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Abstract  
  

This paper studies the generalized magneto-thermoelastic problem with microtemperatures, voids taking into account 

initial stress and modified Ohm’s law under three theories. The analytical solution is obtained by normal modes and 

expressions for micro temperature, temperature distribution, displacement, components of heat flux, change in the 

volume fraction field as well as stress components are calculated. The effect of initial stress and thermal shock is 

observed on desired field variables. The results are established graphically for all physical quantities and variation is 

done for three theories due to the effect of modified Ohm’s law coefficient.  
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1. Introduction  

The magneto-thermoelasticity theory tells us about the 

thermoelastic deformations in solids due to magnetic field 

presence, which is helpful in geophysics, plasma physics. 

The study of high temperatures and temperature gradient is 

vital with magnetic field presence to understand its effect on 

seismic waves and the emissions from nuclear devices in the 

form of electromagnetic radiations. For linear coupled and 

uncoupled thermoelasticity theory, diffusion type of heat 

conduction equations is considered, which predict infinite 

heat wave propagation speed contrary to physical 

observations. To eradicate the principle of coupled 

thermoelasticity, Biot [1] proposed the contradiction found 

in the classical uncoupled hypothesis that elastic changes do 

not influence on temperature. However, the hypothesis of 

both heat equations is of the kind of diffusion, estimating 

infinite heat wave propagation rates. The Lord and Shulman 

[2] was initiated by introducing a relaxation constant to 

account for the time required to accelerate the heat flow. If 

the constant of relaxation is set to zero, the equations of Lord 

and Shulman [2] decrease to classical field equation of 

thermoelasticity. The hyperbolic heat equation is consistent 

with this theory, removing the paradox of infinite heat wave 

propagation. The Green and Lindsay [3] named 

thermoelasticity as a temperature-dependent where its rating 

is included with two constant variables act as a relaxation 

time, which was not violating the classical Fourier’s law. 

Agarwal [4] discussed the effect on plane thermoelastic 

waves due to presence of electromagnetic field. Paria [5] 

observed elastic and thermoelastic behavior of different 

problems under magnetic field influence. Youssef [6] 

studied the variable material properties in generalized 

thermoelasticity problems.  

The theory of microtemperature is regarded as a theory 

that tackles temperature, wave propagation, and the thermal 

properties variation at microstructure level in a rigid 

thermocouple. The solid nanostructures are essential as 

particle can contract or stretch, and in solid vessels principal 

thermal stresses can be related to the effects of thermal 

microstructure, and so a well-structured theory of rigid solids 

that makes the effects of microtemperature is required. Grot 

[7] established the theory of microstructure in 

thermodynamic problem with inner structure. 

Microelements contain microtemperature, which causes 

microdeformations. Riha [8] applied micromorphic continua 

theory to heat conduction problem with inner structure and 

observed the changes in materials. Casas and Quintanilla [9] 

constructed the exponential stability of thermoplastic 

materials which have inner structure. Casas and Quintanilla 

and Iesan [10] discussed the microstructure of 

microelements in thermoelastic materials. Iesan [11] 

discussed the micromorphic elastic solids with 

microtemperatures. Scavanadze [12] provide the solution of 

equilibrium equation, constitutive relation with 

microtemperature by means of elementary function theory. 

Othman and Abd Elaziz [13] discussed gravity and 

microtemperature presence in a porous medium, and 

comparison is made for three theories. Quintanilla [14] have 

studied the uniqueness theorem of porous media with 

microtemperature under three theories of thermoelasticity. 

Eringen [15] and Eringen and Suhubi [16] discussed the 

micromorphic elastic solids and their behavior in the 

classical theory of thermoelasticity. Kalkal et al. [17] 

discussed the thermoelastic half space problem of 

microtemperature with diffusion under presence of magnetic 

field. 

The voids are small pores distributed in elastic materials. 

It consists of volume and if it tends to zero becomes the 

limiting case for the classical theory of elasticity. The 

practical use of voids is important for investigating various 

types of biological and geological materials, but the elastic 

theory is not sufficient. The linear and nonlinear theory of 
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elastic material with voids developed by Cowin and 

Nunziato [18], Nunziato and Cowin [19], Iesan [20]. The 

asymptotic spatial behaviour of material with voids in linear 

theory studied by Pompei and Scalia [21] and Stan Chirita 

[22]. Othman et al. [23] and Iesan [24] studied initial stress 

effect on thermoelastic material with voids. The concept of 

voids in a material distributed in the form granules 

introduced by Goodman and Cowin [25] and Jaric [26]. 

Othman et al. [27] developed the mathematical model of 

thermoelasticity with the existence of initial stress, voids, 

and microtemperature. Kalkal et al. [28] discussed wave 

nature in initially stressed thermoelastic problem with voids 

and microtemperature under magnetic field influence. 

Othman and Abd-Elaziz [29] observed effect of hall current 

and initial stress in porous thermoelastic condition with 

microtemperature. Othman and Abd-Elaziz [30] discussed 

about the rotation and hall effect on plane waves with voids 

and microtemperature on thermoelastic materials with 

magnetic field.  

Initial stresses arise due to many reasons such as 

temperature variation, quenching process, living tissue 

growth and development, and gravity variations, etc. The 

study of initial stresses in thermal and mechanical conditions 

is critical as the earth consists of high initial stress due to 

gravity and strongly affects the propagation of waves. Ames 

and Straughan [31] proved the thermoelastic solids has 

continuous dependence if it is initially pre-stressed. The 

initial hydrostatic stress studied by Montanaro [32] in the 

linear theory of thermoelasticity. Abbas and Othman [33] 

investigated the interaction of thermoelastic half-space with 

initial hydrostatic stress under the fiber-reinforced 

anisotropic conditions.  

The modified Ohm’s law relates to the temperature 

gradient and current density. Lorentz force arises due to the 

interaction of magnetic, electric field and Ohm’s law useful 

for the current density, which describes electric field-

induced due to material particle velocity which moves in a 

magnetic field. Ezzat and Elall [34] and Sarkar [35] 

explained the problems of magneto-thermoelasticity by 

using modified Ohm’s law and shows its effect on three 

different theories. 

The novelty of this article is the introduction of modified 

Ohm’s law in magneto-thermoelastic problem with 

microtemperature and voids under initial stress and thermal 

shock conditions for three theories. Modification in Ohm’s 

law is due to the addition of temperature gradient term. This 

modification states that the electric potential gradient is 

proportional to the strength of the material at each point. The 

strength and temperature variation in a material at each point 

is observed because of microtemperature theory and 

modified Ohm’s law. 

In this work, we study the effect of modified Ohm’s law 

with voids and microtemperature in the magneto-

thermoelastic problem under initial stress. The initially 

stressed linear, isotropic, homogeneous half-space problem 

under the influence of magnetic field is considered. The 

expressions for the desired variables are derived for Green 

Lindsay (GL), Lord and Shulman, and coupled theory (CT) 

for isothermal boundary conditions subjected to thermal 

shock by using normal mode analysis. Estimations have been 

carried out numerically and illustrated graphically for the 

above said theories due to the coefficient of modified Ohm’s 

law. 

 

 

2. Basic Equations  

In the linear theory of thermodynamics, the governing 

equations for homogeneous isotropic magneto-

thermoelastic material with microtemperature, voids and 

initial stress can be written as 

 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + (𝜆𝑒𝑟𝑟 + 𝜆0𝜙)𝛿𝑖𝑗 − 𝛽(1 + 𝜏1𝑇,𝑡)𝛿𝑖𝑗 −

𝑝(𝛿𝑖𝑗 + 𝜔𝑖𝑗)                                                                   (1) 

ℎ𝑖 = 𝛼𝜙,𝑖 − 𝜇1𝑤𝑖                                                      (2) 

𝑔∗ = −𝜆0𝑒𝑟𝑟 − 𝜉1𝜙 + 𝑚𝑇 − 𝑤0𝜙,𝑡                 (3) 

𝑞𝑖 + 𝜏0 𝑞𝑖,𝑡 = −𝑘1𝑤𝑖 − 𝑘∗𝑇,𝑖                                         (4) 

𝑞𝑖𝑗 = −𝑘4𝑤𝑟,𝑟𝛿𝑖𝑗 − 𝑘5𝑤𝑖,𝑗 − 𝑘6𝑤𝑗,𝑖                              (5) 

𝑄𝑖 = (𝑘∗ − 𝑘3)𝑇,𝑖 + (𝑘1 − 𝑘2)𝑤,𝑖                                 (6) 

𝜌𝜂∗ = 𝑎0𝑇 + 𝛽𝑒𝑟𝑟 + 𝑚𝜙                                              (7) 

𝜌𝜀𝑖 = −𝜇1𝜙,𝑖 − 𝑏𝑤𝑖                                                       (8) 

 

The rotation tensor and strain-displacement relation are 

 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),  𝜔𝑖𝑗 =

1

2
(𝑢𝑗,𝑖 − 𝑢𝑖,𝑗)  𝑖, 𝑗, 𝑟 = 1,2,3  (9)    

                             

The equation of motion with Lorentz force be 

 

𝜎𝑖𝑗 + 𝐹𝑖 = 𝜌𝑢𝑖,𝑡𝑡                              (10) 

ℎ𝑖,𝑖 + 𝑔∗ = 𝜌𝜓𝜙,𝑡𝑡                (11) 

The balance energy equation without heat source is 

 

−𝑞𝑖,𝑖 = 𝜌𝑇0 𝜂,𝑡
∗                                                             (12) 

 

The first-moment of energy is 

 

𝜌𝜀𝑖,𝑡 = −𝑄𝑖 − 𝑞𝑖 + 𝑞𝑗𝑖,𝑗                                           (13) 

 

where constants are defined in nomenclature. 

 
Figure 1: The geometry of the problem 

 

3. Problem Formulation  

Consider 2-D problem of isotropic, homogeneous 

electrically and thermally conducting thermoelastic half 

space (𝑦 ≥ 0) with voids and microtemperature. For two-

dimensional problem microtemperature vector is assumed as 

𝑤𝑖 = (𝑤1, 𝑤2, 0)and displacement vector 𝑢𝑖 = (𝑢, 𝑣, 0). The  

constant magnetic field (0,0, 𝐻0) act normal to bounding 

plane (along positive z-direction) and applied to the medium 

which produces 𝒉 and 𝑬 as given in Figure 1. The 

electromagnetic field equations for a conducting 
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homogeneous medium which satisfy Maxwell’s equations 

are   

 

𝐉 + 𝜀0�̇� = ∇ × 𝐡                                                       (14) 

�̇� = ∇ × 𝐄                                                       (15) 

𝑑𝑖𝑣 𝐁 = 𝜌𝑒 , 𝑑𝑖𝑣 𝐃 = 0              (16) 

𝑩 = 𝜇0(𝐇𝟎 + 𝐡), 𝐃 =  𝜀0 𝐄              (17) 

 

In addition to this, in a finite conducting medium with 

modified Ohm’s law is given by 

 

𝐉 = 𝜎0(𝐄 + 𝜇0�̇� × 𝐇) − 𝒌𝟎∇𝐓                            (18) 

 

where constants are defined in nomenclature section. 

Solving equations (14) to (18) we obtain 

 

ℎ,𝑥 = 𝜎0(𝐸 + 𝜇0𝐻0�̇�) + 𝑘0𝑇,𝑦 − 𝜀0 𝐸�̇�                    (19) 

ℎ,𝑦 = 𝜎0(𝐸 + 𝜇0𝐻0�̇�) − 𝑘0𝑇,𝑥 + 𝜀0 𝐸�̇�                    (20) 

𝜇0ℎ̇ = 𝐸𝑥,𝑦 − 𝐸𝑦,𝑥              (21) 

 

Lorentz force components from equation (17) and (18) are 

 

𝐹𝒙 = 𝜇0𝐻0𝜎0(𝐸𝑦 − 𝜇0𝐻0�̇�) − 𝑘0𝑇,𝑦                       (22) 

𝐹𝒚 = −𝜇0𝐻0𝜎0(𝐸𝑥 + 𝜇0𝐻0�̇�) + 𝑘0𝑇,𝑥                     (23) 

𝐹𝒛 = 0                                           (24) 

 

Using equations (1) to (9), (22) and (23) in equations (10) to 

(13), we obtain the linear partial differential equations with 

microtemperature, voids, modified Ohm’s law under initial 

stress. 

Equation of motion becomes 

 

(𝜇 −
𝑝

2
) ∇2𝑢 + 𝜆0𝜙,𝑥 + (𝜆 + 𝜇 +

𝑝

2
) 𝑒,𝑥 − 𝛽 (1 +

𝜏1
𝜕

𝜕𝑡
) 𝑇,𝑥 + 𝜇0𝐻0𝜎0(𝐸𝑦 − 𝜇0𝐻0�̇�) − 𝑘0𝑇,𝑦 = 𝜌�̈�        (25) 

(𝜇 −
𝑝

2
) ∇2𝑣 + 𝜆0𝜙,𝑦 + (𝜆 + 𝜇 +

𝑝

2
) 𝑒,𝑦 − 𝛽 (1 +

𝜏1
𝜕

𝜕𝑡
) 𝑇,𝑦 − 𝜇0𝐻0𝜎0(𝐸𝑥 + 𝜇0𝐻0�̇�) + 𝑘0𝑇,𝑥 = 𝜌�̈�       (26) 

Volume fraction field equation is 

 

(𝛼∇2 − 𝜉1 − 𝜌𝜓
𝜕2

𝜕𝑡2 − 𝑤0
𝜕

𝜕𝑡
) 𝜙 − 𝜇1𝑒1 − 𝜆0𝑒 + 𝑚 (1 +

𝜏1
𝜕

𝜕𝑡
) 𝑇 = 0                                 (27) 

𝑘∗𝑇,𝑥 = (1 + 𝜏0
𝜕

𝜕𝑡
) [𝑘6∇2𝑤1 − 𝜇1𝜙,𝑥

̇ + (𝑘4 + 𝑘5)𝑒1,𝑥 −

𝑏𝑤1̇ − (𝑘∗ − 𝑘3)𝑇,𝑥 + (𝑘1 − 𝑘2)𝑤1] − 𝑘1𝑤1                  (28) 

𝑘∗𝑇,𝑦 = (1 + 𝜏0
𝜕

𝜕𝑡
) [𝑘6∇2𝑤2 − 𝜇1𝜙,𝑦

̇ + (𝑘4 + 𝑘5)𝑒1,𝑦 −

𝑏𝑤2̇ + (𝑘∗ − 𝑘3)𝑇,𝑦 + (𝑘1 − 𝑘2)𝑤2] − 𝑘1𝑤2                  (29) 

 

Heat conduction equation is given by 

[𝑘∗∇2 − 𝑎0𝑇0 (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2)] 𝑇 + 𝑘1𝑒1 = (
𝜕

𝜕𝑡
+

𝜂0𝜏0
𝜕2

𝜕𝑡2) (𝛽𝑇0𝑒 + 𝑚𝑇0𝜙)                                                    (30) 

where  𝑒 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
,     𝑒1 =

𝜕𝑤1

𝜕𝑥
+

𝜕𝑤2

𝜕𝑦
 

We introduce the following nondimensional variables 

(𝑥𝑖
′, 𝑢𝑖

′) =
𝜔∗

𝑐1

(𝑥𝑖 , 𝑢𝑖),   𝜙′ =
𝜓𝜔∗2

𝑐1
2

𝜙,  𝑤𝑖
′ =

𝑐1

𝜔∗
𝑤𝑖 , 

 𝑞𝑖𝑗
′ =

𝜔∗

𝜇𝑐1
2

𝑞𝑖𝑗 ,       𝑇′ =
1

𝜇𝑇0

𝑇,       𝜎𝑖𝑗
′ =

1

𝛽𝑇0

𝜎𝑖𝑗 ,  

ℎ′ =
𝜔∗

𝜇0𝐻0𝜎0

ℎ, 𝐸𝑖
′ =

𝜔∗𝑐1

𝜇0
2𝐻0𝜎0

𝐸𝑖 ,   𝑘0
′ =

𝜇0𝐻0

𝛽
𝑘0 

(𝑡′, 𝜏0
′, 𝜏1

′) = 𝜔∗(𝑡, 𝜏0, 𝜏1),  𝑝′ =
1

𝛽𝑇0
𝑝,                  

 𝜔∗ =
𝑎0𝑇0𝑐1

2

𝑘∗ , 𝑐1
2 =

𝜆+2𝜇

𝜌
                                          (31) 

4. Problem Solution 

Suppose that the potential functions in dimensionless 

form can be consider as 𝑞1(𝑥, 𝑦, 𝑡), 
 𝑞2(𝑥, 𝑦, 𝑡), 𝑁1(𝑥, 𝑦, 𝑡), and  𝑁2(𝑥, 𝑦, 𝑡)  

 

𝑢 = 𝑁1,𝑥 + 𝑁2,𝑥 ,   𝑣 = 𝑁1,𝑦 − 𝑁2,𝑥,                            (32) 

𝑤1 = 𝑞1,𝑥 + 𝑞2,𝑦,  𝑤2 = 𝑞1,𝑦 − 𝑞2,𝑥  

 

To get the solution of dimensionless physical quantities, it is 

suitable to presume solution by using normal modes in the 

form  

 
[𝑁1, 𝑁2, 𝑞1, 𝑞2, ∅, ℎ, 𝑇](𝑥, 𝑦, 𝑡) =

[𝑁1
∗, 𝑁2

∗, 𝑞1
∗, 𝑞2

∗, ∅∗, ℎ∗, 𝑇∗](𝑦)𝑒𝑖(𝑎𝑥−𝜉𝑡)                      (33) 

 

Using equations (31) to (33) in equations (25) to (30) we 

obtained  

 

(𝐷2 − 𝐿1)ℎ∗ + 𝐿2(𝐷2 − 𝑎2)𝑁1
∗ = 0                         (34) 

(𝐷2 − 𝐿3)𝑇∗ + 𝐿4(𝐷2 − 𝑎2)𝑞1
∗ − 𝐿5(𝐷2 − 𝑎2)𝑁1

∗ −

 𝐿6∅∗ = 0                                                                       (35) 

(𝐷2 − 𝐿7)∅∗ − 𝑚11(𝐷2 − 𝑎2)𝑁1
∗ − 𝑚12(𝐷2 − 𝑎2)𝑞1

∗ +

  𝐿8𝑇∗ = 0                                                     (36) 

(𝐷2 − 𝐿9)𝑁1
∗ + 𝐿10∅∗ − 𝐿11𝑇∗ − 𝐿12ℎ∗ = 0              (37)   

(𝐷2 − 𝐿13)𝑁2
∗ + 𝑚6𝑇∗ = 0                                            (38)  

(𝐿18𝐷2 − 𝐿14)𝑞1
∗ + 𝐿16∅∗ − 𝐿15𝑇∗ = 0                         (39)  

(𝑚15𝐷2 − 𝐿17)𝑞2
∗ = 0                                                    (40) 

 

All the constants 𝑚1 − 𝑚33 and 𝐿1 − 𝐿18 are mentioned in 

Appendix and 𝐷 = 𝑑/𝑑𝑦. By eliminating functions 

𝑁1
∗, 𝑁2

∗, 𝑞1
∗, 𝑞2

∗, ∅∗, ℎ∗, 𝑇∗ among equations (34) to (40) 

yields as follows 

 

(𝐷12 − 𝐴𝐷10 + 𝐵𝐷8 − 𝐶𝐷6 + 𝐸𝐷4 − 𝐹𝐷2 +

𝐺)(𝑁1
∗, 𝑁2

∗, 𝑞1
∗, 𝑞2

∗, ∅∗, ℎ∗, 𝑇∗) = 0                                (41) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 are constants. Equation (41) can be 

classified as  

 

[(𝐷2 −∝1
2)(𝐷2 −∝2

2)(𝐷2 −∝3
2)(𝐷2 −∝4

2)(𝐷2 −∝5
2)(𝐷2 −

∝6
2)](𝑁1

∗, 𝑁2
∗, 𝑞1

∗, 𝑞2
∗, ∅∗, ℎ∗, 𝑇∗) = 0       (42) 
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where ∝𝑛
2 (𝑛 = 1,2,3,4,5,6) are the roots of characteristic 

equation. The general solution of physical quantities 

obtained from equation (41), bounds as 𝑦 → ∞ are 

 

(𝑁1
∗, 𝑁2

∗, 𝑞1
∗, 𝑞2

∗, ∅∗, ℎ∗, 𝑇∗)(𝑦) =

∑ (1, 𝑂1𝑛
, 𝑂2𝑛

, 𝑂3𝑛
,  𝑂4𝑛

, 𝑂5𝑛
)𝑆𝑛𝑒−∝𝑛𝑦+𝑖(𝑎𝑥−𝜉𝑡)6

𝑛=1     (43) 

 

where 𝑆𝑛(𝑛 = 1,2 … 6) are constants. 𝑂1𝑛……5𝑛
 are some 

parameters depending on 𝑎, 𝜉 given in appendix. 

The solution of equations (34) to (40) as 𝑦 → ∞  can be 

written as 

 

𝑞2(𝑥, 𝑦, 𝑡) = 𝑆7𝑒−∝7𝑦+𝑖(𝑎𝑥−𝜉𝑡)                                    (44)          

(𝑢, 𝑣)(𝑥, 𝑦, 𝑡) = ∑ [𝑂6𝑛
, 𝑂7𝑛

]𝑆𝑛𝑒−∝𝑛𝑦+𝑖(𝑎𝑥−𝜉𝑡)6
𝑛=1           (45) 

(𝑤1, 𝑤2)(𝑥, 𝑦, 𝑡) = [∑ (𝑖𝑎, −∝𝑛)𝑂5𝑛
𝑆𝑛𝑒−∝𝑛𝑦 −6

𝑛=1

(∝7, 𝑖𝑎)𝑆7𝑒−∝7𝑦]𝑒𝑖(𝑎𝑥−𝜉𝑡)                                             (46)                              

 (𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧)(𝑥, 𝑦, 𝑡) = −𝑝 +

∑ [𝑂8𝑛
, 𝑂9𝑛

, 𝑂9∗
𝑛

]𝑆𝑛𝑒−∝𝑛𝑦+𝑖(𝑎𝑥−𝜉𝑡)6
𝑛=1                         (47)   

(𝜎𝑥𝑦 , 𝜎𝑦𝑥, 𝜎𝑥𝑧 , , 𝜎𝑦𝑧)(𝑥, 𝑦, 𝑡) =

∑ [𝑂10𝑛
, 𝑂10∗

𝑛
, 0,0]𝑆𝑛𝑒−∝𝑛𝑦+𝑖(𝑎𝑥−𝜉𝑡)6

𝑛=1                         (48)             

(𝑞𝑥𝑥 , 𝑞𝑦𝑦 , 𝑞𝑥𝑦)(𝑥, 𝑦, 𝑡) =

[∑ [𝑂11𝑛
, 𝑂12𝑛

, 𝑂13𝑛
]𝑆𝑛𝑒−∝𝑛𝑦6

𝑛=1 +

(𝑏9, 𝑏10, 𝑏11)𝑆7𝑒−∝7𝑦]𝑒𝑖(𝑎𝑥−𝜉𝑡)                            (49) 

 

where 𝑄(𝑎, 𝜉) is the parameter depends on 𝑎, 𝜉. 

Now considering the electric and magnetic field intensities 

ℎ0, 𝐸𝑥0 , 𝐸𝑦0 respectively. The nondimensional field 

equations satisfied by these variables are given by  

 

ℎ0,𝑦 = 𝜀1𝐸𝑥0
̇                                                                      (50) 

ℎ0,𝑥 = 𝜀1𝐸𝑦0
̇                                                                      (51) 

ℎ0 = (𝐸𝑥0),𝑦 − (𝐸𝑦0),𝑥                                                      (52) 

 

ℎ0, 𝐸𝑥0 , and 𝐸𝑦0 can be decompose in normal modes in the 

following form 

 

[ℎ0, 𝐸𝑥0, 𝐸𝑦0 ](𝑥, 𝑦, 𝑡) =  [ℎ0
∗, 𝐸𝑥0

∗, 𝐸𝑦0
∗ ](𝑦)𝑒𝑖(𝑎𝑥−𝜉𝑡)  (53) 

 

Using Equation (53) to Equations (50) to (52) and after 

solving, the results are obtained for 𝑦 → ∞  as  

 

ℎ0
∗ = 𝑄(𝑎, 𝜉)𝑒−∝9𝑦                                           (54)  

𝐸𝑥0
∗ =

∝9

(𝑖𝜀1𝜉)
𝑄(𝑎, 𝜉)𝑒−∝9𝑦                             (55) 

𝐸𝑦0
∗ =

∝9

(𝑖𝜀1𝜉)
𝑄(𝑎, 𝜉)𝑒−∝9𝑦                                               (56) 

 

5. Application 

To determine the parameter  𝑆𝑛 and 𝑄 we need to 

consider the following boundary condition at 𝑦 = 0 

 

1. Thermal boundary condition: The surface 𝑦 = 0 is 

exposed to time dependent thermal shock in the 

form 

𝑇(𝑥, 0, 𝑡) = 𝑓(𝑥, 𝑡)             (57) 

 

2. Mechanical boundary condition: 

a. The surface of the half space is stressed by 

constant force 𝑝1 i.e. 

 

𝜎𝑦𝑦(𝑥, 0, 𝑡) = −𝑝1𝑒𝑖(𝑎𝑥−𝜉𝑡) − 𝑝     (58) 

 

b. The surface of the half space is traction free 

 

𝜎𝑥𝑦(𝑥, 0, 𝑡) = 0               (59) 

 

3. Electric Boundary condition: For 𝑦 = 0, the 

component of electric field intensity vector are 

continuous across the half surface 

 

𝐸𝑦(𝑥, 0, 𝑡) = 𝐸𝑦0(𝑥, ,0, 𝑡)              (60) 

 

4. Magnetic Boundary condition: For 𝑦 = 0 the 

component of magnetic field intensity vector are 

continuous across the half surface 

 

                                ℎ(𝑥, 0, 𝑡) = ℎ0(𝑥, ,0, 𝑡)                      (61) 

 

5. Heat flux moments Boundary condition: The heat 

flux moments along normal and tangential direction 

are free. 

 

𝑞𝑥𝑥(𝑥, 0, 𝑡) = 𝑞𝑥𝑦(𝑥, 0, 𝑡) = 0      (62) 

 

6. Volume fraction field boundary condition:     

The condition of volume fraction field change is 

 
𝜕𝜙

𝜕𝑦
= 0                                 (63)   

                                         

Substituting the desired physical quantities into the above 

boundary conditions and finding the value of constants by 

using matrix inversion method we get 

 

  (64) 

 

6.Perticular and Special cases 

6.1 Initially stressed thermoelastic problem with voids 

and microtemperature by neglecting magnetic field 

By neglecting the magnetic field 𝐻0 = 0, 𝑘0 = 0 in the 

governing equation we obtained the equation for initially 

stressed thermoelastic half space problem with 

microtemperature and voids are given by  

 

[𝐷2 − 𝐿3]𝑇∗ + 𝐿4[𝐷2 − 𝑎2]𝑞1
∗ − 𝐿5[𝐷2 − 𝑎2]𝑁1

∗ − 𝐿6∅∗ =

0                                                                       (65) 

[𝐷2 − 𝐿7]∅∗ − 𝑚11[𝐷2 − 𝑎2]𝑁1
∗ − 𝑚12[𝐷2 − 𝑎2]𝑞1

∗ +

𝐿8𝑇∗ = 0                                                          (66) 

[𝐷2 − 𝐿9]𝑁1
∗ + 𝐿10∅∗ − 𝐿11𝑇∗ = 0                            (67) 

[𝐷2 − 𝐿13]𝑁2
∗ = 0                                                       (68) 
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[𝑚20𝐷2 − 𝐿14]𝑞1
∗ − 𝐿15𝑇∗ + 𝐿16∅∗ = 0                     (69) 

[𝑚15𝐷2 − 𝐿16]𝑞2
∗ = 0                                                 (70) 

 

Eliminating functions ∅∗, 𝑇∗, 𝑞1
∗, 𝑁1

∗, 𝑁2
∗, 𝑞2

∗ from equations 

(64) to (69) we get 

 

(𝐷8 − 𝐴1𝐷6 + 𝐴2𝐷4 − 𝐴3𝐷2 + 𝐴4) (𝑁1
∗, 𝑁2

∗, ∅∗, 𝑞1
∗, 𝑇∗) =

0                                  (71) 

 

where 𝐴1, 𝐴2, 𝐴3, and 𝐴4 are constants. The general solution 

of physical quantities obtained from equation (70), bounds 

as 𝑦 → ∞ are  

 

(𝑇∗, ∅∗, 𝑁1
∗, 𝑞1

∗)(𝑦) =

∑ (1,  𝐻1𝑛 ,  𝐻2𝑛,  𝐻3𝑛)𝑆𝑛
∗𝑒−𝛼𝑛

∗ 𝑦+𝑖(𝑎𝑥−𝜉𝑡)4
𝑛=1                        (72) 

 
The solution of equations (64) to (69) as 𝑦 → ∞ can be 

written as 

 

𝑁2(𝑥, 𝑦, 𝑡) = 𝑆5
∗𝑒−𝛼6𝑦+𝑖(𝑎𝑥−𝜉𝑡)               (73) 

𝑞2(𝑥, 𝑦, 𝑡) = 𝑆6
∗𝑒−𝛼7

∗𝑦+𝑖(𝑎𝑥−𝜉𝑡)               (74) 

(u,v)(𝑥, 𝑦, 𝑡) = ∑ (𝑖𝑎, −𝛼𝑛
∗ )𝐻2𝑛

𝑆𝑛
∗𝑒−𝛼𝑛

∗ 𝑦+𝑖(𝑎𝑥−𝜉𝑡)4
𝑛=1 −

(𝛼5
∗, 𝑖𝑎)𝑆5𝑒−𝛼5

∗𝑦+𝑖(𝑎𝑥−𝜉𝑡)                                          (75) 

(𝑤1, 𝑤2)(𝑥, 𝑦, 𝑡) = ∑ (𝑖𝑎, −𝛼𝑛
∗ )𝐻3𝑛

 𝑆𝑛
∗𝑒−𝛼𝑛

∗ 𝑦+𝑖(𝑎𝑥−𝜉𝑡)4
𝑛=1 −

(𝛼6
∗, 𝑖𝑎)𝑆6

∗𝑒−𝛼6
∗𝑦+𝑖(𝑎𝑥−𝜉𝑡)                                          (76) 

(𝜎𝑥𝑥 , 𝜎𝑦𝑦)(𝑥, 𝑦, 𝑡) = −𝑝 +

∑ (𝐻4𝑛
, 𝐻5𝑛

)𝑆𝑛
∗𝑒−𝛼𝑛

∗ 𝑦+𝑖(𝑎𝑥−𝜉𝑡)4
𝑛=1 +

(𝑍1, 𝑍2)𝑆5
∗𝑒−𝛼5

∗𝑦+𝑖(𝑎𝑥−𝜉𝑡)                       (77) 

 𝜎𝑥𝑦(𝑥, 𝑦, 𝑡) = ∑ 𝐻6𝑛
𝑆𝑛

∗𝑒−𝛼𝑛
∗ 𝑦+𝑖(𝑎𝑥−𝜉𝑡)4

𝑛=1 +

   𝑍3𝑆5
∗𝑒−𝛼5

∗𝑦+𝑖(𝑎𝑥−𝜉𝑡)                          (78) 

(𝑞𝑥𝑥 , 𝑞𝑦𝑦)(𝑥, 𝑦, 𝑡) = ∑ (𝐻7𝑛
, 𝐻8𝑛

)𝑆𝑛
∗𝑒−𝛼𝑛

∗ 𝑦+𝑖(𝑎𝑥−𝜉𝑡)4
𝑛=1 +

(𝑍4, 𝑍5)𝑆6
∗𝑒−𝛼6

∗𝑦+𝑖(𝑎𝑥−𝜉𝑡)                                          (79) 

 

where 𝛼𝑛
∗ , 𝛼5

∗, and 𝛼6
∗ are the roots of characteristic equation, 

 𝑆𝑛 are constants.  

𝐻1𝑛………..3𝑛
 are some parameters depending on 𝑎, 𝜉 given in 

Appendix. Substituting the all above physical quantities into 

the equations (57) to (59), (62) and (63) and finding the value 

of constants by using matrix inversion method we get  

 

 
   (80) 

 

The solution and graphical analysis match with the Othman 

et.al.[28] 

 

6.2 Magneto-thermoelastic problem with modified 

Ohm’s law by neglecting voids, initial stress and 

microtemperature 

To study this problem we consider all parameters of 

voids (𝛼 = 𝜓 = 𝜉1 = 𝜔0 = 𝜆0 = 𝑚 = 0), initial stress 

(𝑝 = 0) and microtemperature (𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 =
𝑘6 = 𝑏 = 0) as zero. After finding solution and graphical 

analysis this model outcomes match with those of Sarkar 

[35]. 

 

6.3 Initially stressed magneto-thermoelastic problem 

with microtemperature by neglecting voids and modified 

Ohm’s law 

To study this problem, we consider all parameters of 

voids are taken as zero (𝛼 = 𝜓 = 𝜉1 = 𝜔0 = 𝜆0 = 𝑚 = 0). 

The solution for this problem and graphical analysis are 

done. The outcomes of this problem coincide with those of 

Kalkal et al. [18] (neglecting diffusion). 

 

7.  Results and discussions 

For the numerical calculations magnesium material is 

chosen to illustrate the analytical results. According to 

Othman and Abd-Elaziz [29] the material constants are as 

follows  

 

𝜆 = 9.4 × 1010 𝑁

𝑚2 , 𝐻0 =
107

4𝜋
, 𝛽 = 7.779 ×

10−8 𝑁

𝑚2 ,   𝑎0𝑇0 = 1.8 × 106𝐽𝑚−3𝑑𝑒𝑔−1, 𝜇 = 4 ×

1010  
𝑁

𝑚2 ,  𝑘1 = 3.5 × 10−6 𝑁

𝑠
, 𝑘2 = 4.5 × 10−6 𝑁

𝑠
, 𝑝 =

10, 𝑏 = 0.15 × 10−9𝑁, 𝑘3 = 5.5 × 10−6 𝑁

𝑠
, 𝑘4 = 6.5 ×

10−6 𝑁

𝑠𝑚2  ,  𝑘5 = 7.6 × 10−6 𝑁

𝑠𝑚2 , 𝑘6 = 9.6 ×

10−6 𝑁

𝑠𝑚2  ,𝜇1 = 8.5 × 10−6𝑁, 𝜖0 =
10−9

36𝜋
, 𝜇0 = 4𝜋 ×

10−7, 𝜎0 = 9.36 × 10−5, 𝜇 = 4 × 1010 𝑁

𝑚2 , 𝑎 = 1.6𝑚, 𝜒0 =

0.02
𝑟𝑎𝑑

𝑠
, 𝜂0 = 0.1, 𝑝1 = 0.1𝐾, 𝐵 = 4, 𝜏0 = 0,0.3, 𝜏1 =

0,0.1, 𝜍 = 1, 𝛼𝑡 = 7.4033 × 10−7𝐾−1, 𝑇0 = 298 𝐾, 𝑘∗ =

1.7 × 102 𝑁

𝑠𝐾
, 

 

Parameters of voids are considered from Iesan [20]  
 

𝛼 = 3.688 × 10−5𝑁, 𝜓 = 1.753 × 10−15𝑚2, 

 𝜉1 = 1.475 × 1010
𝑁

𝑚2
, 𝜔0 = 0.787 × 10−3

𝑁

𝑚2𝑠
,  

𝜆0 = 1.1333 × 1010
𝑁

𝑚2
, 𝑚 = 2 × 106

𝑁

𝑑𝑒𝑔 𝑚2
 

 

The function 𝑓(𝑥, 𝑡) = 𝜃0𝐻(|𝐵| − 𝑥)𝑒−𝜍𝑡, where 𝜃0 is 

constant, 𝐻(|𝐵| − 𝑥) is the displayed Heaviside unit step 

function represents that around the x-axis heat is applied with 

2B to keep the temperature 𝜃0 although it is at zero on the 

rest of surface. 

By using equation (33) to 𝑓(𝑥, 𝑡) we obtain 

 

 𝑓∗ =
√2𝜃0  sin(𝑎𝐵)(1+𝑖𝑎𝜋𝛿(𝑎))

√𝜋𝑎(𝜉+𝜍)
                                                (81) 
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We consider 𝜉 = 𝜒0 + 𝑖𝜒1 but for small time 𝜉 = 𝜒0. The 

calculations are done and the results presented in graphical 

form. The graphs are plotted for fixed value of time and 

space variables 𝑡 = 0.1 and 𝑥 = 0.1. The physical quantities 

are compared for presence and absence of coefficient of 

Ohm’s law i.e. 𝑘0 = 0, 0.1 under coupled (CT), Lord 

Shulman (LS) (one relaxation time), Green Lindsay (GL) 

(two relaxation time) theory. Graphs are plotted for 

dimensionless field quantities. In Figures 2 to 9 the solid line 

represents CT theory results, the large dash line represents 

LS theory results and small dash line represents GL theory 

results. Figure 2 indicates the distribution of dimensionless 

temperature varies with y. Value of temperature is large for 

GL theory in comparison to LS and GL theory. Temperature 

increase in the interval 0 ≤  𝑦 ≤  1.8 and then decrease 

gradually in the interval 1.8 ≤  𝑦 ≤  6. Figure 3 

investigates the dimensionless displacement variations of u 

with y values. The value of solutions for three theories is 

large for 𝑘 0 =  0.1 as compared to 𝑘0 = 0. Maximum value 

of u appears in the range  0 ≤  𝑦 ≤  1 and small in the range 

1.5 ≤  𝑦 ≤  5.8. Figure 4 shows dimensionless change in 

volume fraction field ϕ with the passage of distance. It shows 

significant change for 𝑘0 = 0, 0.1 in GL theory. GL theory 

attains maximum value in range 0 ≤  𝑦 ≤  1.8 for 𝑘0 =  0.1 

and 0 ≤  𝑦 ≤  1 for 𝑘0 = 0. Figure 5 depicts variation of 

dimensionless microtemperature with the distance y. The 

graph shows increasing and decreasing effect on the 

magnitude of 𝑤1.   

Figure 6 describes the distribution of dimensionless 

normal stress 𝜎𝑥𝑥 with the 𝑦 values. The value of 𝜎𝑥𝑥  is 

maximum for GL theory, moderate for LS theory and 

minimum for CT theory. The graph is increasing for the 

distance 0 ≤  𝑦 ≤  0.5 and then gradually decreases and 

become constant for all three theories at 𝑦 ≥  6. Figure 7 

shows distribution of dimensionless tangential stress 𝜎𝑥𝑦 

with distance. The value decrease in the interval 0 ≤  𝑦 ≤
 1 gradually increases for 1 ≤  𝑦 ≤  6. Figure 8 exhibits the 

distribution of dimensionless heat flux moment 𝑞𝑥𝑥 for 

different values of coefficient of modified Ohm’s law 𝑘0. It 

shows slight variations in figures for  𝑘0 = 0, 0.1 in all 

theories. All the curves start with the zero which satisfies 

boundary conditions. Figure 9 represent dimensionless heat 

flux moment distribution of 𝑞𝑥𝑦with distance 𝑦. Curve 

attains maximum value for the range 1.3 ≤  𝑦 ≤  6 then 

decreases gradually and value becomes constant for 𝑦 ≥  7.  

Figures 10 and 11 represents dimensionless temperature 

and displacement distribution for three different cases. 

Variations of graphs are observed by considering particular 

cases that are initially stressed thermoelastic problem with 

voids and microtemperature (ITVM), magneto-thermoelastic 

problem with modified Ohm’s law (MTM) and initially 

stressed magneto-thermoelastic problem with 

microtemperature (IMTM). Figure 10 shows dimensionless 

temperature gradually decreases for the range 0 ≤  𝑦 ≤  4 

and becomes finite for all three cases. Figure 11 represents 

dimensionless displacement decreases initially in the interval 

0 ≤  𝑦 ≤  3 and gradually increases to become finite. The 

boundary condition shows the response in a bounded region 

of space with the finite speed of propagation. Hence the 

significant change is observed under three theories by using 

modified Ohm’s law 𝑘0 =  0.1 as compared to absence i.e. 

𝑘0 = 0. 

 
Figure 2: Temperature 𝑇 variation for distinct values of  𝑘 0 

 

 
Figure 3: Displacement 𝑢 variation for distinct values of  𝑘 0 

 

 
Figure 4: Change in volume field 𝜙 variation for distinct 

values of  𝑘 0 
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Figure 5: Microtemperature 𝑤1 variation for distinct values 

of  𝑘 0 

 

 
Figure 6: Normal stress 𝜎𝑥𝑥 variation for distinct values of  

𝑘 0 

 

 
Figure 7: Shearing stress 𝜎𝑥𝑦 variation for distinct values of  

𝑘 0 

 

 

 

 
Figure 8: Heat flux moment 𝑞𝑥𝑥 variation for distinct values 

of  𝑘 0 

 

 
Figure 9: Heat flux moment 𝑞𝑥𝑦  variation for distinct values 

of  𝑘 0 

 

 
Figure 10: Temperature distribution 𝑇 with distance 𝑦 
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Figure 11: Displacement distribution 𝑢 with distance 𝑦 

 

8.Conclusion 
     In this article, we present a model of magneto-

thermoelastic problem with modified Ohm’s law, initial 

stress, voids, and microtemperatures in the context of GL, 

LS, and coupled theories. The problem is solved by using 

normal modes and effects of coefficient of modified Ohm’s 

law on physical quantities are observed. The boundary 

conditions with thermal shock and initial stress is considered. 

From the graphical illustration we conclude the following 

facts which is useful to design new material in the 

development of the theory of magneto-thermoelasticity.  

 

1. The relaxation time presence for the GL, LS leads to 

reduction of profile of temperature, volume fraction 

field, displacement, microtemperature, stresses along 

normal, moment of heat flux and increase in shear 

stresses with the change in coefficient of Ohm’s law. 

2. The increase in temperature values can be explained by 

the heat loss produced by the motion of electric current, 

which can be the main reason that the medium 

deformation tends to be normal. 

3. The significant effect of modified ohm’s law is observed 

with the change under three theories on all 

dimensionless field variables. 

4. Finite speed of propagation is observed in all figures. 

 

The microtemperature theory is useful to researcher’s 

working on the area of drilling, mining tremors into the earth 

crust such as earthquake engineering, geophysics and 

seismologist. Because of the inclusion of modified Ohm’s 

law in magneto-thermoelastic problem with 

microtemperature gives the new and novel contribution to 

this field. 
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Nomenclature 

𝐻0    Component of initial magnetic field vector 

𝑄𝑖     Mean heat flux moment component  

𝑇    Absolute temperature 

𝑇0    Reference temperature taken as |(𝑇 − 𝑇0)/𝑇0| < 1  

𝛼, 𝜓, 𝜉1, 𝑚, 𝜆0, 𝜔0    Material constant for voids  

𝛼𝑡    Coefficient of linear thermal expansion  

𝛽      = (3𝜆 + 2𝜇)𝛼𝑡 

𝐁    Magnetic field induction vector 

𝐃    Electric displacement vector 

𝐄     Induced electric field vector 

𝐅𝐢     Lorentz force 

𝐇     Magnetic Intensity vector 

𝐉      Current density vector 

h     Induced magnetic field vector 

𝛿𝑖𝑗   Kronecker delta function 

𝜖0    Electric Permeability 

𝜖𝑖     First moment energy vector components 

𝜂      Entropy per unit mass  

𝜆, 𝜇  Lame’s Constant  

𝜇0    Magnetic Permeability 

𝜙     Change in volume fraction field  

𝜌      Density 

𝜎0    Electric conductivity 

𝜎𝑖𝑗   Components of stress tensor 

𝜏0, 𝜏1 Relaxation times 

𝑎0, 𝑏, 𝜇1, 𝑘𝑖(𝑖 = 1,2,3,4,6) Coefficient of constitutive    

                                            relations 

𝑐1
2    =

𝜆+2𝜇

𝜌
 Speed of propagation of elastic waves 

𝑔∗    Intrinsic equilibrated body force 

ℎ𝑖     Equilibrated stress vector 

𝑘∗    Thermal conductivity 

𝑘0    Modified Ohm’s law coefficient 

𝑝      Pressure 

𝑞𝑖     Heat flux vector components 

𝑞𝑖𝑗    First heat flux moment vector components 

𝑡      Time variable 

𝑢𝑖    Displacement vector 

𝑤𝑖     Microtemperature vector 
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