000 0.9610 0.2150 0.0000 0.0000

1.5 0.0990 0.0000 0.5400 0.0690 0.0000 0.0000
3 0.1090 0.0010 0.0900 0.0890 0.0350 0.1270

3.5 0.2070 0.0070 0.1950 0.1490 0.1210 0.3160
4 0.3630 0.0300 0.3600 0.2140 0.2950 0.5170
5 0.6580 0.1480 0.6330 0.2910 0.6200 0.7880
10 0.9750 0.8420 0.9661 0.6600 0.9720 0.9900

30

0.05 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000
1 0.9990 0.0000 1.0000 0.6810 0.0000 0.0000

1.5 0.5210 0.0000 0.9050 0.1100 0.0000 0.0000
3 0.3130 0.0090 0.2570 0.1850 0.0240 0.2670

3.5 0.4220 0.0100 0.3240 0.3160 0.1590 0.5790
4 0.6780 0.0380 0.6340 0.4490 0.4640 0.8370
5 0.9300 0.2290 0.9020 0.5960 0.8830 0.9780
10 1.0000 0.9910 0.9990 0.8510 1.0000 1.0000

60

0.05 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000
1 1.0000 0.0000 1.0000 0.9940 0.0000 0.0000

1.5 0.9570 0.0000 0.9980 0.3450 0.0000 0.0000
3 0.4260 0.0540 0.3580 0.2580 0.0140 0.4530

3.5 0.7790 0.0700 0.7140 0.5880 0.2350 0.8740
4 0.9510 0.0770 0.8860 0.8190 0.7030 0.9840
5 0.9990 0.3650 0.9950 0.9160 0.9940 1.0000
10 1.0000 1.0000 1.0000 0.9610 1.0000 1.0000
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5. Real data analysis
In this section, we consider the data set on the access of people living in households

with inadequate water supply and sewage in the state of Maranhão in Brazil. This data
set is the part of the original data analyzed by [24]. We are interested in modeling the
proportion of households with inadequate water supply and sewage (y) as a function of
the logarithm of the income (x) in the state. The data set and computer code used in this
section are available at https://avesis.gazi.edu.tr/denizozonur/dokumanlar. We
consider the following regression model:

logit (µj) = β0 + β1 log (xj) , j = 1, . . . , 55.

Since the C2
1 , χ2, and D tests are problematic for the UL regression model, the S, C2

2 ,
and C2

3 tests are applied to examine the adequacy of the distributional assumption in
the fitted UL regression model. We obtain the parametric bootstrap p-values of the test
statistics for the real data set and the parametric bootstrap p-values are calculated by the
following steps:

(i) Estimate the means µj and calculate the observed test statistic value, T0, from the
fitted UL regression model.

(ii) Generate response variables y∗
j from the UL distribution with estimated means µ̂j .

(iii) For the generated response variables, fit the UL regression model using the covariates
of the original data and recalculate T0 statistic from the fitted model and call it T ∗

0 .
(iv) Repeat steps (ii) and (iii) a large number of R times and obtain R test statistics T ∗

0r

for r = 1, 2, ..., R.
(v) The bootstrap p value is calculated as p = #(T ∗

0r≥T0)
R .

(vi) Reject the null hypothesis if the bootstrap p-value is smaller than the nominal level
of tests.

In the real data application, we considered the nominal level α = 0.05 and the replication
number R = 5000. According to the parametric bootstrap procedure, we obtain p-values
of the test statistics S, C2

2 , and C2
3 as 0.3504, 0.1192, and 0.7042, respectively. All the

considered tests suggest that the unit-Lindley response distribution adequately fits the
real data set.

For comparison purposes, Beta and simplex regression models are also fitted to the real
data set, and Table 5 presents the maximum likelihood estimates, standard errors and
p−values for the fitted UL, Beta, and simplex regression models. In order to estimate the
parameters of the Beta and simplex regression models, the betareg [45] and VGAM [43]
packages in R software are used, respectively. In Table 5, the parameter δ represents the
precision parameter of the Beta regression model and the logarithm of the σ parameter of
the simplex regression model, respectively.

Table 5. Summary of the fitted regression models.

Unit-Lindley Beta Simplex
Parameter MLE SE p−value MLE SE p−value MLE SE p−value

β0 5.3678 1.8467 0.004 3.8487 1.7687 0.0295 4.9151 1.8643 0.0083
β1 -1.1588 0.3432 <0.001 -0.8636 0.3291 0.0086 -1.0878 0.3443 0.0015
δ 6.3710 1.1510 < 0.001 0.9312 0.0953 <0.001

AIC -47.1328 -42.0342 -33.8521
BIC -43.1181 -36.0122 -27.8301

HQIC -45.5803 -39.7055 -31.5233

https://avesis.gazi.edu.tr/denizozonur/dokumanlar
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As seen from Table 5, the parameter β1 is statistically significant at 5 % level for all con-
sidered regression models. It is concluded that there is a negative relationship between the
mean response (proportion of households with inadequate water supply and sewage) and
the logarithm of the income in the state. In order to determine the best-fitted regression
model among the three regression models, we also calculate Akaikes Information Criterion
(AIC) [1]), Bayesian Information criterion (BIC) [38] and Hannan-Quinn Information
criterion (HQIC) [17]. These criteria are calculated as follows:

AIC = 2p − 2 log L̂, BIC = p log (n) − 2 log L̂, HQIC = 2p log (log (n)) − 2 log L̂,

where n is the number of observations, p is the number of parameters, and L̂ is the
maximum value of the likelihood function for a fitted model. The model achieving the
lowest value of the selected criterion is chosen as the best model. Table 5 shows that the
UL regression model provides the best fit for the data set, since it has the lowest values
of the AIC, BIC, HQIC statistics.

Moreover, residuals are widely used to assess the suitability of fitted statistical models.
In order to evaluate the fitted regression models, three commonly used residuals such
as randomized quantile [13], Cox-Snell [9], and Pearson residuals are examined. The
randomized quantile residuals are given by

rj = Φ−1 (F (yj)) , j = 1, . . . , n

where F (.) is the cdf of a response distribution and Φ is the cdf of the standard normal
distribution. The randomized quantile residuals follow a standard normal distribution if
the fitted model is valid.

Figure 1. The quantile-quantile plots of the randomized quantile residuals for the con-
sidered models.

Figure 1 presents the quantile-quantile plots of the randomized quantile residuals with
simulated envelopes for the UL, Beta, and simplex regression models. As seen from Figure
1, the UL regression model provides a better fit than the Beta and simplex regression
models, since the residuals are much closer to the diagonal line in the UL regression
model.

For the UL regression model, the Cox-Snell and Pearson residuals are also evaluated.
The Cox-Snell residuals are calculated as follows:

ej = − log (1 − F (yj)) , j = 1, . . . , n

where F (.) is the cdf of the UL distribution. The Cox-Snell residuals follow a standard
exponential distribution distribution if the fitted model is appropriate.

The Pearson residuals are defined as

r∗
j = yj − µ̂j√

σ̂2
j

,
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where σ̂2
j = (1 − µ̂j)2

[
1

µj
exp ((1 − µ̂j) /µ̂j ) E1 ((1 − µ̂j) /µ̂j ) − 1

]
is the estimated vari-

ance of the UL response variable. The scatter plot of the Pearson residuals against the
index of the observations should not show a detectable pattern and the residuals outside
the interval (−2, 2) are detected as potential outliers.

Figure 2. Two diagnostic plots for the UL regression model.

Figure 2 displays the Cox-Snell (left) and Pearson (right) residuals for the UL regression
model and verifies that the UL regression model is suitable for the real data set.

6. Conclusions
This paper focuses on the unit-Lindley regression model assuming that the response

variable follows the unit-Lindley distribution. The smooth goodness of fit test and its
components are developed to test distributional assumption of the UL regression model.
The smooth test statistic is converted into its convenient sums of squares structure by
decomposing the variance-covariance matrix. In order to obtain the smooth test statistic,
the moments about the origin of the response variable, the orthonormal polynomials on the
unit-Lindley distribution, the score functions and Fisher’s information matrix are derived.
The most popular deviance and chi-square goodness of tests are adapted to unit-Lindley
regression model. The maximum likelihood estimates of the regression parameters are
obtained by using Fisher scoring algorithm. A parametric bootstrap simulation study is
performed to compare proposed tests in terms of their type I errors and powers. The
simulation study shows that empirical type I errors of all the tests are always close to the
nominal levels. Empirical power results are obtained for the Beta and simplex alternative
distributions. The powers of C2

1 , χ2, and D tests are 0.0000 when the precision of the
Beta distribution is large or the dispersion of the simplex distribution is small. These
results demonstrate that C2

1 , χ2, and D tests have undesirable behaviors. Therefore, they
should not be used as the goodness of fit tests for the unit-Lindley regression model. For
the Beta distribution, the smooth test S is the most powerful test among the S, C2

2 , and
C2

3 tests for small ϕ values. As the value of ϕ increases, the power of C2
2 can provide

better power results than that of S and C2
3 tests for small sample sizes. The powers of

S and C2
2 tests converge to 1.0000 for large ϕ values regardless of the sample sizes and

models. For the simplex distribution, the C2
3 test is the least powerful test among the S,

C2
2 , and C2

3 tests and C2
2 test can outperform the S test for small σ values. However, the

S test gives higher power results than C2
2 test as the value of σ increases. New goodness

of fit tests demonstrate that unit-Lindley regression model adequately fits a real data set.
The superiority of the unit-Lindley regression model over the Beta and simplex regression
models is indicated by model selection criteria and residual analysis.
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Appendix A. Moments about the origin of the response variable
Let µ′

r = E (yr) denotes rth moment about the origin of the response variable following
the UL distribution. The moments are derived for r = 2, 3, 4, 5, 6 as follows:

µ′
2 = 2µ − 1 +

{
(1 − µ)2/µ

}
exp ((1 − µ) /µ ) E1 ((1 − µ) /µ )

µ′
3 =

(
2µ2 − 1

)
/µ +

{
3(1 − µ)2/µ + (1 − µ)3/µ2

}
exp ((1 − µ) /µ ) E1 ((1 − µ) /µ )

µ′
4 = (1 − µ)/2

[(
−(1 − µ)2/µ

2 − 7(1 − µ)/µ + 2µ/(1 − µ) − 6
)

+
{(

(1 − µ)3/µ3 + 8(1 − µ)2/µ2 + 12(1 − µ)/µ
)}

exp ((1 − µ)/µ ) E1 ((1 − µ)/µ )
]

µ′
5 = (1 − µ)2/µ

[
µ/(1 − µ)2− 5µ/(1 − µ) − 7.5 − 2.5µ/(1 − µ) − 1/3

+
(
−2µ2 + 3µ − 1

)
/6 +

{
(1 − µ)3/6µ3 + 2.5(1 − µ)2/µ2

+ 10(1 − µ)/µ + 10 } exp ((1 − µ)/µ ) E1 ((1 − µ)/µ )]

µ′
6 = (1 − µ)2/µ

[
µ/(1 − µ)2− 6µ/(1 − µ) − 14.25 − 12.5(1 − µ)/µ − 23(1 − µ)2/24µ2

+ 11 (1 − µ)/12µ − (1 − µ)3/24µ3 +
{

(1 − µ)4/24µ4 + (1 − µ)3/µ3

+7.5(1 − µ)2/µ2 + 20(1 − µ)/µ + 15
}

exp ((1 − µ)/µ ) E1 ((1 − µ)/µ )
]

,

where µ is the mean of the response variable and En(z) =
∞∫
1

t−n exp (−zt)dt is the expo-

nential integral function.

Appendix B. Score functions and information matrix
In this appendix, we obtain the score functions and information matrix for the smooth

test statistic. Let l (β) be log-likelihood function of the UL model

l (β) =
n∑

j=1
lj (µj) ,

where lj (µj) = 2 log (1 − µj)−log (µj)−3 log (1 − yj)− yj(1−µj)
(1−yj)µj

. The regression parameter
vector β is estimated by solving the following score function

Uβ = ∂l (β)
∂βu

=
n∑

j=1

∂lj (µj)
∂µj

∂µj

∂τj

∂τj

∂βu

=
n∑

j=1

(
−µj − 1 + yj (1 − µj)

(1 − yj) µj

)
xju,

where τj = log
(

µj

1−µj

)
= xT

j β is the logit link function. In the study, we used Fisher’s
scoring algorithm to estimate the regression model parameters.

For the UL regression model using smooth alternative distribution fk in Equation (3.1),
the corresponding log-likelihood function is

log L =
n∑

j=1
log C (τ ,µj) +

k∑
i=1

τi

n∑
j=1

hi (yj ; µj) +
n∑

j=1
logf (yj ; µj) .
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Since hr (r = 1, 2, .., k) is the rth order orthonormal polynomial with h0 = 1, the
expected value of the hr is E0 (hr) = 0 for r ≥ 1 under H0 [36] and the score function
with respect to τ is given by

Uτ = ∂ log L

∂τr

∣∣∣∣
γ̂0

=
n∑

j=1
hr (yj , µ̂j) =

√
nVr,

where Vr = 1√
n

n∑
j=1

hr (yj ; µ̂j).

The Fisher information matrix is partitioned as

I =
[
Iττ Iτβ

Iβτ Iββ

]

and the sub-matrices of the information matrix are derived as follows:

(Iττ ) (γ̂0) = −E0

[
∂2 log L

∂τr∂τs

]
=


n 0 · · · 0
0 n 0
... . . . ...
0 0 · · · n

 = nIk,

where Ik is the k × k identity matrix.

We assume that hr is the rth order orthonormal polynomial on the UL distribution;
therefore, we can write the polynomial as hr =

r∑
i=0

airyi. The coefficients of each orthonor-

mal polynomial can be extracted from the orthonormal polynomials on the UL distribution
in Appendix C and we have

(Iτβ) (γ̂0) = −E0

[
∂2 log L

∂τr∂βu

]

=
n∑

j=1
Cov

(
hr,

∂ log f

∂βu

)

=
n∑

j=1
µjxju

r∑
i=0

airΓ (2 + i) U

(
−1 + i, −2,

1 − µj

µj

)

=
n∑

j=1
µjxjuArj

=

A11 · · · A1n
... . . . ...

Ak1 · · · Akn




µ1 0 · · · 0
0 µ2 . . . 0
... . . . ...
0 0 . . . µn


x11 · · · x1p

... . . . ...
xn1 · · · xnp


= ADX,

where X is the n × p matrix of covariates, D = diag (µ1, ...., µn) is the n × n diagonal
matrix and A is the k×n matrix with rows AT

1 , AT
2 , ..., AT

k where U (a, b, z) is the confluent
hypergeometric function.
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(Iββ) (γ̂0) = −E0

[
∂2 log L

∂βu∂βv

]

=
n∑

j=1
Cov

(
∂ log f

∂βu
,
∂ log f

∂βv

)

=



n∑
j=1

x2
j1wj

n∑
j=1

xj1xj2wj · · ·
n∑

j=1
xj1xjpwj

n∑
j=1

xj2xj1wj

n∑
j=1

x2
j2wj · · ·

n∑
j=1

xj2xjpwj

...
... . . . ...

n∑
j=1

xjpxj1wj

n∑
j=1

xjpxj2wj · · ·
n∑

j=1
x2

jpwj



=

x11 · · · xn1
... . . . ...

x1p · · · xnp




−µ2
1 + 2µ1 + 1 0 · · · 0

0 −µ2
2 + 2µ2 + 1 · · · 0

...
... . . . ...

0 0 · · · −µ2
n + 2µn + 1



×

x11 · · · x1p
... . . . ...

xn1 · · · xnp


= XT WX,

where W is the n×n diagonal weight matrix. Note that the Iββ is the information matrix
that has been used to estimate the regression parameters β in the Fisher scoring algorithm.

Appendix C. Orthonormal polynomials
The orthonormal polynomials of the UL distribution are generated by GramSchmidt or-

thogonalization process using the basis
{
1, y, y2, y3}. Let µ∗

2 be the second central moment
of the response variable. The first four orthonormal polynomials on the UL distribution
are given by h0 (y; µ) = 1 and hr (y; µ) (r = 1, 2, 3):

h1 (y; µ) = (y − µ)/
√

µ∗
2 ,

h2 (y; µ) =
(
y2 + ay + b

)
/
√

d,

h3 (y; µ) =
(
y3 + cy2 + py + t

)
/
√

e,

where a = −(µ′
3 − µµ′

2)/µ∗
2, b = −µ′

2 − aµ, d = µ′
4 + a2µ′

2 + b2 + 2aµ′
3 + 2bµ′

2 + 2abµ,
c = −(µ′

5 + aµ′
4 + bµ′

3)/d, p = ac − (µ′
4 − µµ′

3)/µ∗
2, t = −µ′

3 + bc + µ(µ′
4 − µµ′

3)/µ∗
2,

e = µ′
6 + c2µ′

4 + p2µ′
2 + t2 + 2cµ′

5 + 2pµ′
4 + 2tµ′

3 + 2cpµ3 + 2ctµ′
2 + 2ptµ.


