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Abstract

In this article, we deal with the inverse problem of identifying the unknown source of the time-fractional
diffusion equation in a cylinder equation by A fractional Landweber method. This problem is ill-posed.
Therefore, the regularization is required. The main result of this article is the error between the sought
solution and its regularized under the selection of a priori parameter choice rule.

Keywords: Source problem; Fractional pseudo-parabolic problem; Ill-posed problem; Convergence
estimates; Regularization.
2010 MSC: 35K05, 35K99, 47J06, 47H10x.

1. Introduction

According to the history of mathematical research, it has been found that the standard diffusion equation
has been used to represent the particle motion Gaussian process. To describe anomalous diffusion phenomena,
the classical derivative will be replaced with a non-integer derivative. Therefore, it leads to great applications
of differential equations with non-integer derivatives. Fractional derivatives and fractional calculus was
also considered by many scientists because of applications in potential theory, physics, electrochemistry,
viscoelasticity, biomedicine, control theory, and signal processing, see e.g. [1, 2] and the references therein.
Nigmatullin [3] first applied the fractional diffusion equation to describe diffusion in a medium shaped
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fractal. Metzler and Klafter [4] gave a proof that a fractional diffusion equation is possible governs a non-
Markovian propagation process that has a memory. Among many different interesting topics about the
fractional diffusion equation, some types of inverse problems in this genre attract the community interested
in research. T. Wei and her group [5, 6, 7, 8] investigated some regularization methods for homogeneous
backward problem. Y. Hang and his coauthors [9] used fractional Landweber method for solving backward
time-fractional diffusion problem. The diffusion process inverse source problem is intended to detect the
source function of the physical field from some indirect measurement (such as last time information or
boundary measurement). As we all know, the problem of determining the source function has attracted a
lot of mathematicians interested in research because of its applications in practice. Some interesting works
on this topic can be found in some previous paper, for example [10]-[38]. In general, the inverse source
problem is often ill-posed in the sense of Hadamard. In this work, we focus on the following equation in an
axis-symmetric cylinder 

∂β

∂tβ
u(r, z, t) =

∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
+ Φ(t)f(r, z),

u(r, z, 0) = a(r, z), 0 < r ≤ R0,

u(R0, z, t) = u(0, z, t) = 0, 0 < t, 0 < z ≤ L0

u(r, 0, t) = u(r, L0, t) = 0, 0 < t, 0 < r ≤ R0

lim
r→0

u(r, z, t) bounded , 0 ≤ t ≤ T,

u is finite t > 0, 0 < r ≤ R0, 0 < z ≤ L0,

(1.1)

where the Caputo fractional derivative
∂β

∂tβ
is defined as follows:

Dβ
t u(r, z, t) =

1

Γ(1− β)

t∫
0

uτ (r, z, τ)

(t− τ)β
dτ, 0 < β < 1, (1.2)

aε and Φε and satisfy

‖aε − a‖L2
r(Ω) + ‖Φε − Φ‖L∞(0,T ) ≤ ε. (1.3)

with the following condition on the final time data

θ1u(r, z, T ) + θ2

T∫
0

u(r, z, t)dt = g(r, z). (1.4)

The main purpose of this paper is to apply a fractional Landweber method to regularized our inverse source
problem. We will demonstrate that the regularized solution will converge on the sought solution. There
are two challenges that we need to overcome. The first difficulty is that the problem is considered in the
domain of axis-symmetric cylinder making the assessment techniques complicated. The second difficulty is
the presence of integral conditions that make estimates of errors cumbersome. It can be said that our result
is one of the first results about the source function for the problem (1.1)-(1.4).

The outline of the paper is given as follows: In Section 2, we give some preliminary theoretical results.
Ill-posed analysis and conditional stability are obtained in Section 3. In Section 4, we propose the Fractional
Landweber regularization method and give a convergence estimate under an a-priori regularization parameter
choice rule.
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2. Statement of the problem

We introduced the Lesbesgue space associated with the measure rdr, i.e

L2
r(Ω) =

{
ν : Ω→ R measurable

∫
Ω

ν2(r, z)rdrdz <∞
}
, (2.5)

which is a Hilbert space with the scalar product
〈
u, ν
〉
r

=

∫
Ω

u(r, z)ν(r, z)rdrdz, and norm is given by

‖v‖L2
r(Ω) =

(∫
Ω

ν2(r, z)rdrdz

) 1
2

· Throughout this paper, for the convenience of writing,

Definition 2.1. (See [19]) For any constant γ and r ∈ R, the Mittag-Leffler function is defined as:

Eγ,α(z) =
∞∑
j=0

zj

Γ(γj + α)
, z ∈ C, (2.6)

where γ > 0 and α ∈ R are arbitrary constant.

Lemma 2.1. [12] Assuming that 0 < β0 < β1 < 1, then there exist constants C1 and C2 depending only on
β, β1 such that

C1

Γ(1− β)

1

1− z
≤ Eβ,1(z) ≤ C2

Γ(1− z)
1

1− z
, z ≥ 0. (2.7)

Lemma 2.2. [13] For λmn ≥ λ11 > 0, then there exists constant C3 and C4 depending only on β, T, λ11 such
that

C3

λ2
j

≤ Eβ,1(−λmnT β) ≤ C4

λ2
j

·

Proof. This proof can be found in [13].

Lemma 2.3. Let C5, C6 ≥ 0 satisfy C5 ≤ |Φ(t)| ≤ C6, ∀t ∈ [0, T ], let choose ε ∈
(
0,
C5

2

)
, by denoting

B(C5, C6) = C6 +
C5

2
, we get

C5

2
≤ |Φε(t)| ≤ B(C5, C6).

Proof. This proof can be found at [14].

Lemma 2.4. [13] For λmn > 0, β > 0, and positive integer j ∈ N, we have:

d

dt

(
tEβ,2(−λmntβ)

)
= Eβ,1(−λmntβ),

d

dt

(
Eβ,1(−λmntβ)

)
= −λmntβ−1Eβ,β(−λjtβ). (2.8)

Lemma 2.5. For any 0 < β < 1, Eβ,1(−tβ) is completely monotonic, see [] with Amn(β, τ) = (t −
τ)β−1Eβ,β

(
− λmn(t− τ)β

)
, we get

a)
1

λmn

(
1− Eβ,1

(
− λ11T

β
))
≤

T∫
0

Amn(β, T − τ)dτ ≤ 1

λmn
, (2.9)

b)
T

λmn

(
1− Eβ,2

(
− λ11T

β
))
≤

T∫
0

( t∫
0

Amn(β, t− τ)dτ
)
dt ≤ T

λmn
. (2.10)

Proof. Please see the proof in [20].
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3. Ill-posed analysis and conditional stability

Theorem 3.1. The solution of problem (1.1) represented by the formula (3.20).

Proof. The solution of problem (1.1) is as follows:

u(r, z, t) =

+∞∑
m,n=1

(
u0,mnEβ,1

(
− λmntβ

)
J0

(ζm
R0
r
)

sin
(nπ
L0
z
)

+

+∞∑
m,n=1

(
fmn

t∫
0

(t− τ)β−1Eβ,β(−λmn(t− τ)β)Φ(τ)dτ
)
J0

(ζm
R0
r
)

sin
(nπ
L0
z
)
· (3.11)

whereby

λmn =
(ζm
R0

)2
+
(nπ
L0

)2
, m, n = 1, 2, ...,∞,

fmn =
4

L0R2
0J

2
1 (ζm)

R0∫
0

L0∫
0

J0

(ζm
R0
r
)

sin
(nπ
L0
z
)
f(r, z)rdrdz,

u0,mn =
4

L0R2
0J

2
1 (ζm)

R0∫
0

L0∫
0

J0

(ζm
R0
r
)

sin
(nπ
L0
z
)
u(r, z)rdrdz. (3.12)

where J0(z) and J1(z) denote the 0th order and 1st order Bessel function, and ζm are the sequence of solution
of the equation J0(z) = 0 which satisfy

0 < ζ1 < ζ2 < · · · < ζm < · · · , lim
m→∞

ζm =∞. (3.13)

Defining

ωm(z) =

√
2

R0J1

(
ζm
)J0

(ζm
R0
r
)
, en(z) =

√
2

L0
sin
(nπ
L0
z
)
, Ψm,n(r, z) = ωm(r)en(z). (3.14)

then it is easy to check that the eigenfunctions
{

Ψm,n(r, z)
}
m,n≥1

from an orthonormal basis in L2
r(Ω). Using

the eigenfunctions Ψm,n(r, z) as a basic, formula (3.11) can be written for a shorter as follows

um†,n†(t) = u0,m†n†Eβ,1
(
− λmntβ

)
+ fm†n†

( t∫
0

(t− τ)β−1Eβ,β(−λmn(t− τ)β)Φ(τ)dτ

)
. (3.15)

From the fact that θ1u(r, z, T ) + θ2

T∫
0

u(r, z, t)dt = g(r, z), we find that

θ1

+∞∑
m,n=1

um,n(T )Ψm,n(r, z) + θ2

T∫
0

( +∞∑
m,n=1

um,n(t)Ψm,n(r, z)
)
dt =

+∞∑
m,n=1

gm,nΨm,n(r, z)· (3.16)

From (3.16), we deduce that

gm†,n† = θ1u0,m†n†Eβ,1(−λmnT β) + θ1fm†n†

T∫
0

(T − τ)β−1Eβ,β(−λmn(T − τ)β)Φ(τ)dτ

+ θ2u0,m†n†

T∫
0

Eβ,1(−λmntβ)dt+ θ2fm†n†

T∫
0

( t∫
0

(t− τ)β−1Eβ,β(−λmn(t− τ))Φ(τ)dτ

)
dt. (3.17)
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This implies that

gm†,n† = θ1u0,m†n†Eβ,1(−λmnT β) + θ2u0,m†n†

T∫
0

Eβ,1(−λmntβ)dt

+ θ1fm†n†

T∫
0

(T − τ)β−1Eβ,β(−λmn(T − τ)β)Φ(τ)dτ

+ θ2fm†n†

T∫
0

( t∫
0

(t− τ)β−1Eβ,β(−λmn(t− τ)β)Φ(τ)dτ
)
dt. (3.18)

For a shorter, by denoting (t − τ)β−1Eβ,β(−λmn(t − τ)β)Φ(τ) = Amn(β, t − τ,Φ). From (3.17), the latter
equality implies that

fm†n† =

gm†,n† − θ1u0,m†n†Eβ,1(−λmnT β)− θ2u0,m†n†

T∫
0

Eβ,1(−λmntβ)dt

θ1

T∫
0

Amn(β, T − τ,Φ)dτ + θ2

T∫
0

( t∫
0

Amn(β, t− τ,Φ)dτ
)
dt

· (3.19)

The mild solution is given by

f(r, z) =

+∞∑
m,n=1

gm†,n† − θ1u0,m†n†Eβ,1(−λmnT β)− θ2u0,m†n†

T∫
0

Eβ,1(−λmntβ)dt

θ1

T∫
0

Amn(β, T − τ,Φ)dτ + θ2

T∫
0

( t∫
0

Amn(β, t− τ,Φ)dτ
)
dt

Ψm,n(r, z). (3.20)

3.1. The ill-posedness and stability of problem (1.1)
Theorem 3.2. The inverse source problem (1.1) is ill-posed.

Proof. A linear operator P : L2
r(Ω)→ L2

r(Ω) as follows.

Pf(r, z) =

R0∫
0

L0∫
0

`(r, z, ξ)f(r, z)dξ = `(r, z), (3.21)

where

`(r, z) = gm†,n† − θ1u0,m†n†Eβ,1(−λmnT β)− θ2u0,m†n†

T∫
0

Eβ,1(−λmntβ)dt, (3.22)

and

Ψ(r, z) =
+∞∑
m,n=1

[
θ1

T∫
0

Amn(β, T − τ,Φ)dτ + θ2

T∫
0

( t∫
0

Amn(β, t− τ,Φ)dτ
)
dt

]
Ψm,n(r, z).
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Due to `(r, z) = `(z, r), we know P is self-adjoint operator. Next, we are going to prove its compactness.
Defining the finite rank operators PM,N as follows

PM,N f(x) =

M,N∑
m,n=1

[
θ1

T∫
0

Amn(β, T − τ,Φ)dτ + θ2

T∫
0

( t∫
0

Amn(β, t− τ,Φ)dτ
)
dt

]〈
f,Ψmn

〉
Ψmn(r).

From PM,Nf and Pf , using the inequality (a+ b)2 ≤ 2(a2 + b2), a, b ≥ 0, we have:

∥∥PM,Nf − Pf
∥∥2

L2
r(Ω)
≤

+∞∑
m,n=M+1,N+1

∣∣∣∣∣θ1C6

λmn
+
θ2C6T

λmn

∣∣∣∣∣
2∣∣〈f,Ψmn

〉∣∣2
≤ 1

λ2
MN

[
2C2

6θ
2
1 + 2C2

6

(
θ2T

)2] +∞∑
m,n=M+1,N+1

∣∣〈f,Ψmn

〉∣∣2
≤ 1

λ2
MN

[
2C2

6θ
2
1 + 2C2

6

(
θ2T

)2] ∥∥f∥∥2

L2
r(Ω)

. (3.23)

Therefore,
∥∥PM,Nf − Pf

∥∥
L2
r(Ω)

in the sense of operator norm in L(L2
r(Ω);L2

r(Ω)) as M,N → ∞. Also,
P is a compact operator. Next, the SVDs for the linear self-adjoint compact operator P are

Vθ1,θ2
m,n (β,Φ) = θ1

T∫
0

Amn(β, T − τ,Φ)dτ + θ2

T∫
0

( t∫
0

Amn(β, t− τ,Φ)dτ
)
dt. (3.24)

and corresponding eigenvectors is Ψm,n which is known as an orthonormal basis in L2
r(Ω). Corresponding

eigenvectors is Ψmn which is known as an orthonormal basis in L2
r(Ω). From (3.21), the inverse source

problem we introduced above can be formulated as an operator equation Pf(r, z) = Ξ(r, z) and by Kirsch
[30]. Assume that u0,m†,n† = 0 and gm†,n† is noised data by and gε

m†,n†
we have estimate

∥∥f − f ε∥∥2

L2
r(Ω)

=
+∞∑
m,n=1

∣∣`ε
m†,n†

− `m†,n†
∣∣2∣∣Vθ1,θ2

m,n (β,Φ)
∣∣2 =

+∞∑
m,n=1

∣∣gε
m†,n†

− gm†,n†
∣∣2∣∣Vθ1,θ2

m,n (β,Φ)
∣∣2 · (3.25)

By the Lemma 2.3 and the Lemma 2.5, we know that

1∣∣Vθ1,θ2
m,n (β,Φ)

∣∣2 ≥ λ4
mn[

θ1C6 + θ2C6T
]2 · (3.26)

From (3.25) and (3.26), therefore in the computation of (3.25), the small data error can be amplified arbi-
trarily much by the factor

∣∣Vθ1,θ2
m,n (β,Φ)

∣∣−2 which increase without bound, so recovering the source f(r, z)
from a measured data gε(r, z) is ill-posed. Hence, regularization for this article needs to be considered.

3.2. Conditional stability of source term f

Theorem 3.3. If
∥∥f∥∥

H2j
r (Ω)

≤M forM is the positive constant, then we get∥∥f∥∥
L2
r(Ω)

is defined in (3.29),
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Proof. From (3.20), applying the Hölder inequality, we know

∥∥f∥∥2

L2
r(Ω)

=

+∞∑
m,n=1

∣∣〈g,Ψm,n

〉∣∣ 2
j+1
∣∣〈g,Ψm,n

〉∣∣ 2j
j+1∣∣Vθ1,θ2

m,n (β,Φ)
∣∣2

≤
( +∞∑
m,n=1

∣∣〈g,Ψm,n

〉∣∣2∣∣Vθ1,θ2
m,n (β,Φ)

∣∣2j+2

) 1
j+1
( +∞∑
m,n=1

∣∣〈g,Ψm,n

〉∣∣2) j
j+1

≤

(
+∞∑
m,n=1

∣∣〈f,Ψmn

〉∣∣2∣∣Vθ1,θ2
m,n (β,Φ)

∣∣2j
) 1

j+1

‖g‖
2j
j+1

L2
r(Ω)

, (3.27)

and this inequality leads to

∥∥f‖2L2
r(Ω) ≤

∣∣Zθ1,θ21,1 (β, T, C5)
∣∣−2j

+∞∑
m,n=1

λ4j
mn

∣∣〈f, ξj〉∣∣2 ≤ ‖f‖2
H2j

r (Ω)∣∣Zθ1,θ21,1 (β, T, C5)
∣∣2j · (3.28)

Combining (3.27) and (3.28), we get

∥∥f∥∥2

L2
r(Ω)
≤ M

2
j+1∣∣Zθ1,θ21,1 (β, T, C5)

∣∣ 2j
j+1

‖g‖
2j
j+1

L2
r(Ω)
· (3.29)

whereby

Zθ1,θ21,1 (β, T, C5) =
[
θ1C5

(
1− Eβ,1(−λ11T

β)
)

+ θ2C5T
(
1− Eβ,2(−λ11T

β)
)]
. (3.30)

4. A Fractional Landweber Method and convergence rate

In the section, we show the fractional Landweber regularization solution for problem (1.1)

fγ(ε),b(r, z) =
+∞∑
m,n=1

[
1−

(
1− η

∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣2)γ(ε)]b 〈`,Ψm,n

〉
Ψm,n(r, z)

Vθ1,θ2
m,n (β,Φ)

,
1

2
< b ≤ 1. (4.31)

and measured data

fγ(ε),b
ε (r, z) =

+∞∑
m,n=1

[
1−

(
1− η

∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣2)γ(ε)]b 〈`ε,Ψm,n

〉
Ψm,n(r, z)

Vθ1,θ2
m,n (β,Φε)

,
1

2
< b ≤ 1. (4.32)

where b ∈ (1
2 , 1] is called the fractional parameter, and [γ(ε)] ≥ 1 is a regularization parameter, and η ∈(

0,
( λ11

θ1 + θ2T

)2
)
. In the case b = 1, it is the classical Landweber method. In the proof section, we need

the following lemmas:

Lemma 4.1. For 0 < λ < 1, c > 0, n ∈ N, let rn(λ) := (1− λ)n, we get:

rn(λ)λc ≤ θc(n+ 1)−c, (4.33)

where θc =

{
1, 0 ≤ c ≤ 1,
cc, c > 1.
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Proof. This Lemma 4.1 can be found in [9].

Lemma 4.2. For
1

2
< b < 1, γ ≥ 1, choosing η ∈

(
0,

(
λ11

θ1 + θ2T

)2)
then 0 < η

(
θ1 + θ2T

λ11

)2

< 1, by

denoting z = η

(
θ1 + θ2T

λ11

)2

, we have the following estimates

a)
[
1− (1− z)γ

]b(z
η

)− 1
2 ≤ η

1
2γ

1
2 ,

b) (1− z)γ
(z
η

) ς
2 ≤

( ς
2η

) ς
2γ−

ς
2 . (4.34)

Proof. The proof can be found in [9].

Lemma 4.3. Let ` be given by (3.22) depends on g and u0 functions. Similarly, in a similar way we can
find the function definition with the couple

(
gε, u0,ε

)
are observed data by (g, u0) as follows

〈
`ε,Ψm,n

〉
=〈

gε,Ψm,n

〉
−
〈
u0,ε,m,n,Ψm,n

〉(
θ1Eβ,1(−λmnT γ) + θ2

T∫
0

Eβ,1(−λmntβ)dt
)
,

denoting C2
7 = 2 + 2

(
θ1C4 + θ2

C4T

λ11

)2

then

Proof. Using the inequality (a+ b)2 ≤ 2a2 + 2b2, ∀a, b ≥ 0, see the Lemma 2.1, it gives

‖`ε − `‖2L2
r(Ω)

=

+∞∑
m,n=1

∥∥∥∥〈gε − g,Ψm,n

〉
−
〈
u0,ε − u0,Ψm,n

〉(
θ1Eβ,1(−λmnT γ) + θ2

T∫
0

Eβ,1(−λmntγ)dτ
)∥∥∥∥2

L2
r(Ω)

≤ 2
+∞∑
m,n=1

∣∣〈gε − g,Ψm,n

〉∣∣2 + 2
+∞∑
m,n=1

∥∥∥〈u0,ε − u0,Ψm,n

〉(
θ1C4 + θ2

T∫
0

Eβ,1
(
− λmntβ

)
dt
)∥∥∥2

L2
r(Ω)

≤ 2‖gε − g‖2L2
r(Ω) + 2‖u0,ε − u0‖2L2

r(Ω)

(
θ1C4 + θ2

C4T

λ11

)2
≤ ε2C2

7 . (4.35)

4.1. An a priori parameter choice rule
Theorem 4.1. Suppose that f is given by (3.20). Let fγ(ε),b is the its approximation, assume that conditions

‖f‖
H2j

r (Ω)
≤M and (1.3) hold. By choosing γ(ε) =

(M
ε

) 2
j+1 , then

∥∥fγ(ε),b
ε − f

∥∥
L2
r(Ω)

is of order ε
j

j+1 · (4.36)

Proof. Using the triangle inequality, we get∥∥fγ(ε),b
ε − f

∥∥
L2
r(Ω)
≤
∥∥fγ(ε),b

ε − fγ(ε),b
∥∥
L2
r(Ω)

+
∥∥fγ(ε),b − f

∥∥
L2
r(Ω)

. (4.37)

We divide the proof into two steps: We receive
∥∥fγ(ε),b

ε − fγ(ε),b
∥∥
L2
r(Ω)

as follows:

fγ(ε),b
ε (r, z)− fγ(ε),b(r, z)

=

+∞∑
m,n=1

[
1−

(
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2)γ(ε)
]b(〈`ε,Ψm,n

〉
Ψm,n(·, ·)

Vθ1,θ2
m,n (β,Φε)

−
〈
`,Ψm,n

〉
Ψm,n(·, ·)

Vθ1,θ2
m,n (β,Φ)

)
· (4.38)
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From (4.38), we received

∥∥fγ(ε),b
ε −fγ(ε),b

∥∥
L2
r(Ω)

=

+∞∑
m,n=1

[
1−

(
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2)γ(ε)
]b(〈`ε − `,Ψm,n

〉
Ψm,n(·, ·)

Vθ1,θ2
m,n (β,Φε)

)

+

+∞∑
m,n=1

[
1−

(
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2)γ(ε)
]b(〈`,Ψm,n

〉
Ψm,n(·, ·)

Vθ1,θ2
m,n (β,Φε)

−
〈
`,Ψm,n

〉
Ψm,n(·, ·)

Vθ1,θ2
m,n (β,Φ)

)
· (4.39)

From (4.39), to be able to use inequality in Lemma 4.2, we added quantities
∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣−1

, one has

∥∥fγ(ε),b
ε − fγ(ε),b

∥∥
L2
r(Ω)
≤

+∞∑
m,n=1

∣∣∣∣Vθ1,θ2
m,n (β,Φε − Φ)

Vθ1,θ2
m,n (β,Φε)

〈
`,Ψm,n

〉
Ψm,n(·, ·)

Vθ1,θ2
m,n (β,Φ)

∣∣∣∣
+

+∞∑
m,n=1

[
1−

(
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2)γ(ε)
]b∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣−1

×
∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣λm,n
∣∣〈`ε − `,Ψm,n

〉
Ψm,n(·, ·)

∣∣
L(θ1, θ2, λ11, β, T )

, (4.40)

whereby

L(θ1, θ2, λ11, β, T ) = θ1

(
1− Eβ,1(−λ11T

β)
)

+ θ2T
(
1− Eβ,2(−λ11T

β)
)
.

Using the Lemma 4.3, we can know that

∥∥fγ(ε),b
ε − fγ(ε),b

∥∥
L2
r(Ω)
≤ [γ(ε)]

1
2 η

1
2

(
θ1 + θ2T

)
‖`ε − `‖L2

r(Ω)

L(θ1, θ2, λ11, β, T )
+

2ε

C5

+∞∑
n=1

∣∣〈`, en〉∣∣
Vθ1,θ2
m,n (β,Φ)

≤
[
γ(ε)

] 1
2 η

1
2
C7

(
θ1 + θ2T

)
ε

L(θ1, θ2, λ11, β, T )
+
(2ε

C5

)∥∥f∥∥
L2
r(Ω)

. (4.41)

Next, we give

∥∥fγ(ε),b − f
∥∥2

L2
r(Ω)

=

+∞∑
m,n=1

[
1−

[
1−

(
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2)γ(ε)]b]2
∣∣〈`,Ψm,n

〉∣∣2∣∣Vθ1,θ2
m,n (β,Φ)

∣∣2
≤

+∞∑
m,n=1

[
1−

[
1−

(
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2)γ(ε)]b]2

λ−2j
mn

∥∥f∥∥2

H2j
r (Ω)

≤
+∞∑
m,n=1

[
1− η

∣∣∣θ1 + θ2T

λmn

∣∣∣2]2[γ(ε)]

λ−2j
mnM2. (4.42)

Because of the Lemma 2.5, we know

λ−1
mn ≤

Vθ1,θ2
m,n (β)

L(θ1, θ2, λ11, β, T )
this leads to λ−2j

mn ≤
∣∣∣(θ1 + θ2T

)
λ−1
mn

∣∣∣2j ∣∣∣L(θ1, θ2, λ11, β, T )
∣∣∣−2j
· (4.43)

From (4.42) and (4.43), we have

∥∥fγ(ε),b − f
∥∥2

L2
r(Ω)
≤
∣∣L(θ1, θ2, λ11, β, T )

∣∣−2jM2
+∞∑
m,n=1

[
1− η

∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣2]2[γ(ε)]∣∣∣∣θ1 + θ2T

λmn

∣∣∣∣2j
≤
∣∣L(θ1, θ2, λ11, β, T )

∣∣−2jM2
( j

2η

)j
[γ(ε)]−j . (4.44)
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Hence, it gives

∥∥fγ(ε),b − f
∥∥
L2
r(Ω)
≤
∣∣L(θ1, θ2, λ11, β, T )

∣∣−jM( j
2η

) j
2
[γ(ε)]−

j
2 . (4.45)

Combining (4.41) to (4.45), it can be seen

∥∥fγ(ε),b
ε − f

∥∥
L2
r(Ω)
≤

Z1︷ ︸︸ ︷[
γ(ε)

] 1
2 η

1
2
C7

(
θ1 + θ2T

)
ε

L(θ1, θ2, λ11, β, T )
+
(2ε

C5

)∥∥f∥∥
L2
r(Ω)

+

Z2︷ ︸︸ ︷∣∣L(θ1, θ2, λ11, β, T )
∣∣−jM( j

2η

) j
2
[γ(ε)]−

j
2 . (4.46)

By choosing [γ(ε)] by

γ(ε) =

[(M
ε

) 2
j+1

]
, (4.47)

We receive Z1 can be bounded as follows:

Z1 ≤ ε
j

j+1M
1

j+1

( C7

(
θ1 + θ2T

)
η

1
2

L(θ1, θ2, λ11, β, T )
+

2ε
1

j+1

C5

∣∣Zθ1,θ21,1 (β, T, C5)
∣∣− j

j+1 ‖g‖
j

j+1

L2
r(Ω)

)
· (4.48)

Similarly, from (4.45) and (4.47), I2 can be bounded as follows:

Z2 ≤ ε
j

j+1M
1

j+1

(∣∣L(θ1, θ2, λ11, β, T )
∣∣−j ( j

2η

) j
2

)
· (4.49)

Finally, combining (4.48) to (4.49), the convergent rate can be established as follow

∥∥fγ(ε),b
ε − f

∥∥
L2
r(Ω)
≤ ε

j
j+1M

1
j+1

(∣∣L(θ1, θ2, λ11, β, T )
∣∣−j ( j

2η

) j
2

+
C7

(
θ1 + θ2T

)
η

1
2

L(θ1, θ2, λ11, β, T )
+

2ε
1

j+1

C5

∣∣Zθ1,θ21,1 (β, T, C5)
∣∣− j

j+1 ‖g‖
j

j+1

L2
r(Ω)

)
. (4.50)
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