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Abstract

In this study, some new exact wave solutions of nonlinear partial differential equations
are investigated by the modified simple equation method. This method is applied to the
(2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and the (3+1)-dimensional
Jimbo-Miwa equation. Our applications reveal how to use the proposed method to solve
nonlinear partial differential equations with the balance number equal to two. Consequently,
some new exact traveling wave solutions of these equations are achieved, and types of
waves are determined. To verify our results and draw the graphs of the solutions, we use the
Mathematica package program.

1. Introduction

Nonlinear partial differential equations (NPDEs) have proved to be precious instruments for the modelling of physical
phenomena, and have been the focus of many researchers due to their extensive use in several areas such as mathematical
physics, biology, nonlinear optics, fluid mechanics, ocean engineering, chemical physics, plasma physics etc. [1]-[6]. Thus,
it has gained great importance in the literature to examine the solutions of these equations to explain the nonlinear complex
processes in nature. However, exact solutions of equations in the nonlinear form are not always obtained by classical methods.
In recent times, many useful methods and techniques such as the modified simple equation (MSE) method [7], the improved
tan(ϕ/2)-expansion method [8], the extended rational sine-cosine method [9], the (G′/G,1/G)-expansion method [10], the
improved F-expansion method [11], the modified exp (−φ (ε))-expansion method [12], the first integral method [13], the
(G′/G)-expansion method [14] etc. have been enhanced to find traveling wave solutions. In this paper, we propose the MSE
method, which is a remarkable and useful method for finding various solutions of NPDEs. This method converts NPDEs into
nonlinear ordinary differential equations (NODEs) with wave transformation. Also, the advantage of the proposed method
is that the general solution form is defined as the sum of the finite series and an unknown function in this solution form is
determined according to the solution of a system of algebraic equations obtained from the main equation. Compared to other
methods in the literature such as (G′/G,1/G)-expansion method, the sine-cosine method, the improved F-expansion method,
the (G′/G)-expansion method, etc., the MSE method does not require symbolic computational software programs to solve
algebraic equation systems. In addition, the unknown function in this method is not depend on a pre-defined function or a
solution of the ODE, and the obtained exact solutions have arbitrary coefficients. Thus, the traveling wave solutions can be
obtained in a new and extensible form. We observe that this method is highly systematic, understandable and applicable. We
perform the MSE method to NPDEs, namely, the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation [15]
and the (3+1)-dimensional Jimbo-Miwa equation [16]. The CBS equation is a frequently used model in fluid dynamics that
describes and explains situations such as fusion, annihilation and fission of complex waves [17]. The Jimbo-Miwa equation is
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used in fluid mechanics to define some specific (3+1)-dimensional nonlinear waves, and this equation is the second equation
in the notable Kadomtsev–Petviashvili hierarchy of integrable systems [18]. As a result, new exact solutions of the equations
are obtained and their graphs are drawn to observe the physical behaviors of these solutions. The article is concerted in the
following: In Sec. 2, we summarize the illustration of the MSE method. In Sec. 3, applications of the MSE method are given.
In Sec. 4, we draw graphs of wave solutions and physical explanations. Sec. 5 includes the conclusion.

2. The modified simple equation method

In this section, we present the major steps of the MSE method [7]:
Consider the NPDE in the following:

G(u,ut ,ux,uy,utt ,uxx,uyy, ...) = 0, (2.1)

where G is a polynomial of u(x,y, t) and its several partial derivatives.
Step 1. We use the traveling wave transformation

u(x,y, t) = u(ϒ) , ϒ = x+ y−Θt, (2.2)

to reduce (2.1) into the succeeding NODE:

R
(
u,u′,u′′,u′′′, ...

)
= 0, (2.3)

where R is a polynomial in u(ϒ) and its all derivatives with respect to ϒ.
Step 2. Suppose that the solution of (2.3) can be expressed in the form,

u(ϒ) =
N

∑
k=0

Ak

[
φ ′ (ϒ)

φ (ϒ)

]k

, (2.4)

where Ak are arbitrary constants (AN 6= 0) and φ (ϒ) is an unknown function to be calculated.
Step 3. We determine balancing number N in (2.4) by considering the homogeneous balance between the highest order
nonlinear terms and the highest order derivatives occurred in (2.3).
Step 4. We replace (2.4) and its derivatives into (2.3). Hereby, we have a polynomial of φ (ϒ). Then, we equalize all the
coefficients of φ−i (ϒ) (i = 0,1,2 . . .) to zero in this polynomial. This operation gives a system of equations to obtain Ak and
φ (ϒ). Thus, we achieve the exact solution of (2.1).

3. Applications

In this section, the MSE method is applied to nonlinear equations which express some special physical phenomena and wave
solutions of these equations are obtained.

3.1. (2+1)-dimensional Calogera-Bogoyavlenskii-Schiff (CBS) equation

This equation was examined by Schiff and Bogoyavlenskii in varied ways. Bogoyavlenskii used the modified Lax formalism,
while Schiff obtained the similar equation by reducing the self-dual Yang-Mills equation [19]. This equation has various forms
for different coefficients. Also, many studies in the literature obtain different solution types of this equation [17], [20]-[23].
The (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation is as follows [15]:

uxxxy +2uyuxx +4uxuxy +uxt = 0, (3.1)

where x, y represent the position of the wave and t represents the time. Applying the wave transformation in (2.2) to (3.1),
integrating once respect to ϒ and considering the integration constant as zero, we attain nonlinear ODE in the following form:

u′′′+3
(
u′
)2−Θu′ = 0. (3.2)

Now, using the transformation u′(ϒ) = v(ϒ), (3.2) reduces to

v′′+3v2−Θv = 0. (3.3)

Balancing v′′ and v2 in (3.3), we find N = 2. Consequently, (2.4) turns into the following form:

v(ϒ) = A0 +A1

(
φ ′ (ϒ)

φ (ϒ)

)
+A2

(
φ ′ (ϒ)

φ (ϒ)

)2

. (3.4)
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Substituting (3.4) and its derivatives into (3.3), and setting all the coefficients with the same power of φ−i (ϒ), we attain a
system as follows:

(φ)0 : 3A2
0−ΘA0 = 0,

(φ)−1 : 6A0A1φ
′ (ϒ)−ΘA1φ

′ (ϒ)+A1φ
′′′ (ϒ) = 0, (3.5)

(φ)−2 : 3A2
1
(
φ
′ (ϒ)

)2
+6A0A2

(
φ
′ (ϒ)

)2−ΘA2
(
φ
′ (ϒ)

)2−3A1φ
′ (ϒ)φ

′′ (ϒ)

+2A2φ
′′′ (ϒ)φ

′ (ϒ)+2A2
(
φ
′′ (ϒ)

)2
= 0, (3.6)

(φ)−3 : 6A1A2
(
φ
′ (ϒ)

)3
+2A1

(
φ
′ (ϒ)

)3−10A2
(
φ
′ (ϒ)

)2
φ
′′ (ϒ) = 0, (3.7)

(φ)−4 : 3A2
2
(
φ
′ (ϒ)

)4
+6A2

(
φ
′ (ϒ)

)4
= 0.

Case 1: A0 = 0, A1 6= 0, A2 = −2 and φ ′ (ϒ) 6= 0. In this case, by using (3.5) and (3.7), we obtain φ ′ (ϒ) = 2 c1
A1

e
2Θ

A1
ϒ and

φ (ϒ) = c1
Θ

e
2Θ

A1
ϒ
+ c2. Here and throughout the paper, c1 and c2 are arbitrary constants of integration. Then, we use these

equations and (3.6), we achieve A1 =±2
√

Θ. Inserting A0, A1, A2, φ(ϒ) and φ ′(ϒ) into (3.4), we deduce the exact solution of
(3.1) as follows:

v(ϒ) =±2
√

Θ

 ± c1√
Θ

e±
√

Θϒ

c1
Θ

e±
√

Θϒ + c2

−2

 ± c1√
Θ

e±
√

Θϒ

c1
Θ

e±
√

Θϒ + c2

2

,

where ϒ = x+ y−Θt.
Now, by using hyperbolic function features, we obtain the wave solutions when c1 = Θ and c2 = 1 as:

v1,2 (x,y, t) = Θ

(
1+ tanh

(
±
√

Θ

2
(x+ y−Θt)

))
− Θ

2

(
1+ tanh

(
±
√

Θ

2
(x+ y−Θt)

))2

,

u1,2 (x,y, t) =
√

Θ tanh

(√
Θ

2
(x+ y−Θt)

)
. (3.8)

When c1 = Θ, c2 =−1 as:

v3,4 (x,y, t) = Θ

(
1+ coth

(
±
√

Θ

2
(x+ y−Θt)

))
− Θ

2

(
1+ coth

(
±
√

Θ

2
(x+ y−Θt)

))2

,

u3,4 (x,y, t) =
√

Θcoth

(√
Θ

2
(x+ y−Θt)

)
. (3.9)

Case 2: A0 = Θ

3 , A1 6= 0, A2 = −2 and φ ′(ϒ) 6= 0. By using (3.5) and (3.7), we obtain φ ′(ϒ) = 2 c1
A1

e
−2Θ

A1
ϒ and φ(ϒ) =

c2− c1
Θ

e
−2Θ

A1
ϒ. Considering these equations and (3.6), we have A1 =±2i

√
Θ. Now, inserting A0, A1, A2, φ(ϒ) and φ ′(ϒ) into

(3.4), the exact solution of (3.1) follows as:

v(ϒ) =
Θ

3
±2i
√

Θ

 ±√c1
i
√

Θ
e∓
√

Θ

i ϒ

c2− c1
Θ

e∓
√

Θ

i ϒ

−2

 ±√c1
i
√

Θ
e∓
√

Θ

i ϒ

c2− c1
Θ

e∓
√

Θ

i ϒ

2

.

where ϒ = x+ y−Θt.
Hence, by using hyperbolic function features, we achieve the wave solutions for c1 =−Θ and c2 = 1 as:

v5,6 (x,y, t) =
Θ

3
−Θ

(
1+ tanh

(
∓
√

Θ

2i
(x+ y−Θt)

))
+

Θ

2

(
1+ tanh

(
∓
√

Θ

2i
(x+ y−Θt)

))2

,

u5,6 (x,y, t) =
Θ(x+ y−Θt)

3
−
√

Θ tan

(√
Θ

2
(x+ y−Θt)

)
. (3.10)
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For c1 =−Θ and c2 =−1 as:

v7,8 (x,y, t) =
Θ

3
−Θ

(
1+ coth

(
∓
√

Θ

2i
(x+ y−Θt)

))
+

Θ

2

(
1+ coth

(
∓
√

Θ

2i
(x+ y−Θt)

))2

,

u7,8 (x,y, t) =
Θ(x+ y−Θt)

3
+
√

Θcot

(√
Θ

2
(x+ y−Θt)

)
. (3.11)

3.2. (3+1)-dimensional Jimbo-Miwa equation

This equation appears in many areas of science, such as geochemistry, fluid mechanics, optical fiber, astrophysics, plasma
physics, chemical kinematics and solid state physics [24]. Furthermore, there are many studies in the literature investigating
the different forms of solutions for this equation [18], [25]-[28].
The (3+1)-dimensional Jimbo-Miwa equation is as follows [16]:

uxxxy +6uxuy +3uvxx +3uxxv+3uyt −3uzz = 0,
uy = vx, (3.12)

where x,y,z represent the position of the wave and t represents the time. Using the wave transformation in the following:

u(x,y,z, t) = u(ϒ) , v(x,y,z, t) = v(ϒ) , ϒ = x+ y+ z−Θt,

and three times integrating with respect to ϒ, considering the integration constants as zero, (3.12) converts to nonlinear ODE:

u′′+3u2−3(Θ+1)u = 0. (3.13)

Balancing u′′ and u2 in (3.13), we get N = 2. Therefore, (2.4) turns into the following form:

u(ϒ) = A0 +A1

(
φ ′(ϒ)

φ(ϒ)

)
+A2

(
φ ′(ϒ)

φ(ϒ)

)2

. (3.14)

Substituting (3.14) and its derivatives into (3.13), and editing all the coefficients with the same power of φ−i(ϒ), we obtain a
system as follows:

(φ)0 : 3A2
0−3(Θ+1)A0 = 0,

(φ)−1 : 6A0A1φ
′ (ϒ)−3(Θ+1)A1φ

′ (ϒ)+A1φ
′′′ (ϒ) = 0, (3.15)

(φ)−2 : 3A2
1
(
φ
′ (ϒ)

)2
+6A0A2

(
φ
′ (ϒ)

)2−3(Θ+1)A2
(
φ
′ (ϒ)

)2

−3A1φ
′ (ϒ)φ

′′ (ϒ)+2A2φ
′′′ (ϒ)φ

′ (ϒ)+2A2
(
φ
′′ (ϒ)

)2
= 0, (3.16)

(φ)−3 : 6A1A2
(
φ
′ (ϒ)

)3
+2A1

(
φ
′ (ϒ)

)3−10A2
(
φ
′ (ϒ)

)2
φ
′′ (ϒ) = 0, (3.17)

(φ)−4 : 3A2
2
(
φ
′ (ϒ)

)4
+6A2

(
φ
′ (ϒ)

)4
= 0.

Case 1: A0 = 0, A1 6= 0, A2 = −2 and φ ′ (ϒ) 6= 0. From (3.15) and (3.17), we get φ ′ (ϒ) = 2 c1
A1

e
6(Θ+1)

A1
ϒ and φ (ϒ) =

c1
3(Θ+1)e

6(Θ+1)
A1

ϒ
+ c2. Then, by these equations and (3.16), we deduce A1 =±2

√
3(Θ+1). Substituting A0, A1, A2, φ (ϒ) and

φ ′(ϒ) into (3.14) we have the exact solution of (3.12) as in the following:

u(ϒ) =±2
√

3(Θ+1)

 ± c1√
3(Θ+1)

e±
√

3(Θ+1)ϒ

c1
3(Θ+1)e±

√
3(Θ+1)ϒ + c2

−2

 ± c1√
3(Θ+1)

e±
√

3(Θ+1)ϒ

c1
3(Θ+1)e±

√
3(Θ+1)ϒ + c2


2

.

where ϒ = x+ y+ z−Θt.
Hence, by using hyperbolic function properties, we get the wave solutions when c1 = 3(Θ+1) and c2 = 1 as:

u1,2 (x,y,z, t) = 3(Θ+1)

(
1+ tanh

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ tanh

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))2

. (3.18)
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When c1 = 3(Θ+1) and c2 =−1 as:

u3,4 (x,y,z, t) = 3(Θ+1)

(
1+ coth

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ coth

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))2

. (3.19)

Case 2: A0 = Θ+1, A1 6= 0, A2 =−2 and φ ′ (ϒ) 6= 0. Taking (3.15) and (3.17) into account, we get φ ′ (ϒ) = 2 c1
A1

e
−6(Θ+1)

A1
ϒ

and φ (ϒ) = c2− c1
3(Θ+1)e

−6(Θ+1)
A1

ϒ. From these equations and (3.16), we have A1 =±2i
√

3(Θ+1). Substituting A0, A1, A2,
φ (ϒ) and φ ′ (ϒ) into (3.14), we get the exact solutions of (3.12) as follows:

u(ϒ) = (Θ+1)±2i
√

3(Θ+1)


±c1

i
√

3(Θ+1)
e
∓3
√

Θ+1
i
√

3
ϒ

−c1
3(Θ+1)e

∓3
√

Θ+1
i
√

3
ϒ
+ c2

−2


±c1

i
√

3(Θ+1)
e
∓3
√

Θ+1
i
√

3
ϒ

−c1
3(Θ+1)e

∓3
√

Θ+1
i
√

3
ϒ
+ c2


2

.

where ϒ = x+ y+ z−Θt.
Then, by using hyperbolic function properties, the wave solutions are obtained for c1 =−3(Θ+1) and c2 = 1 as:

u5,6 (x,y,z, t) = (Θ+1)−3(Θ+1)

(
1+ tanh

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ tanh

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))2

. (3.20)

For c1 =−3(Θ+1) and c2 =−1 as:

u7,8 (x,y,z, t) = (Θ+1)−3(Θ+1)

(
1+ coth

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ coth

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))2

. (3.21)

Moreover, the values of v(x,y,z, t) can be easily calculated according to the uy = vx.

Consequently, the set of exact solutions for the CBS and the Jimbo-Miwa equations can be expanded by selecting more varied
arbitrary constants c1 and c2.

4. Physical explanation and graphs

This part shows physical behaviour of the achieved exact wave solutions of the CBS and the Jimbo-Miwa equations. The MSE
method is implemented to both equations and the new traveling wave solutions are obtained in (3.8), (3.9), (3.10), (3.11) and
(3.18), (3.19), (3.20), (3.21), respectively. These results are drawn with proper values in different types of graphs and intervals
such as 3D (−8≤ x, t ≤ 8), 2D (−8≤ x≤ 8) and contour graph (0≤ x, t ≤ 10). Other independent variables y and z are used
with appropriate values in the solution graphs.

4.1. Graphs of solutions for the CBS equation:

Fig.4.1-(a), (b), (c), (d) demonstrate (3.8) u1,2 (x,y, t), (3.9) u3,4 (x,y, t) for Θ = 1.39, and (3.10) u5,6 (x,y, t), (3.11) u7,8 (x,y, t)
for Θ = 1.5, respectively. Fig.4.2-(a)-(b) represent (3.8) u1,2 (x,y, t) and (3.9) u3,4 (x,y, t) for Θ = 1.39, t = 1 and y = 0. Also,
Fig.4.2-(c)-(d) show (3.10) u5,6 (x,y, t) and (3.11) u7,8 (x,y, t) for Θ = 1.5, t = 1 and y = 0.
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(a) (b)

(c) (d)

Figure 4.1: 3D-graphs.

(a) (b)

(c) (d)

Figure 4.2: (a)-(c) 2D-graphs. (b)-(d) Contour graphs.

4.2. Graphs of solutions for the Jimbo-Miwa equation:

Fig.4.3-(a), (b), (c), (d) indicate (3.18) u1 (x,y,z, t), (3.19) u3 (x,y,z, t) for Θ = 1.2, and (3.20) u5 (x,y,z, t), (3.21) u7 (x,y,z, t)
for Θ = 1.5, respectively. Fig.4.4-(a)-(b) express (3.18) u1 (x,y,z, t) and (3.19) u3 (x,y,z, t) for Θ = 1.2, t = 1, y = 0 and z = 0.
Further, Fig.4.4-(c)-(d) represent (3.20) u5 (x,y,z, t) and (3.21) u7 (x,y,z, t) for Θ = 1.5, t = 1, y = 0 and z = 0.

(a) (b)

(c) (d)

Figure 4.3: 3D-graphs.
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(a) (b)

(c) (d)

Figure 4.4: (a)-(c) 2D-graphs. (b)-(d) Contour graphs.

As a consequence, we have achieved some new wave solutions of equations (3.1) and (3.12) in hyperbolic and trigonometric
forms. The graphs show that the resulting solitary wave solutions have several shapes, such as periodic and kink forms with
respect to the wave speed Θ.

5. Conclusion

We have implemented the MSE method to attain some new exact solutions of the (2+1)-dimensional CBS equation and the
(3+1)-dimensional Jimbo-Miwa equation. The correctness of the solutions has been demonstrated using the Mathematica
package program. The graphics of the solutions have been plotted according to the appropriate values. The features of the
MSE method allow us to obtain new traveling wave solutions to explain some complex physical phenomena. Consequently,
our results show that the proposed method is practical, straightforward and effective for finding solutions to physics and
engineering models. In our future studies, this effective and useful method will be applied to some other nonlinear equations
involving integer and fractional derivatives expressing different complex phenomena.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments
and suggestions.

Funding

This research is supported by Ege University, Scientific Research Project (BAP), Project Number: 2016FEN055.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Springer Science-Business Media, London, 2011.
[2] H. Jafari, N. Kadkhoda, Application of simplest equation method to the (2+1)-dimensional nonlinear evolution equations, New Trend Math. Sci., 2

(2014), 64-68.
[3] A. Tozar, A. Kurt, O. Tasbozan, New wave solutions of an integrable dispersive wave equation with a fractional time derivative arising in ocean

engineering models, Kuwait J. Sci., 47 (2020), 22-33.
[4] A. Kurt, A. Tozar, O. Tasbozan, Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow

waters, J. Ocean Univ. China, 19 (2020), 772-780.
[5] A. Kurt, O. Tasbozan, H. Durur, The exact solutions of conformable fractional partial differential equations using new sub equation method, Fundam. J.

Math. Appl., 2 (2019), 173-179.



194 Fundamental Journal of Mathematics and Applications

[6] G. Bakıcıerler, S. Alfaqeih, E. Mısırlı, Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation, Physica A,
582 (2021) Article ID 126255.

[7] E. M. E. Zayed, S. H. Ibrahim, Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method,
Chin. Phys. Lett., 29 (2012), Article ID 060201.

[8] Y. S. Ozkan, E. Yasar, On the exact solutions of nonlinear evolution equations by the improved tan(ϕ/2)-expansion method, Pramana, 94 (2020), 37.
[9] M. Cinar, I. Onder, A. Secer, A. Yusuf, T. A. Sulaiman, M. Bayram, H. Aydin, Soliton solutions of (2+1) dimensional Heisenberg ferromagnetic spin

equation by the extended rational sine-cosine sine-cosine and sinh-cosh method, Int. J. Appl. Comput. Math., 7 (2021), 1-17.
[10] Y. Wen, Y. Xie, Exact solution of perturbed nonlinear Schrödinger equation using (G′/G,1/G)-expansion method, Pramana, 94 (2020), 18.
[11] M. S. Islam, M. A. Akbar, K. Khan, Analytical solutions of nonlinear Klein–Gordon equation using the improved F-expansion method, Opt. Quantum

Electron., 50 (2018), 1-11.
[12] C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan’s rod., Eur. Phys. J. Plus, 133 (2018), 228.
[13] S. Arshed, A. Biswas, A. K. Alzahrani, M. R. Belic, Solitons in nonlinear directional couplers with optical metamaterials by first integral method,

Optik, 218 (2020), Article ID 165208.
[14] A. Ali, A. R. Seadawy, D. Lu, New solitary wave solutions of some nonlinear models and their applications, Adv. Differ. Equ., 1 (2018), 1-12.
[15] G. M. Moatimid, R. M. El-Shiekh, A. G. A. Al-Nowehy, Exact solutions for Calogero-Bogoyavlenskii-Schiff equation using symmetry method, Appl.

Math. Comput., 220 (2013), 455-462.
[16] E. M. E. Zayed, Y. A. Amer, A. H. Arnous, Functional variable method and its applications for finding exact solutions of nonlinear PDEs in

mathematical physics, Sci. Res. Essays., 8 (2013), 2068-2074.
[17] B. Ghanbari, K. S. Nisar, Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method, Alex.

Eng. J., 59 (2020), 3171-3179.
[18] R. F. Zhang, M. C. Li, H. M. Yin, Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation, Nonlinear

Dyn., 103 (2021), 1071-1079.
[19] M. S. Bruzon, M. L. Gandarias, C. Muriel, J. Ramirez, S. Saez, F. R. Romero, The Calogero-Bogoyavlenskii-Schiff equation in (2+1) dimensions,

Theor. Math. Phys., 137 (2003), 1367–1377.
[20] M. H. Bashar, M. Roshid, Exact travelling wave solutions of the nonlinear evolution equations by improved F-expansion in mathematical physics,

Commun. Math. Sci., 3 (2020), 115-123.
[21] H. M. Baskonus, T. A. Sulaiman, H. Bulut, New solitary wave solutions to the (2+ 1)-dimensional Calogero–Bogoyavlenskii–Schiff and the

Kadomtsev–Petviashvili hierarchy equations, Indian J. Phys., 91 (2017), 1237-1243.
[22] S. Kumar, D. Kumar, Lie symmetry analysis and dynamical structures of soliton solutions for the (2+1)-dimensional modified CBS equation, Int. J.

Mod. Phys. B, 34 (2020), Article ID 2050221.
[23] S. M. Mabrouk, Traveling wave solutions of the extended Calogero-Bogoyavlenskii-Schiff equation, Int. J. Eng. Res. Technol., 8 (2019), 577-580.
[24] M. Usman, A. Nazir, T. Zubair, Z. Naheed, I. Rashid, S. T. Mohyud-Din, Solitary wave solutions of (2+1)-dimensional Davey-Stewartson equations

by F-expansion method in terms of Weierstrass-Elliptic and Jacobian-Elliptic functions, Int. J. Mod. Math., 7 (2013), 149-169.
[25] H. D. Guo, T. C. Xia, B. B. Hu, High-order lumps, high-order breathers and hybrid solutions for an extended (3+1)-dimensional Jimbo–Miwa

equation in fluid dynamics, Nonlinear Dyn., 100 (2020), 1-14.
[26] J. Liu, X. Yang, M. Cheng, Y. Feng, Y. Wang, Abound rogue wave type solutions to the extended (3+1)-dimensional Jimbo–Miwa equation, Comput.

Math. Appl., 78 (2019), 1947-1959.
[27] F. H. Qi, Y. H. Huang, P. Wang, Solitary-wave and new exact solutions for an extended (3+1)-dimensional Jimbo-Miwa-like equation, Appl. Math.

Lett., 100 (2020), Article ID 106004.
[28] X. Yin, L. Chen, J. Wang, X. Zhang, G. Ma, Investigation on breather waves and rogue waves in applied mechanics and physics, Alex. Eng. J., 60

(2021), 889-895.


	Introduction
	The modified simple equation method
	Applications
	(2+1)-dimensional Calogera-Bogoyavlenskii-Schiff (CBS) equation
	(3+1)-dimensional Jimbo-Miwa equation

	Physical explanation and graphs
	Graphs of solutions for the CBS equation:
	Graphs of solutions for the Jimbo-Miwa equation:

	Conclusion

