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Abstract 

Today, with the increase of industrialization, the waste heat emitted by the industrial machines 

used has started to increase. Therefore, the energy efficiency of these devices also decreases. In 

addition, this waste heat remains a bad factor that plays a role in the world's climate change. 

Governments are implementing incentive policies to increase energy efficiency and reduce 

greenhouse gas emissions. Therefore, both scientists and engineers strive for a cleaner 

environment and energy. Thermoelectric generators (TEGs) are one of the devices that contribute 

to energy efficiency and sustainable energy production by ensuring the recovery of a certain part 

of the waste heat emitted by these machines to the environment. The TEGs have found traditional 

uses from the waste heat of microprocessors to the waste heat of stoves. However, their 

proliferation is limited by their efficiency less than 10% and their high purchasing costs. 

Academicians and engineers continue to work without slowing down to overcome these. The 

semiconductors with low thermal conductivity and high electrical conductivity are the main 

subjects studied in this field. With overcoming these difficulties, it is aimed to use thermoelectric 

generators in the future to convert the waste heat of almost all devices into electrical energy. 

Therefore, the main purpose of this study is to investigate the current innovations of TEGs and to 

determine the future trend. Among the main findings of this study, it is predicted that TEGs will 

be widely used in areas where there is a need for silent and maintenance-free energy in the future. 
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1. INTRODUCTION 

 

Worldwide in the present century, the researchers are highly concerned with increasing the production of 

thermal to electrical energy in order to develop the industry [1], transport [2], communication [3], buildings 

[4], and automotive applications [5]. The recent energy crisis can solve by managing electrical energy in a 

better way to increase thermoelectric generator (TEG) efficiency. The need for developing research in the 

alternative energy source has driven the drastic climate change in the world. The rapid changes in climates 

are mainly attributing to utilize fossil fuels for energy generation and transport sectors. Many countries over 

the world schedules to minimize primary consumption of energy through an increase in alternative energy 

generation [6], distribution [7], decline CO2 emissions due to climatic challenges, and advance the 

application of TEGs [8]. TEG applications deal with the recovery of a certain part of the waste heat as 

electrical energy. Thus, they contribute to increasing energy efficiency and reducing greenhouse gas 

emissions. [9]. They are more convenient to compare the characteristics of specimens as appear in the 

expression of the efficiency and play a crucial role in electrical energy developing purpose [10]. They are 
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also used for cooling purposes, low heat recovery management, and power in the battery to charge. The 

techniques of supplying more power to a battery system depending on a temperature difference between 

the thermoelectric module (TEM) surfaces can easily use in TEGs [11]. Figure 1(a) illustrates the role of 

TEGs in waste heat sources. The main barrier of TEGs is low efficiency and high cost for advancement the 

common applications. It is a challenge for the development of TEGs. Some manufacturers have tried to 

search for cost-effective TE material compositions acting to minimize the effects of low productivity. The 

forming of TEGs considers a process approach to optimize the whole system because the TEMs have low 

performance [12]. An elaborated presentation of TEG applications is essential for different challenges that 

confines the industrial fulfilment of TEGs. This review gives a way that shows current and future trend 

opportunities for thermoelectric generator applications in waste heat recovery for TEGs utilizations. Waste 

thermal energy is abundantly energy that each working machine and moving things such as electronic 

integrated circuits, mobile communications, computer devices, vehicles, power plants, natural gas fields, 

industries, and even in the human body realizes to the environment as waste heat [13, 14]. TEGs are active 

devices for converting the thermal into electrical energy. They are widely used in various sectors that 

become a zone of interest in the field of energy recovery systems from small [15, 16] to large types of 

utilizations, depending on size, generated power, and formed materials [17, 18]. Figure 1(b) shows a block 

diagram of waste heat recovery. 

 

 
 

(a): Waste heat sources (b): Waste heat recovery block diagram 

 

Figure 1. The role and energy conversion of TEGs in waste heat sources 

 

The waste heat recovery system is an important subject to technological developments. It is in this context 

that TEGs are slowly developing that consist of a set of TEMs placed between a cold and a hot heat 

exchanger. The heat exchangers can amplify heat transfer from the heat source to the module to form 

powerful TEG. The TEMs are connected in series for electrical and in parallel for thermal achievements. 

They directly convert the heat passes through them into electrical energy. The converters that are an 

electrical device are regulate and transfer the electric energy to a defined voltage level corresponding to the 

battery groups and capacitors according to the needs of the end user [19]. The ratio of electrical energy 

stored or supplied to the end user for the consuming power of this system is known as the overall efficiency. 

A power consumed is received on the hot heat sink that includes the mechanical power required to function 

the process by cooling of cold side and pressure losses in the heat exchangers [20]. The researchers deal 

with the availability of the different charge carrier TE materials with a high figure of merit (ZT) to 

expanding more applications of TEG. The preparation of omics contacts between metallic interconnects 

and thermoelements with maximum heat transfer management is also essential [21, 22]. In this context, 

heat exchangers, coupling with TE modules, electrical converters, and the electrical connection of TEMs 

were improved in [23]. TEG applications are favorable to researchers because it can provide power from 

micro sensors to the internet of things (IoT). On the other hand, organic TEGs trying to be newly developed 

are still undergoing research in the research laboratory [24]. These have been a new scientific interest 

research area as an alternative research topic to conventional inorganic TEGs during the last decades [25]. 

One of the recommended materials for organic TEGs is the conductive polyaniline [26]. This conductive 

polymer material is inexpensive, has a wide range of production and unmatched mechanical flexibility [27]. 

Although these can be used for low waste heat recovery such as body waste heat, they are not suitable at 

high temperatures [28]. Their operating temperatures can go up to 250°C. Some studies on these are 
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ongoing. In the future, the widespread use of these will increase and they will appear in the markets [29]. 

The exclusive presentation of TEG applications in remote environments, micro power generation in 

biomedical applications, misuse heat management in the automobile, solar TE power in generators, gaining 

electrical energy of small appliances in homes far from the electricity grid have been presented by means 

of the paper in the developing countries. They have new properties that operating range, cost, weight, and 

non-toxicity can open the prospect for the large-scale industrial development of TEG applications. In 

author’s earlier reports [30–36], it is noted that Bi2Te3 and Bi2Te3-based nanostructured materials are more 

suitable for TEG device manufacture in TE applications. Furthermore, in author’s previous reports [37–

43], it is showed that nanostructured materials have been more acceptable for device manufacturing 

compared to thin films. There are some situations that limit the use of TEGs. The search for new material 

to increase the ZT values of the materials used in TEGs continues at the level of nano materials. There are 

also efforts to increase operating temperatures in applications where these materials are used. In addition, 

engineers and researchers continue to work to increase low efficiency and reduce installation costs to reduce 

the restrictions in their applications. TEGs can meet the small power requirements of some devices. In this 

regard, Amatya and Ram [44] conducted a study expressing solar TEG applications in 2010. Ahiska and 

Mamur [45] published a study on the use of TEGs in renewable energy in 2014. After a while, Champier 

conducted a study summarizing the new developments and applications in TEG applications in 2017 [46]. 

Pourkiaei et al. [47] conducted a study describing the potential applications of TEGs and thermoelectric 

coolers (TECs). 

 

Recent advances in technology and nanoscience have been continuing at a dazzling rate. These advances 

are also related to the TEGs. To follow the developments, this study makes a general survey of the studies 

conducted in the last five years. For this reason, this review paper explains the present interest for 

applications of TEGs. Moreover, the paper will discuss the extensive state of the art of the applications of 

TEGs and inspect the future prospect. After making a general introduction in the presentation of this study, 

low power and high-power energy generation applications of TEGs are given in the second chapter. In the 

third part, the reasons limiting the use of TEGs and the difficulties that need to be overcome are mentioned, 

and in the fourth part, a future perspective is drawn by giving general results. 

 

2. REVIEW ON APPLICATION OF THERMOELECTRIC GENERATORS 

 

Thermoelectric technology is one of the green energy source converters that can provide electrical energy 

to electric and electronic systems. The waste heat energy source from ambient sources is converted into 

electrical energy. The TEG technology exploits the Seebeck effect. This effect explains the transformation 

of heat gradient to electric energy at the different carrier junctions of the TE specimens of a TEG module. 

The produced electrical energy is highly reliable and a robust energy form, which targets to recover waste 

heat energy. It is used for different applications such as medical instruments, sensors, and consumer 

electronics. Waste heat recovery has developed in context the produce electrical energy by using the TEGs 

that are currently promising research in the world. It consists of a set of TEMs inserted between hot and 

cold heat exchangers. Every TEM has composed of several pairs of thermoelements connected with 

thermally in parallel and electrically in series. The modules directly convert a part of the waste thermal 

energy, which can pass through them into electrical energy. TEG applications can be classified two 

categories such as large and micro power applications as electrical energy power generation. The first 

classified TEGs have millimetric dimensions. These TEGs, which are electrically and thermally connected 

to each other to increase power, find application in high power applications. When looking at high power 

applications, it is seen that a certain part of the waste heat is for recovery in processes where waste heat is 

intense. The second classified TEGs utilize at low waste heat. They generate electrical power from µW to 

a few mW. For this reason, they are used for small power requirements. These are performed based on a 

TE heat equilibrium approach. It is very significant and mostly is utilized for industrial advancement. The 

zones or applications, in which waste heat sources are released, play an important role in determining the 

usage areas of TEGs. According to their utilizations, it is possible to divide the application areas of TEGs 

into five sections. These are as follows. 1) They are used to meet the electrical energy needs of devices that 

require less power in areas where there is no electricity network [48]. 2) They are highly preferred for the 

recovery of waste heat released by burning fossil fuels [49]. Thus, they contribute to energy efficiency. 3) 

They are used in decentralized domestic energy and thermal energy production processes where sustainable 
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energy sources are widely used [50]. 4) They can be preferred to meet the energy needs of small electronic 

sensors and devices that require little energy in environments with thermal waste heat [51]. 5) These TEGs 

can also find a place in the production of electrical energy by using the heat of the sun in electrical energy 

production facilities from solar energy. In fact, hybrid applications are encountered with these solar systems 

[52]. 

 

2.1. High-power Applications 

 

The thermal based energy on the TE effect is the most used harvesting for thermal into electrical energy. 

The obtaining energy mainly relates to the manufacture of TEG devices. An interesting material for flexible 

TE applications is solution-phase exfoliated graphene. However, the traditional oxidative route has many 

difficulties of poor flake standard and a lack of quality doping procedure to obtain different charge carriers 

complementary. T.G. Novak et al. [53] could achieve both extremely high electrical conductivity and high 

Seebeck coefficients. Their results show the remarkable power factors ~655 µW/mK at room temperature. 

Silicon nanowires have emerged as a more promising TE specimen owing to a low thermal and a high 

electric conductance. A high-power TEG manufacture by using a large collection of heavily p-doped silicon 

nanowires was developed in [54]. The area of several mm2 of macroscopic TEG collects with TE features 

of silicon, which has a high-power value of 1.8 W/mK and low thermal conductivity. Seebeck coefficient, 

thermal conductivity, and maximum power output of the manufactured devices were discussed. The power 

density of the manufactured TEG was over a few mW/cm2 at temperature differences over 100°C. Other 

benefit of the used silicon was that the power factor raised with the temperature. One of the important points 

here is to achieve low thermal conductivity. In this circumstance, the decrease of the thermal conductivity 

was associated to the roughness spring from the plasma etching process. With attention to other processes, 

these also show that large quantities of nanowires can be produced without expensive high-resolution 

lithography. The manufactured materials with decreased thermal conductivity will be very useful for 

practical applications, as it will allow high temperature ranges to be obtained. When all these are evaluated 

together, there remains a parameter that needs to be improved. This is the electrical resistance. It is very 

important to consider the Seebeck constant, measured resistance and thermal resistance values to improve 

the electrical resistance. Some automotive manufacturers are exploring to convert the waste heat energy of 

exhaust gas into electric energy. For this reason, modelling and analysis of a TEG are important. W. He et 

al. [55] examined in detail how changes in the exhaust temperature would provide a change in the generated 

maximum power value that could be obtained. They have optimized the exhaust exchanger to achieve the 

best waste heat dispersion on TEG surfaces. 

 

The interest of the aviation industry and space companies in wireless structural health monitoring (SHM) 

processes is increasing day by day. Thanks to the fact that TEGs convert the temperature difference between 

their surfaces directly into electrical energy and can obtain wide temperature differences in the said sectors, 

the use of these devices in these areas for energy generation is of interest. A great number of wires and 

piezoelectric elements have required to developing the SHM process into aircraft decoration. It is of great 

importance that the devices placed in these processes take up optimum space and use the areas they cover 

effectively. Considering that they use these areas for energy recovery, there will be gain after gain. The 

design procedure of a piezoelectric sensor network with shared signal transmission cables was performed 

in [56]. High power applications are performed through industrial electronic devices, automobile engines, 

and aerospace, etc. These applications require different supplying power and dimensions. The TEGs used 

for these applications have millimeter dimensions and give the output power several Watts at high 

temperature gradients. These types of TEGs can usually use for industrial purposes. 

 

Industrial sectors release high temperatures that thermal energy into the environment, which know as waste 

heat energy. This waste heat amount is very high and increases the greenhouse gas effect in the 

environment. One of the ways to prevent this from being thrown into the environment is to use TEG devices 

to recover this energy to a certain extent [57]. Moreover, the industrial heat energy management process 

has one of the economic opportunities for any industry sector. The industrial organic cycles, thermodynamic 

cycles, burners, and boiler technologies can transform this heat into electricity through TEGs. A stone wool 

manufacturing plant to convert waste heat into electrical energy from the hot gas flow was considered in 

[58]. 
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Waste heat is a complex problem in integrated circuits and other industrial electronic devices. Industrial 

different units develop a huge amount of thermal energy as waste heat, depending on its product type. The 

waste heat energy dissipated from the various sections while operating these processed operations could be 

turned into an advantage for recycling this as thermal to electrical energy by using TEGs to supply other 

parts in the enabled electronic devices. Microelectronic TEGs can recover misuse heat into electrical energy 

of integrated circuits. The silicon integrated circuit can perform by chip thermal management of energy 

sources for different sensors. G. Hu et al. [59] reported the silicon integrated circuit TEGs that had a high-

power generation rate. According to the authors report, TEGs created on industrial silicon complementary 

metal-oxide-semiconductor (CMOS) process terminal by fabricating nanostructure silicon thermopiles 

could generate high power about 29 μW/cm2K2 at near room temperature. Silicon base TEGs 

conventionally employee long. They are the nanowires of about 10 to 100 nm, which suspended on a cavity 

to cut-off the bypass of the heat current and secured the temperature difference across its. Moreover, the 

cavity structure increased the fabrication cost and weakened the mechanical strength of the device 

manufacture. M. Tomita [60] developed a cost-effective high-power density TEG for portable and wearable 

objects charge. The relevance of electrical energy harvesting is clean energy that depends only on the 

recycle of waste heat energy. These waste heat energies from industrial processes and other devices are 

given into the atmosphere without being exploited any effective device, which is harmful to human and any 

lives [61]. 

 

The limited supply of electrical power generation on waste heat energy recovery in the industrial sector by 

using TEG systems become a crucial topic day by day. The use of industrial waste heat energy in lighting 

is among the purposes of TEGs. The low energy requirements of the energy-efficient lighting bulbs that 

have been introduced recently make the use of TEGs in this area widespread. Dan Dai et al. [62] setup a 

liquid metal-based TEG system. They developed a prototype study that combines the electromagnetic 

pump, which is easily available in the market, with TEGs. Ahiska and Mamur [63] applied on a LED bulb. 

 

Management of excessive heat found in industries is also a challenge and must be tackled on its own. 

Engineers and academics are still working on this subject. Moreover, the production of sufficient number 

of technological devices to recycle these high waste heat energies is at the commercial stage of operation. 

The increasing energy need in the industry has increased the electricity used and has begun to reflect on 

these bills. Increasing awareness of climate change in the world requires addressing this high-energy waste 

heat energy. Different electricity generation technologies extracted from industrial excess heat at low-

temperature conditions were proposed in [64]. Industrial excess heat management technology is one of 

these. The technology can evaluate to the temperature condition of heat source, capacity, efficient, and 

economical aspect. This technology can use the heat of different temperature ranges by TEG devices. 

Temperatures up to 1300°C is required for the hot formation process of steel in the industry. When the 

environment brought to these temperature values is released into the air after use, it cools and disappears 

and causes the environment to heat. The use of TEGs to utilize this waste heat can have a positive effect to 

a certain extent. Thus, the energy efficiency of the system will be increased. In addition, the electrical 

energy generated from such systems can even be given to the electricity grid. A system for TEG heat 

management from stationary industrial processes was fulfilled [65]. 

 

The reduction of CO2 and waste heat emitted by vehicles using petroleum and its derivatives is one of the 

difficult issues that are being studied and solved today. In a vehicle operating with an internal combustion 

engine, two thirds of the fuel are emitted as waste heat energy. A large amount of this is taking place from 

the exhaust. The fact that the exhaust temperature is very high compared to the ambient temperature is 

promising in achieving the temperature difference required for TEGs, which increases the output power 

linearly. For this reason, it is quite common to use TEGs in the exhaust outlets. A holistic TEG for 

automotive vehicle applications was developed in [66]. X. Liu et al. [67] constructed a waste heat recovery 

system that extracts temperature from an automotive exhaust pipe and convert the thermal heat energy into 

electrical energy by using the constructed TEG system. Their result shows a promising potential 

performance of using this kind of TEG for low-temperature misuse heat recovery vehicles. Y. Zhang et al. 

[68] generated a high-power density of 5.26 W/cm2 with the temperature difference between the surfaces 

of TEGs at 500°C. 
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Recently, the reduction in energy consumption, greenhouse gas emissions, and environmental pollutions 

has faced more challenges in automotive industries in the implementation of the TEG system. The TEGs 

can enable a direct conversion of thermal energy into electrical energy without any moving parts and 

maintenance by employing the exhaust heat management process. The electrical energy supplies are 

especially helpful to give the producing electrification trend in transport moving vehicles. A performance 

of a temperature-controlled TEG with embedded heat pipes concept in a light duty vehicle was tested in 

[69]. It showed that the greenhouse gases emission was reduced. Today, very good progress has been made 

in vehicle fuel systems to minimize carbon emissions. With the developing technology, the carbon 

emissions of vehicles have also been minimized. In addition, increasing the use of low carbon emission 

fuels in vehicles has also contributed to this. In addition, the greenhouse gas effect can be reduced with the 

use of external combustion engines. These motors are preferred for electric energy trains. Hybrid vehicles 

using electric drive and petrol-fueled engines are available in new technologies. W.B. Nader et al. [70] 

emphasized the importance of increasing the quality factor of the TEG system to achieve the performance 

obtained in internal combustion engines. T.Y. Kim et al. [71] obtained maximum output power around 118 

W and the energy conversion efficiency around 2.1% by using twelve TEGs under the engine operating 

conditions. The authors also investigated the energy production performance of hexagonal-shaped TEG 

waste heat recovery system for passenger vehicle applications [72]. Waste heat management processes can 

increase power recycle to diminish fossil fuel consumption, the harmful impact of CO2 and global warming. 

Although the efficiency of TEGs in the recovery of waste heat energy as electrical energy is low, they are 

used as reliable and maintenance-free energy recovery devices. J. Wang et al. [73] focused on the 

performance of TEGs under different running conditions within different positions. They found that TEG 

positions were very effective in output power. Y. Choi et al. [74] have fabricated thirty TEGs system for a 

waste heat management of diesel engines by using porous medium-assisted generator equipped with 

customized a TEG. 

 

Most of the fuel energy is rejected to become waste heat in every motor vehicle. The TEGs can possess 

high potential performance by recover this heat to enhance fuel efficiency. M. Aljaghtham et al. [75] 

investigated a high thermal gradient is creating in air cooling at the bottom surface and hot oil at the top 

surface of TEG for the TEG conversion. They optimized TEG numbers and measures in their work. In the 

optimization process, they considered different oil pan geometries and driving conditions. Then, they 

carried out simulation studies according to these optimization values. For multi-stage oil pan geometry 

optimization, they obtained the temperature difference between the surfaces of the TEGs of 76°C and in 

this case, they found an output power density of about 5.77 kW/m2. In the end, they argued that the 

developed TEG system was an applicable waste heat recovery methodology for combustion engines and 

could improve fuel performance. The output power can be achieved by TEGs around 700 W, with air inlet 

temperatures up to 620°C [76]. During road tests, a manufactured TEG system has supplied an output power 

achievement of at least 450 W in some motor vehicles. Furthermore, the TEG system achieved same electric 

power output with repeatable performance in over six months of vehicle testing in bench and engine 

dynamometer testing. 

 

The aerospace power sources are the complex thermodynamic systems, which consists of multiple 

subsystems such as aerodynamics, mechanical, heat and mass transfer, thermal, and other forms of 

interactions [77]. The used electrical energy in aerospace technology depends on various processes. The 

required electricity can generate in different ways in these technologies. One of them is the TEGs that can 

easily produce electrical energy in aerospace technology. The flight test instrumentation, maintenance, 

cabin crew support, and structural health monitoring (SHM) system are the most common utilization fields 

for energy harvesting in aerospace. The promising facilities of aerospace agencies in the wireless SHM 

process will advance the TEG research of efficient power sources and energy harvesting. Every aircraft 

connected a TEG system can produce electrical energy from environmental energy source with temperature 

gradient at various locations. The temperature difference between the surfaces of TEGs can be increased 

by combining thermal diffusion receivers with TEG energy conversion systems. This temperature 

difference is the value between ambient temperature and outdoor temperature. The most common heat sink 

used in this area are fins with a flat surface as a heat sink. In these, the structure of each fins can be easily 

modified. Among the most important features sought in heat expanders for these applications are their light 

weight and small. Researchers can easily design heat expanders of the same weight and height with the 
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development of nanotechnology. S. Boccardi et al. [78] carried out the enhancement of TEG efficiency by 

manufacturing cooled air heat sink for SHM applications at the low power wireless systems. Their work 

investigated design, manufacture, and testing of the proposed thermal diffusion process. Their goal was to 

increase the temperature difference between TEG surfaces. The experimental results provided higher 

temperature differences in the proposed thermal diffusion process. Therefore, traditional cylindrical pin-fin 

heat sinks can be compared with higher output power. Eventually, their results illustrated that the heat sink 

of the TEG arrangement can be able to generate electrical power. The electric power backup of the onboard 

power distribution line and the zero-power wireless sensor is a suitable power supply in aerospace 

applications. The SHM process could be the utilization of energy harvesting devices. Recently, the SHM 

systems are becoming a real possibility of energy harvesting in aerospace environments. The wireless 

sensor nodes are the most promising system that can able to communicate wirelessly to a central base station 

and make decisions on the damage. The process points to the existence of both active and passive 

monitoring techniques to detect damage to structures. The vibration and thermal gradients are the two 

energy sources that could be developed for aircraft electrical energy purposes. Furthermore, piezoelectric 

transducers mounted to the surface of a structure can utilize to produce electrical power. The viability of 

two energy sources such as vibration and thermal gradients studied in [79]. In the study, the vibration range 

and temperature difference were 20-400 Hz and 50ºC, respectively. These energy harvesting processes 

revealed a great potential in powering current wireless SHM systems. An electrical power up to 1 mW 

could be generated for a single vibrational energy recovery system. The numerical modelling advancement 

the optimizing of orientation and position of the vibrational harvester high levels of energy could be 

achieved. Over the flight period, it generated average power levels between 5 and 30 mW by using the 

commercial TEGs. The energy harvesting system show great potential in powering into wireless SHM 

systems, whereas power requirements was range between 1 and 180 mW. Finally, it recommended that the 

most promising process would be utilized in wireless sensor nodes that can be able to communicate this 

wirelessly to a central base station. 

 

Non-uniform mechanical and thermal loading and vibrations can be induced unintended stresses. The edge 

of TEG dislocations has occurred with confirms the failure due to shear stresses caused by heat expansion. 

Plastic deterioration on the surfaces is not seen. Also, in many cases, a traceable pattern does not occur on 

their broken surfaces. The TEG elements have developed to both thermal and mechanical loading. 

Clamping is the main structure of this production for mechanical loading. Thermal loads due to vibrations 

can cause malfunctions. This happens when the stress threshold value of the device is exceeded. Axial 

stresses are more effective for vertically placed elements. When bending and cutting occur in the areas 

where the device placements are located, device malfunctions are very likely. Therefore, the orientation 

and shape of TEG devices are of great importance in minimizing thermal and structural loads. In this 

context, a topology optimization approach is proposed by researchers to minimize both thermal and 

structural stresses on TEG. J. Mativo et al. [80] developed the compliant TEGs in aerospace applications 

by using topology optimization for multifunctional materials. L. Janak et al. [81] developed a backup 

electric power source based on the micro electromechanical system (MEMS) with TEM. The aerospace 

sector is under the continuous advancement of the technology used for performance and effectiveness. 

Recently, the main goal is related to the creation of a cost-effective and environmentally friendly aircraft 

system. These goals can be easily achieved using TEMs. S.A. Sánchez et al. [82] proposed a magnetic field 

in a thermocouple that improved the performance of the systems. 

 

2.2. Low-power Applications 

 

Day by day, the objects in our daily lives are becoming smarter. They are connected to the Internet. These 

devices can now be controlled via the Internet. These objects created an IoT-based society. The use of 

portable and wearable TEGs can be expanded to establish Internet connections. TEG waste heat recovery 

systems can be used some low power areas like medical, wearable devices, IoTs, and wireless sensor 

networks. With the advances in flexible and organic TEG technologies and nano technologies, these areas 

of use are expected to increase even more. When these applications are taken into consideration, the use of 

TEGs of different sizes and various strengths is encountered here. Thanks to the low energy consumption 

of some devices, the use of these organic and flexible TEGs at low power is gradually increasing. Almost 

all applications using TEGs require little power. The primary energy source of systems of grid off is the 
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battery. It is an advantage that TEGs are available for the energy source of this battery to be sustainable. 

Nevertheless, Although TEGs provide energy for decades in autonomous systems, the battery used has a 

certain lifespan. It must be replaced at the end of its life. As can be understood from here, although TEG 

systems do not require maintenance for a long time, the tools combining the autonomous energy system 

have maintenance requirements. 

 

The wearable devices can play a crucial role to keep a constant monitor on vitals in the hospital. Doctors 

can be used wearable devices to measure the vitals without the patient being restricted to bed. Health 

monitoring wearable devices powered by TEGs can also monitor how much the patient walks and how 

many calories the patient has consumed. With the development of technology and nanomaterials, it is 

predicted that the applications of these devices will increase even more. The data generated by wearable 

devices either provide information to their own processor or to a laptop, and these are collected for later 

analysis. The devices that monitor the blood pressure of the patients are among the most used of these 

devices. Thanks to these devices, continuous communication between the patient and the doctor can be 

established. The waste heat energy released by man depends on his physical activities. M. Thielen et al. 

[83] performed an optimization study on how much of the human body waste heat can be recycled. In their 

studies, they reached 260-280 μW electrical energy output power and 13-14 μW/cm2 power density with a 

flexible TEG system placed on the human wrist. Figure 2(a) shows a power regulation block diagram and 

Figure 2(b) presents the process of an electrical energy recovery system from waste heat energy with TEG 

from a wearable device. 

 

  

(a): The power regulation block diagram (b): The conversion system from body heat 

 

Figure 2. The processes of an electrical energy recovery system of TEGs 

 

The primary purpose of wearable TEG devices is to provide uninterrupted energy needs of electronic 

components used without batteries by using the temperature difference between the waste heat of the human 

body and the ambient temperature [84]. Different methods have been proposed by the researchers to use 

the waste heat of the human body. In fact, the devices using such wearable devices have started to appear 

in the markets [85]. A wearable electrocardiography [86], a miniaturized accelerometer [87], a self-powered 

wearable pressure sensing system [88] and a wireless sensor system [89] were reported on a wearable TEG 

using the human body heat as the energy source for self-powered wearable devices for low power 

applications. Among these are self-powered TEG systems developed for electrocardiogram (ECG) [86]. 

ECG provides information about the state of the heart. It requires little energy to operate its electronics. A 

self-powered ECG device that gets its energy from TEG is built on a flexible circuit board. TEG derives its 

energy from the temperature difference between body temperature and ambient temperature. Due to the 

nature of TEGs, this device has been capable of meeting the energy needs for decades without requiring 

maintenance. In the healthcare system, self-powered devices powered by organic and flexible TEGs can be 

used for motion detection [87]. The device contains more than 50 pairs of cubic-shaped TE legs of p- and 

n-type Bi2Te3-based materials to obtain electrical energy from the human body temperature. The TEG can 

be generated a voltage in the millivolt range at different temperatures of 50 K, with quite a low internal 

resistance. For this circumstance is attached to the arm or a more comfortable body area so that the TEG 

can absorb waste heat from the human body. The flexible-portable pressure sensors with highly sensitive 

and cost-effective attributes great demands in artificial intelligence, wearable electronic devices, 

monitoring heartbeat, biomedical, and blood oxygen saturation. The mobile operation, flexible, ultrathin, 
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and sustainable power sources are highly desirable to the researcher for portable pressure sensors. Recently, 

the researchers developed a self-powered wearable pressure sensing system with a flexible thin film TEG 

to obtain the human body heat [88]. These devices provide great advantages for constantly monitoring 

human movements. In case of a dangerous situation, there are alarms to inform the relevant person. The 

designs of these devices are formed to be attached to human skin and to be supply with TEGs. Wearable 

devices can be placed in different parts of the human body. These areas include wrist, arm, leg, upper arm, 

and chest. In a study using TEGs of the same structure, the highest power value was obtained in the wrist 

with approximately 20 μW/cm2 at an air velocity of 1.4 m/s according to body region locations [90]. As the 

air velocity increased, the temperature difference between TEG surfaces increased and the obtained 

electrical energy power density increased. Medical and wearable sensor systems such as a temperature 

sensor, pulse oximeter sensor, accelerometer sensor, Bluetooth low energy module, and microcontroller 

unit are the prominent tools in biomedical applications. These wearable devices are important for the 

treatment of the disease in the early clinic. They are also preferred for monitoring the patient's body 

condition. 

 

The TE effect converts the temperature change of material into electrical voltage and vice versa. The best 

TE material conducts electricity well and offers good thermal insulation. A TE converter that the heat 

supplied is converted into electricity by using the Seebeck effect. The current thermodynamic efficiency of 

the materials today available is around 15% of the Carnot limit. It is the difficulty of decoupling from 

electrical to thermal conduction. The progress of nanomaterial synthesis techniques and the development 

of new compositions offer opportunities for the development of a generation of TE materials more efficient, 

cost-effective, and more flexible for various applications such as biomedical devices. The basic component 

of a TE device comprises a single structure of semiconductor TE material of type p and n, each electrically 

connected in series. Networking of the electrical devices within electronics embedded can communicate 

and sense interactions to each other by using the IoT. In future generations, IoT-based thermoelectricity 

will offer advanced levels of service and practically motivated the way to lead people’s daily lives. 

Thermoelectricity seems to be a candidate for IoT that magnitude of heat losses to direct and reliable 

conversion. There are two trends to improve in materials integrates, such as pre-existing nanostructure 

modulation and conventional TE materials. Thermoelectricity-based IoT connections need a low power 

energy. 

 

Recently developed devices require very small power requirements. Their threshold values can be provided 

at small voltages. When idle, their power requirements are virtually non-existent. Advancements are in the 

medical, power, agriculture sectors, and smart cities by using IoT-based thermoelectricity. The 

development of mobile technologies and the increasing interest in remote sensing systems keep the need 

for TEGs on the agenda to meet their energy needs [91]. Energy consumption and the need to replace or 

recharge the battery remain a key challenge for the adoption of IoT, particularly for commercial and 

industrial applications [92]. Many low-powers portable IoT devices can work forever, powered by energy 

harvesting, without the need to replace the battery or recharge it. Some of the devices can operate without 

batteries in remote areas by the low power energy harvesting. The combination of energy harvesting 

processes and low-power design can create IoT applications with connectivity, processing, and tracking 

functions. Over 40 billion devices are currently connected to the internet. In the future, expect this number 

will rise to 50 billion [93]. The main components used in IoT devices are embedded systems, cloud 

computing system and big data systems, and internet connection systems [94, 95]. In a study by M. Haras 

et al. [96], an innovative miniaturize pulse amplifier for the TEG energy acquisition system was proposed. 

The TEG system proposed by them was operated intermittently periodically with the heat source. The 

recommend boosting process was in a structure that could be form with IoT nodes. As a result of their work, 

they stated that TEG produces higher power than traditional operation. They also suggested that this 

exhibited performance be observed with low temperature differences for IoT devices. The authors' 

development was based on optimization of TEG's operating conditions rather than the generator itself. 

Ultimately, they argued that their approach to using TEG for battery or resource would bring cheaper and 

reliable alternatives and IoT device expansion. a characterization of several power management units that 

focused on wearable healthcare IoT devices that was supplied by a TEG energy conversion system was 

presented in [97]. 
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TEGs are devices that meet the electrical energy needs of both devices that need communication with each 

other to a certain extent. For this reason, it has started to attract a great deal of attention in IoT systems. The 

usability of TEGs for alternate power sources in the wireless sensor network was showed in [98]. Th study 

illustrated that TEGs meet the power requirements of low-power sensing nodes and outperform batteries as 

a cost-effective setup, successfully. Thermal energy in the form of metabolic heat is a promising source for 

robust supplying a power to electronic components. The IoT with integrated wireless sensor networks 

become important issues that increasing demand for renewable power supply and management. H. Park et 

al. [99] have demonstrated the application of TEG energy harvesting system as a renewable energy source 

for IoT, including wireless sensor networks. They investigated the models of the human thermoregulatory 

process on body heat harvesting. Finally, the authors addressed a combination with a DC–DC converter to 

boost its low output voltage for power management. A simulation-based analysis for defining the 

performance of TEC with the power management integrated circuit for harvesting heat energy was given 

in [100]. 

 

Wireless sensor networks (WSNs) are networks that detect physical and chemical changes in different 

processes or regions with the help of sensors and combine them at one point to evaluate them, operate 

independently from each other, and have wireless connectivity. A WSN consists of hundreds or even 

thousands of sensors drop linked together. Developments in electronics have enabled WSN networks to 

communicate with each other with low cost and low power requirement. Thanks to their ability to work 

with low electrical energy, TEGs have had a wide range of uses. In addition, WSNs have found a wide 

range of use thanks to their wireless communication. Due to these features, it has become a communication 

network that can be preferred in the military field. Moreover, the human physiological data, tracking, and 

monitoring can be done by doctors inside a hospital through a WSN [101–105]. Every technical process 

produces waste heat. Modern wireless sensor modules require only ~100 µW to 10mW. The electrical 

power requirements of WSNs range from 100 µW to 10 mW. The decrease in this value is due to the 

development of new technology electronics. Considering the electrical energy and lifetime produced by 

TEGs, these are quite suitable for WSNs. A transient modelling of TEGs for utilization in WSRs nodes as 

an electric power generator that convert thermal energy into electrical energy was showed in [106]. A TEG 

system consisting of a double printed circuit that will convert environmental temperature changes into 

electrical energy to meet the electrical energy needs of WSNs was designed [107]. 

 

Today, it has become more popular to supply WSN nodes with thermal energy harvesting TEGs instead of 

being powered by batteries. Various processes are used to convert the ambient temperature source into 

electrical energy. Recently, researchers and engineers are moving towards the conversion of waste heat 

energy, which is abundant in energy processes and environment, into electrical energy. When the thermal 

energy in the environment is used, electrical energy in mW levels can be obtained by using TEGs. This will 

increase when the ZT values of TEGs are further increased. A study combining TEGs with WSN nodes 

was conducted in [108]. The system has been implemented a self-optimization process to deliver the 

electrical energy obtained from TEG to the WSN node in a continuous and stable manner. J.P Im et al. 

[109] installed a self-powered WSN operation with silicon-based 3D TEG system for operating temperature 

sensor, humidity sensor, radio frequency module and integrated circuit. Eventually, they transmitted the 

data of the humidity and temperature sensors with a radio frequency module and proved the accuracy of 

this data. A thermoelectric harvester with WSN node on water pipelines at the low-temperature gradient 

was fulfilled in [110]. 

 

2.3. Solar TEGs 

 

Integration of TEGs in solar photovoltaic thermal hybrid panels can generate electrical energy. It increases 

the efficiency of photovoltaic panels. In addition, this hybrid structure results in the production of heat 

energy. The electrical energy can be consumed in local loads, stored in batteries, and injected into the 

electronic device network. The heat can be used as hot water, air conditioning, heat pumps, and cooling 

machines produce absorption in the cooling system [111]. E.A. Chavez-Urbiola et al. [112] investigated 

the possibility of using TEGs in solar hybrid systems. The authors examined different systems such as 

radiation concentration, traditional thermal geometry, and TEG heat extractor. They studied experimentally 

on traditional semiconductor material designed at ~200°C temperature. The efficiency of TEG’s has almost 
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linear dependence on the temperature difference. Over the load power generated of 3 W. The current and 

voltage were also linear with temperature. In conclusion, the relation to the efficiency as well as some 

recommendations is to optimal solar cells for applications in these systems. A.H. Yavuz et al. [113] 

proposed and analyzed the solar TEG assisted a water pump for agricultural irrigation purposes. Authors 

designed a single module solar TEG cell with average solar radiation in the Turkey region and calculated 

its electrical parameters. Authors used a tar-coated, heat-absorbing copper plate, 94°C the hot surface 

temperature, and 21°C the cold surface temperature to developing the system. The simulated a solar TEG 

panel corresponded to a 275 W photovoltaic panel. Finally, authors obtained the 187 W/m2 of power, 

whereas solar TEG panel can provide 1000 W/m2. S. Su et al. [114] investigated the high-efficiency solar 

TEGs with non-homogeneously doped nanomaterials. Authors composed a solar TEG within a flat-panel 

collector without the optical concentration in a vacuum enclosure. They designed quantum-confined 

electrons in thermoelectric nanostructure materials to achieved reversible electron transport. After that, they 

calculated the maximum efficiency is much larger compare to the previous report. The performance 

revealed that the influences of the current density and thermal conductivity. Photovoltaic modules with 

TEGs are directly converted into electric power from solar radiation. The process is known as a solar-

powered hybrid power source. TEG module has a small output power with the temperature difference 

between its two surfaces. For this circumstance, individually, TEGs cannot be utilized in solar heat 

harvesting. Overcome this problem required a prototype of the proposed photovoltaic-thermoelectric hybrid 

power source. Some researcher solves this defect through modelling, simulation, design, performance 

evaluation, electrical and mechanical investigation [115–119]. The contributions of these research results 

can be outlined under as follows: 1) The hybrid power source can directly convert both solar radiation and 

heat into electric energy. 2) It can enable utilizing the TEGs for low-grade thermal energy harvesting. 3) It 

provides a constant voltage, so other power generation systems can be added by connecting them through 

a converter. 4) The system uses a high-efficient maximum power point tracking with the adaptive and 

variable step size. 

 

The power values obtained from the analyzed applications have been presented in Table. It should be noted 

that the temperature difference between the hot and cold surfaces of TEGs, ZT, the number of TEGs used 

and the Seebeck constants of the TEGs affect the amount of generated power from these TEGs. Since the 

amount of waste heat emitted from the exhaust of automotive is high, the number of TEGs used has been 

increased, and as a result, the amount of power produced has increased. The generated power could be used 

in places with higher energy requirements. Fewer TEGs are needed for feeding electronic devices with low 

power requirements. As a result, the generated power values are less. These TEGs are used in the fields of 

IoT, wireless sensors and biosensors. 

 

3. LIMITATION AND CHALLENGE 

 

The TEGs are low efficient performance due to the lower ZT compare to other energy conversion 

technologies. The human body and atmosphere temperature difference low, sufficient thermal energy is not 

provided as input to TEG, so sometimes it does not work properly. It does not allow additional practical 

heat sinks due to small size and flexibility for cooling purposes. The internal and external load of TEG is 

the other difficulty to harvest optimum energy. Its efficiencies are very limited due to their thermal and 

electrical behavior being dependent on each other. Recently, thermoelectric nanostructure material 

technology makes them more efficient in some selective applications purpose. However, the TEGs 

implementation in IoT devices would help advance applications. The approaches of these should be 

overcome by the following criteria: 1) It can easily harvest energy in dark, hidden locations where the only 

available energy sources are heat losses. 2) Because they are partially commercialized devices, they do not 

have a standardized power cost. 3) It is reliable, silent, requires low or no maintenance and is easily scalable. 

4) High-quality, cost-effective, and tunable TE properties. 5) Compacted for machining or 
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Table. The power values obtained from the current applications analyzed 

Application 

Area 

Number 

of TEGs 

Generated 

Power  

Ref. Application 

Area 

Number 

of TEGs 

Generated 

Power 

Ref. 

Automotive 64 1538 W [69] Solar 1 85.5 mW [117] 

Automotive 224 1392 W [5] Roadway 4 47.14 mW [2] 

Automotive 400 1000 W [68] Wireless 1 34 mW [109] 

Automotive 60 944 W [67] Aerospace 1 30 mW [78] 

Automotive 32 751 W [75] Aerospace 1 25 mW [77] 

Automotive 18 627 W [73] IoT 1 7.6 mW [106] 

Process 50 388 W [65] Waste heat 2 7 mW [11] 

Solar  87 275 W [112] Wireless 1 2 mW [110] 

Waste heat 40 240 W [62] IoT 1 1.719 mW [100] 

Automotive 12 118 W [71] Environment 1 1.48 mW [107] 

Automotive 18 98.8 W [72] IoT 1 400 µW [96] 

Automotive 30 98.3 W [74] Human body 1 260 µW [83] 

Waste heat 20 41 W [63] Sensors 1 229 µW [99] 

Waste heat 20 29 W [61] Accelerometer 1 192.6 µW [87] 

Solar 7 15 W [115] Body heat 1 156.5 µW [16] 

Solar  19 14 W [111] Micropower 1 100 µW [54] 

Waste heat 30 11.5 W [1] Human body 1 38 µW [86] 

Micropower  1 1.8 W [44] Micropower  1 29 µW [59] 

IoT 1 0.53 W [3] Body heat 1 18.58 µW [51] 

Solar PV 1 0.5 W [20] Micropower 1 10 µW [60] 

Wireless 1 115.7 mW [108] Waste heat 1 0.4 µW [12] 

 

device-controllable behavior. 6) Compacted nanoscale features. 7) Enhanced the ZT value over the bulk 

materials. 8) High thermal stability for extended with time. 9) High TE efficiency. Continued research on 

this field to gain a more quantitative understanding is necessary to allow the applications. This research 

field will optimize nanostructure thermoelectric semiconductor materials and accelerate the wide adoption 

of thermoelectric technologies in different applications. 

 

4. CONCLUSION AND FUTURE RESEARCH 

 

Although the efficiency of TEGs is low and their installation costs are high, their usage areas are expanding 

thanks to their long-life operation under extreme conditions without requiring maintenance, and their ability 

to harvest electrical energy from thermal energy. In this review paper, the TEG applications for different 

purposes have been presented. These applications required high costs for installations. Therefore, it has a 

limited sector. Moreover, TEGs have proven their extreme reliability through these applications. The 

application of TEGs in various sectors is within certain perspectives. Some of the researchers achieved 

success in various TEG applications. Interest in these applications has revived with the advent of modern 

technology that makes it possible to overcome the critical hurdle of TEG applications. In terms of efficiency 

and environment, current solutions are focused on the development of TEG applications with efficient 

nanostructured thermoelectric materials with interconnected electrical and thermal properties of these 

materials, and their new designs can allow for better integration into energy conversion systems. 
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