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Abstract: In this paper, we characterize the unit groups of semisimple group algebras FqG of non-metabelian
groups of order 108, where Fq is a field with q = pk elements for some prime p > 3 and positive integer
k. Upto isomorphism, there are 45 groups of order 108 but only 4 of them are non-metabelian. We
consider all the non-metabelian groups of order 108 and find the Wedderburn decomposition of their
semisimple group algebras. And as a by-product obtain the unit groups.
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1. Introduction

Let Fq denote a finite field with q = pk elements for odd prime p > 3, G be a finite group and FqG
be the group algebra. The study of the unit groups of group algebras is a classical problem and has
applications in cryptography [4] as well as in coding theory [5] etc. For the exploration of Lie properties
of group algebras and isomorphism problems, units are very useful see, e.g. [1]. We refer to [11] for
elementary definitions and results about the group algebras and [2, 14] for the abelian group algebras
and their units. Recall that a group G is metabelian if there is a normal subgroup N of G such that both
N and G/N are abelian. The unit groups of the finite semisimple group algebras of metabelian groups
have been well studied.

In this paper, we are concerned about the unit groups of the group algebras of non-metabelian
groups. Let us first mention the available literature in this direction. From [13], we know that all the
groups up to order 23 are metabelian. The only non-metabelian groups of order 24 are S4 and SL(2, 3)
and the unit group of their group algebras have been discussed in [7, 9]. Further, from [13], we also
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deduce that there are non-metabelian groups of order of 48, 54, 60, 72, 108 etc. The unit groups of the
group algebras of non-metabelian groups up to order 72 have been discussed in [10, 12]. The unit group
of the semisimple group algebra of the non-metabelian group SL(2, 5) has been discussed in [15].

The main motive of this paper is to characterize the unit groups of FqG, where G represents a
non-metabelian group of order 108. It can be verified that, upto isomorphism, there are 45 groups of
order 108 and only 4 of them are non-metabelian. We deduce the Wedderburn decomposition of group
algebras of all the 4 non-metabelian groups and then characterize the respective unit groups. The rest of
the paper is organized in following manner: We recall all the basic definitions and results to be needed
in our work in Section 2. Our main results on the characterization of the unit groups are presented in
third section and the last section includes some discussion.

2. Preliminaries

Let e denote the exponent of G, ζ a primitive eth root of unity. On the lines of [3], we define

IF = {n | ζ 7→ ζn is an automorphism of F(ζ) over F},

where F is an arbitrary finite field. Since, the Galois group Gal
(
F(ζ),F

)
is a cyclic group, for any τ ∈

Gal
(
F(ζ),F

)
, there exists a positive integer s which is invertible modulo e such that τ(ζ) = ζs. In other

words, IF is a subgroup of the multiplicative group Z∗e (group of integers which are invertible with respect
to multiplication modulo e). For any p-regular element g ∈ G, i.e. an element whose order is not divisible
by p, let the sum of all conjugates of g be denoted by γg, and the cyclotomic F-class of γg be denoted
by S(γg) = {γgn | n ∈ IF}. The cardinality of S(γg) and the number of cyclotomic F-classes will be
incorporated later on for the characterization of the unit groups.

Next, we recall two important results from [3]. First one relates the number of cyclotomic F-classes
with the number of simple components of FG/J(FG). Here J(FG) denotes the Jacobson radical of FG.
Second one is about the cardinality of any cyclotomic F-class in G.

Theorem 2.1. The number of simple components of FG/J(FG) and the number of cyclotomic F-classes
in G are equal.

Theorem 2.2. Let ζ be defined as above and j be the number of cyclotomic F-classes in G. If Ki, 1 ≤
i ≤ j, are the simple components of center of FG/J(FG) and Si, 1 ≤ i ≤ j, are the cyclotomic F-classes
in G, then |Si| = [Ki : F] for each i after suitable ordering of the indices if required.

To determine the structure of unit group U(FG), we need to determine the Wedderburn decomposi-
tion of the group algebra FG. In other words, we want to determine the simple components of FG. Based
on the existing literature, we can always claim that F is one of the simple component of decomposition
of FG/J(FG). The simple proof is given here for the completeness.

Lemma 2.3. Let A1 and A2 denote the finite dimensional algebras over F. Further, let A2 be semisimple
and g be an onto homomorphism between A1 and A2, then we must have A1/J(A1) ∼= A3 + A2, where
A3 is some semisimple F-algebra.

Proof. From [6], we have J(A1) ⊆ Ker(g). This means there exists F-algebra homomorphism g1 from
A1/J(A1) to A2 which is also onto. In other words, we have

g1 : A1/J(A1) 7−→ A2 defined by g1(a+ J(A1)) = g(a), a ∈ A1.

As A1/J(A1) is semisimple, there exists an ideal I of A1/J(A1) such that

A1/J(A1) = ker(g1)⊕ I.
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Our claim is that I ∼= A2. For this to prove, note that any element a ∈ A1/J(A1) can be uniquely written
as a = a1 + a2 where a1 ∈ ker(g1), a2 ∈ I. So, define

g2 : A1/J(A1) 7→ ker(g1)⊕A2 by g2(a) = (a1, g1(a2)).

Since, ker(g1) is a semisimple algebra over F and A2 is an isomorphic F-algebra, claim and the result
holds.

Above lemma concludes that F is one of the simple components of FG provided J(FG) = 0. Now,
we recall a result which characterize the set IF defined in the beginning of this section. For proof, see
Theorem 2.21 in [8].

Theorem 2.4. Let F be a finite field with prime power order q. If e is such that gcd(e, q) = 1, ζ
is the primitive eth root of unity and |q| is the order of q modulo e, then modulo e, we have IF =
{1, q, q2, . . . , q|q|−1}.

Next result is Proposition 3.6.11 from [11] and is useful for the determination of commutative simple
components of the group algebra FqG.

Theorem 2.5. If RG is a semisimple group algebra, then RG ∼= R
(
G/G′

)
⊕ ∆(G,G′), where G′ is

the commutator subgroup of G, R
(
G/G′

)
is the sum of all commutative simple components of RG, and

∆(G,G′) is the sum of all others.

We end this section by recalling a Proposition 3.6.7 from [11] which is a generalized version of the
last result.

Theorem 2.6. Let RG be a semisimple group algebra and H be a normal subgroup of G. Then RG ∼=
R
(
G/H

)
⊕∆(G,H), where ∆(G,H) is a left ideal of RG generated by the set {h− 1 : h ∈ H}.

3. Unit group of FqG where G is a non-metabelian group of order
108

The main objective of this section is to characterize the unit group of FqG where G is a non-
metabelian group of order 108. Upto isomorphism, there are 4 non-metabelian groups of order 108
namely: (1) G1 = ((C3 × C3) o C3) o C4. (2) G2 = ((C3 × C3) o C3) o C4.

(3) G3 = ((C3 × C3) o C3) o (C2 × C2). (4) G4 = C2 × (((C3 × C3) o C3) o C2).

Here G1 and G2 are two non-isomorphic groups formed by the semi-direct product of (C3×C3)oC3

and C4 which will be clear once we discuss the presentation of these groups. We consider each of
these 4 groups one by one and discuss the unit groups of their respective group algebras along with
the Wedderburn decompositions in subsequent subsections. Throughout this paper, we use the notation
[x, y] = x−1y−1xy.

3.1. The group G1 = ((C3 × C3)o C3)o C4

Group G1 has the following presentation:

G1 = 〈x, y, z, w, t | x2y−1, [y, x], [z, x]z−1, [w, x]w−1, [t, x], y2, [z, y], [w, y],

[t, y], z3, [w, z]t−1, [t, z], w3, [t, w], t3〉.

Also G1 has 20 conjugacy classes as shown in the table below.
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r e x y z w t xy xt yz yw yt zw t2 xyt xt2 yzw yt2 z2w xyt2 yz2w

s 1 9 1 6 6 1 9 9 6 6 1 6 1 9 9 6 1 6 9 6
o 1 4 2 3 3 3 4 12 6 6 6 3 3 12 12 6 6 3 12 6

where r, s and o denote the representative of conjugacy class, size and order of the representative of
the conjugacy class, respectively. From the above discussion, it is clear that exponent of G1 is 12. Also
G′1
∼= (C3×C3)oC3 with G1/G

′
1
∼= C4. Next, we discuss the unit group of the group algebra FqG1 when

p > 3.

Theorem 3.1. The unit group of FqG1, for q = pk, p > 3 where Fq is a finite field having q = pk

elements is as follows:

1. for any p and k even or pk ≡ 1 mod 12 with k odd, we have

U(FqG1) ∼= (F∗q)4 ⊕GL2(Fq)8 ⊕GL3(Fq)8.

2. for pk ≡ 5 mod 12 with k odd, we have

U(FqG1) ∼= (F∗q)4 ⊕GL2(Fq)8 ⊕GL3(Fq2)4.

3. for pk ≡ 7 mod 12 with k odd, we have

U(FqG1) ∼= (F∗q)2 ⊕ F∗q2 ⊕GL2(Fq)8 ⊕GL3(Fq)4 ⊕GL3(Fq2)2.

4. for pk ≡ 11 mod 12 with k odd, we have

U(FqG1) ∼= (F∗q)2 ⊕ F∗q2 ⊕GL2(Fq)8 ⊕GL3(Fq2)4.

Proof. Since FqG1 is semisimple, using Lemma 2.3 we get

FqG1
∼= Fq ⊕t−1

r=1 Mnr
(Fr), for some t ∈ Z. (1)

First assume that k is even which means for any prime p > 3, we have

pk ≡ 1 mod 3 and pk ≡ 1 mod 4.

Using Chinese remainder theorem, we get pk ≡ 1 mod 12. This means |S(γg)| = 1 for each g ∈ G1 as
IF = {1}. Hence, (1), Theorems 2.1 and 2.2 imply that

FqG1
∼= Fq ⊕19

r=1 Mnr (Fq). (2)

Incorporating Theorem 2.5 with G′1 ∼= (C3 × C3) o C3 in (2) to obtain

FqG1
∼= F4

q ⊕16
r=1 Mnr (Fq), where nr ≥ 2 with 104 =

16∑
r=1

n2r. (3)

Above equation gives the only possibility (28, 38) for the values of n′rs where ab means (a, a, · · · , b times)
and therefore, (3) implies that

FqG1
∼= F4

q ⊕M2(Fq)8 ⊕M3(Fq)8. (4)

Now we consider that k is odd. We shall discuss this possibility in the following four cases:
Case 1: pk ≡ 1 mod 3 and pk ≡ 1 mod 4. In this case, Wedderburn decomposition is given by (4).
Case 2. pk ≡ 5 mod 12. In this case, we have

S(γt) = {γt, γt2}, S(γxt) = {γxt, γxt2}, S(γyt) = {γyt, γyt2}, S(γxyt) = {γxyt, γxyt2},
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and S(γg) = {γg} for the remaining representatives g of conjugacy classes. Therefore, (1) and Theorems
2.1, 2.2 imply that

FqG1
∼= Fq ⊕11

r=1 Mnr
(Fq)⊕15

r=12 Mnr
(Fq2).

Since G1/G
′
1
∼= C4, we have FqC4

∼= F4
q. This with above and Theorem 2.5 yields

FqG1
∼= F4

q ⊕8
r=1 Mnr

(Fq)⊕12
r=9 Mnr

(Fq2), nr ≥ 2 with 104 =

8∑
r=1

n2r + 2

12∑
r=9

n2r. (5)

Further, consider the normal subgroup H1 = 〈t〉 of G1 having order 3 with K1 = G1/H1
∼= (C3 ×

C3) o C4. The quotient group K1 has 12 conjugacy classes as shown in the table below. Here elements
of K1 are cosets, for instance, x ∈ K1 is xH1 but we keep the same notation.

r e x y z w xy yz yw zw yzw z2w yz2w

s 1 9 1 2 2 9 2 2 2 2 2 2
o 1 4 2 3 3 4 6 6 3 6 3 6

It can be verified that for all the representatives g of K1, |S(γg)| = 1. Therefore, from Theorems 2.1 and
2.2, we have

FqK1
∼= Fq ⊕11

r=1 Mtr (Fq), tr ∈ Z.

Observe that K1/K
′
1
∼= C4. So, Theorem 2.5 implies that

FqK1
∼= F4

q ⊕8
r=1 Mtr (Fq), with 32 =

8∑
r=1

t2r, tr ≥ 2.

This gives us the only choice (28) for values of t′rs and therefore, Theorem 2.5 and (5) yields

FqG1
∼= F4

q ⊕M2(Fq)8 ⊕4
r=1 Mnr

(Fq2), nr ≥ 2 with 36 =

4∑
r=1

n2r.

Above leaves us with the only choice (34) for values of n′rs which means the required Wedderburn
decomposition is

FqG1
∼= F4

q ⊕M2(Fq)8 ⊕M3(Fq2)4.

Case 3. pk ≡ 7 mod 12. In this case, we have

S(γx) = {γx, γxy}, S(γxt) = {γxt, γxyt}, S(γxt2) = {γxt2 , γxyt2}, and S(γg) = {γg}

for the remaining representatives g of conjugacy classes. Therefore (1) and Theorems 2.1, 2.2 imply that

FqG1
∼= Fq ⊕13

r=1 Mnr (Fq)⊕16
r=14 Mnr (Fq2).

Since G1/G
′
1
∼= C4, we have FqC4

∼= F2
q ⊕ Fq2 . This with above and Theorem 2.5 yields

FqG1
∼= F2

q ⊕ Fq2 ⊕12
r=1 Mnr

(Fq)⊕14
r=13 Mnr

(Fq2), nr ≥ 2 with 104 =

12∑
r=1

n2r + 2

14∑
r=13

n2r. (6)
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Again consider the normal subgroup H1 of G1. In this case, it can be verified that |S(γg)| = 1 for all
the representatives g of K1 except x and xy for which S(γx) = {γx, γxy}. Therefore, employing Theorems
2.1 and 2.2 to obtain

FqK1
∼= Fq ⊕9

r=1 Mtr (Fq)⊕Mt10(Fq2), tr ∈ Z.

Since K1/K
′
1
∼= C4, above and Theorem 2.5 imply that

FqK1
∼= F2

q ⊕ Fq2 ⊕8
r=1 Mtr (Fq), with 32 =

8∑
r=1

t2r, tr ≥ 2.

This gives us the only choice (28) for values of t′rs. Hence, Theorem 2.6 and (6) imply that

FqG1
∼= F2

q ⊕ Fq2 ⊕M2(Fq)8 ⊕4
r=1 Mnr

(Fq)⊕6
r=5 Mnr

(Fq2), with 72 =

4∑
r=1

n2r + 2

6∑
r=5

n2r.

Above leaves us with the only choice (36) for values of n′rs which means the required Wedderburn
decomposition is

FqG1
∼= F2

q ⊕ Fq2 ⊕M2(Fq)8 ⊕M3(Fq)4 ⊕M3(Fq2)2.

Case 4. pk ≡ 11 mod 12. In this case, we have

S(γt) = {γt, γt2}, S(γxt) = {γxt, γxyt2}, S(γyt) = {γyt, γyt2}, S(γxyt) = {γxyt, γxt2},

S(γx) = {γx, γxy}, and S(γg) = {γg}

for the remaining representatives g of conjugacy classes. Therefore, (1) and Theorems 2.1, 2.2 imply that

FqG1
∼= Fq ⊕9

r=1 Mnr (Fq)⊕14
r=10 Mnr (Fq2).

Since G1/G
′
1
∼= C4, we have FqC4

∼= F2
q ⊕ Fq2 . This with above and Theorem 2.5 yields

FqG1
∼= F2

q ⊕ Fq2 ⊕8
r=1 Mnr (Fq)⊕12

r=9 Mnr (Fq2), nr ≥ 2 with 104 =

8∑
r=1

n2r + 2

12∑
r=9

n2r. (7)

In this case, again we have |S(γg)| = 1 for all representatives g of K1 except x and xy which means
the Wedderburn decomposition of FqK1 is same as obtained in case 3, i.e.

FqK1
∼= F2

q ⊕ Fq2 ⊕M2(Fq)8.

Now employ Theorem 2.6 and (7) to obtain

FqG1
∼= F2

q ⊕ Fq2 ⊕M2(Fq)8 ⊕4
r=1 Mnr (Fq2), with 36 =

4∑
r=1

n2r.

This leaves us with the only choice (34) for values of n′rs which means the required Wedderburn decom-
position is

FqG1
∼= F2

q ⊕ Fq2 ⊕M2(Fq)8 ⊕M3(Fq2)4.
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3.2. The group G2 = ((C3 × C3)o C3)o C4

Group G2 has the following presentation:

G2 = 〈x, y, z, w, t | x2y−1, [y, x], [z, x]w−2, [w, x]t−1w−1z−2, [t, x], y2, [z, y]z−1,

[w, y]t−1w−1, [t, y], z3, [w, z]t−1, [t, z], w3, [t, w], t3〉.

Further, G2 has 14 conjugacy classes as shown in the table below.

r e x y z w t xy xz xt yw yt t2 xyz xyzw

s 1 9 9 12 12 1 9 9 9 9 9 1 9 9
o 1 4 2 3 3 3 4 12 12 6 6 3 12 12

From above discussion, clearly the exponent of G2 is 12. Also G′2 ∼= (C3 × C3) o C3 and G2/G
′
2
∼= C4.

Next, we discuss the unit group of FqG2 when p > 3.

Theorem 3.2. The unit group of FqG2, for q = pk, p > 3 where Fq is a finite field having q = pk

elements is as follows:

1. for any p and k even or pk ≡ 1 mod 12 with k odd, we have

U(FqG2) ∼= (F∗q)4 ⊕GL3(Fq)8 ⊕GL4(Fq)2.

2. for pk ≡ 5 mod 12 with k odd, we have

U(FqG2) ∼= (F∗q)4 ⊕GL4(Fq)2 ⊕GL3(Fq2)4.

3. for pk ≡ 7 mod 12 with k odd, we have

U(FqG2) ∼= (F∗q)2 ⊕ F∗q2 ⊕GL3(Fq)4 ⊕GL4(Fq)2 ⊕GL3(Fq2)2.

4. for pk ≡ 11 mod 12 with k odd, we have

U(FqG2) ∼= (F∗q)2 ⊕ F∗q2 ⊕GL4(Fq)2 ⊕GL3(Fq2)4.

Proof. Since FqG2 is semisimple, we have

FqG2
∼= Fq ⊕t−1

r=1 Mnr (Fr), for some t ∈ Z. (8)

First assume that k is even which means for any prime p > 3, pk ≡ 1 mod 12. This means |S(γg)| = 1
for each g ∈ G2. Hence, (8), Theorems 2.1 and 2.2 imply that

FqG2
∼= Fq ⊕13

r=1 Mnr (Fq).

Using Theorem 2.5 with G′2 ∼= (C3 × C3) o C3 to obtain

FqG2
∼= F4

q ⊕10
r=1 Mnr

(Fq), where nr ≥ 2 with 104 =

10∑
r=1

n2r. (9)

Above equation gives us four possibilities (28, 62), (25, 32, 4, 52), (24, 34, 4, 6) and (38, 42) for the values
of n′rs. Further, consider the normal subgroup H2 = 〈t〉 of G2 having order 3 with K2 = G2/H2

∼=
(C3 × C3) o C4. It can be verified that K2 has 6 conjugacy classes as shown in the table below.

r e x y z w xy

s 1 9 9 4 4 9
o 1 4 2 3 3 4
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Also, for all the representatives g of K2, |S(γg)| = 1 which means by Theorems 2.1 and 2.2, we have

FqK2
∼= Fq ⊕5

r=1 Mtr (Fq), tr ∈ Z.

Observe that K2/K
′
2
∼= C4. This with above and Theorem 2.4 imply that

FqK2
∼= F4

q ⊕2
r=1 Mtr (Fq), with 32 =

2∑
r=1

t2r, tr ≥ 2.

This gives us the only choice (42) for values of t′rs. Therefore, Theorem 2.6 and (9) imply that (38, 42) is
the correct choice for values of n′rs and therefore, we have

FqG2
∼= F4

q ⊕M3(Fq)8 ⊕M4(Fq)2. (10)

Now we consider that k is odd. We shall discuss this possibility in the following four cases:
Case 1: pk ≡ 1 mod 12. In this case, Wedderburn decomposition is given by (10).
Case 2. pk ≡ 5 mod 12. In this case, we have

S(γt) = {γt, γt2}, S(γxz) = {γxz, γxt}, S(γyw) = {γyw, γyt}, S(γxyz) = {γxyz, γxyzw},

and S(γg) = {γg} for the remaining representatives g of conjugacy classes. Therefore, (8) and Theorems
2.1, 2.2 imply that

FqG2
∼= Fq ⊕5

r=1 Mnr
(Fq)⊕9

r=6 Mnr
(Fq2).

Since G2/G
′
2
∼= C4, we have FqC4

∼= F4
q. This with above and Theorem 2.5 yields

FqG2
∼= F4

q ⊕2
r=1 Mnr

(Fq)⊕6
r=3 Mnr

(Fq2), nr ≥ 2 with 104 =

2∑
r=1

n2r + 2

6∑
r=3

n2r. (11)

Further, again consider the normal subgroup H2 = 〈t〉 of G2. It can be verified that for all the represen-
tatives g of K2, |S(γg)| = 1 which means (as earlier)

FqK2
∼= F4

q ⊕M4(Fq)2.

This with Theorem 2.6 and (11) imply that

FqG2
∼= F4

q ⊕M4(Fq)2 ⊕4
r=1 Mnr (Fq2), nr ≥ 2 with 36 =

4∑
r=1

n2r.

Above leaves us with the only choice (34) for values of n′rs which means the required Wedderburn de-
composition is

FqG2
∼= F4

q ⊕M4(Fq)2 ⊕M3(Fq2)4.

Case 3. pk ≡ 7 mod 12. In this case, we have

S(γx) = {γx, γxy}, S(γxz) = {γxz, γxyzw}, S(γxt) = {γxt, γxyz}, and S(γg) = {γg}

for the remaining representatives g of conjugacy classes. Therefore, (8) and Theorems 2.1, 2.2 imply that

FqG2
∼= Fq ⊕7

r=1 Mnr
(Fq)⊕10

r=8 Mnr
(Fq2).

Since G2/G
′
2
∼= C4, we have FqC4

∼= F2
q ⊕ Fq2 . This with Theorem 2.5 yields

FqG2
∼= F2

q ⊕ Fq2 ⊕6
r=1 Mnr

(Fq)⊕8
r=7 Mnr

(Fq2), nr ≥ 2 with 104 =

6∑
r=1

n2r + 2

8∑
r=7

n2r. (12)
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Further, it can be verified that |S(γg)| = 1 for all the representatives g of K2 except x and xy. For these,
we have S(γx) = {γx, γxy} which means by Theorems 2.1 and 2.2, we have

FqK2
∼= Fq ⊕3

r=1 Mtr (Fq)⊕Mt4(Fq2), tr ∈ Z.

Incorporating K2/K
′
2
∼= C4 with Theorem 2.5 to obtain

FqK2
∼= F2

q ⊕ Fq2 ⊕2
r=1 Mtr (Fq), with 32 =

2∑
r=1

t2r, tr ≥ 2.

This gives us only choice (42) for values of t′rs. Therefore, Theorem 2.6 and (12) yields

FqG2
∼= F2

q ⊕ Fq2 ⊕M4(Fq)2 ⊕4
r=1 Mnr

(Fq)⊕6
r=5 Mnr

(Fq2), with 72 =

4∑
r=1

n2r + 2

6∑
r=5

n2r.

Above leaves us with the only choice (36) for values of n′r which means the required Wedderburn decom-
position is

FqG2
∼= F2

q ⊕ Fq2 ⊕M4(Fq)2 ⊕M3(Fq)4 ⊕M3(Fq2)2.

Case 4. pk ≡ 11 mod 12. In this case, we have

S(γt) = {γt, γt2}, S(γx) = {γx, γxy}, S(γxz) = {γxz, γxyz}, S(γxt) = {γxt, γxyzw},

S(γyw) = {γyw, γyt}, and S(γg) = {γg}

for the remaining representatives g of conjugacy classes. Therefore, (8) and Theorems 2.1, 2.2 imply that

FqG2
∼= Fq ⊕3

r=1 Mnr
(Fq)⊕8

r=4 Mnr
(Fq2).

Since G2/G
′
2
∼= C4, we have FqC4

∼= F2
q ⊕ Fq2 . This with above and Theorem 2.5 yields

FqG2
∼= F2

q ⊕ Fq2 ⊕2
r=1 Mnr (Fq)⊕6

r=3 Mnr (Fq2), nr ≥ 2 with 104 =

2∑
r=1

n2r + 2

6∑
r=3

n2r. (13)

Further, it can be verified that |S(γg)| = 1 for all the representatives g of K2 except x and xy which
means (as in case 3),

FqK2
∼= F2

q ⊕ Fq2 ⊕M4(Fq)2.

Now employ Theorem 2.6 and (13) to obtain

FqG2
∼= F2

q ⊕ Fq2 ⊕M4(Fq)2 ⊕4
r=1 Mnr

(Fq2), with 36 =

4∑
r=1

n2r.

Above leaves us with the only choice (34) for values of n′r which means the required Wedderburn decom-
position is

FqG2
∼= F2

q ⊕ Fq2 ⊕M4(Fq)2 ⊕M3(Fq2)4.
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3.3. The group G3 = ((C3 × C3)o C3)o (C2 × C2)

Group G3 has the following presentation:

G3 = 〈x, y, z, w, t | x2, [y, x], [z, x], [w, x]w−1, [t, x]t−1, y2, [z, y]z−1, [w, y], [t, y]t−1,

z3, [w, z]t−1, [t, z], w3, [t, w], t3〉.

Further, G3 has 11 conjugacy classes as shown in the table below.

rep 1 x y z w t xy xz yw zw xyt

size of class 1 9 9 6 6 2 9 18 18 12 18
order of rep 1 2 2 3 3 3 2 6 6 3 6

From above discussion, clearly the exponent of G3 is 6. Also G′3 ∼= (C3×C3)oC3 with G3/G
′
3
∼= C2×C2.

Next, we discuss the unit group of FqG3 when p > 3.

Theorem 3.3. The unit group of FqG3, for q = pk, p > 3 where Fq is a finite field having q = pk

elements is as follows:

U(FqG3) ∼= (F∗q)4 ⊕GL2(Fq)4 ⊕GL4(Fq)⊕GL6(Fq)2.

Proof. Since FqG3 is semisimple, we have

FqG3
∼= Fq ⊕t−1

r=1 Mnr
(Fr), for some t ∈ Z. (14)

First assume that k is even which means for any prime p > 3, pk ≡ 1 mod 6. This means |S(γg)| = 1 for
each g ∈ G3. Hence, (14), Theorems 2.1 and 2.2 imply that

FqG3
∼= Fq ⊕10

r=1 Mnr (Fq).

Incorporating Theorem 2.5 with G′3 ∼= (C3 × C3) o C3 in above to obtain

FqG3
∼= F4

q ⊕7
r=1 Mnr

(Fq), where nr ≥ 2 with 104 =

7∑
r=1

n2r. (15)

Above equation gives us four possibilities (24, 4, 62), (23, 32, 5, 7), (2, 32, 42, 52) and (34, 42, 6) for the
values of n′rs. Further, consider the normal subgroup H3 = 〈t〉 of G3 having order 3 with K3 = G3/H3

∼=
S3 × S3. It can be verified that K3 has 9 conjugacy classes as shown in the table below.

r e x y z w xy xz yw zw

s 1 3 3 2 2 9 6 6 4
o 1 2 2 3 3 2 6 6 3

Further, for all the representatives g of K3, |S(γg)| = 1 which means by Theorems 2.1 and 2.2, we have

FqK3
∼= Fq ⊕8

r=1 Mtr (Fq), tr ∈ Z.

Observe that K3/K
′
3
∼= C2 × C2. So, above and Theorem 2.5 imply that

FqK3
∼= F4

q ⊕5
r=1 Mtr (Fq), with 32 =

5∑
r=1

t2r, tr ≥ 2.
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This gives us the only choice (24, 4) for values of t′rs. Therefore, from Theorem 2.6 and (15), we
conclude that (24, 4, 62) is the correct choice for n′rs which means

FqG3
∼= F4

q ⊕M2(Fq)4 ⊕M4(Fq)⊕M6(Fq)2. (16)

Now we consider that k is odd. We shall discuss this possibility in the following two cases:
Case 1: pk ≡ 1 mod 6. In this case, Wedderburn decomposition is given by (16).
Case 2. pk ≡ 5 mod 6. In this case, we have S(γg) = {γg} for all the representatives g of conjugacy
classes. Therefore, Wedderburn decomposition is again given by (16).

3.4. The group G4 = C2 × (((C3 × C3)o C3)o C2

Group G4 has the following presentation:

G4 = 〈x, y, z, w, t | x2, [y, x], [z, x]z−1, [w, x]w−1, [t, x], y2, [z, y], [w, y], [t, y]t−1, z3,

[w, z]t−1, [t, z], w3, [t, w], t3〉.

Further, G4 has 20 conjugacy classes as shown in the table below.

r e x y z w t xy xt yz yw yt zw t2 xyt xt2 yzw yt2 z2w xyt2 yz2w

s 1 9 1 6 6 1 9 9 6 6 1 6 1 9 9 6 1 6 9 6
o 1 2 2 3 3 3 2 6 6 6 6 3 3 6 6 6 6 3 6 6

From above discussion, clearly the exponent of G4 is 6. Also G′4 ∼= (C3×C3)oC3 with G4/G
′
4
∼= C2×C2.

Next, we discuss the unit group of FqG4 when p > 3.

Theorem 3.4. The unit group of FqG4, for q = pk, p > 3 where Fq is a finite field having q = pk

elements is as follows:

1. for any p and k even or pk ≡ 1 mod 6 with k odd, we have

U(FqG4) ∼= (F∗q)4 ⊕GL2(Fq)8 ⊕GL3(Fq)8.

2. for pk ≡ 5 mod 6 with k odd, we have

U(FqG4) ∼= (F∗q)4 ⊕GL2(Fq)8 ⊕GL3(Fq2)4.

Proof. Since FqG4 is semisimple, we have

FqG4
∼= Fq ⊕t−1

r=1 Mnr (Fr), for some t ∈ Z. (17)

First assume that k is even which means for any prime p > 3, pk ≡ 1 mod 6. This means |S(γg)| = 1 for
each g ∈ G4. Hence, (17), Theorems 2.1 and 2.2 imply that

FqG4
∼= Fq ⊕19

r=1 Mnr (Fq).

Using Theorem 2.5 with G′4 ∼= (C3 × C3) o C3 in above to obtain

FqG4
∼= F4

q ⊕16
r=1 Mnr

(Fq), where nr ≥ 2 with 104 =

16∑
r=1

n2r. (18)

Above equation gives us the only possibility (28, 38) for values of n′rs which means the required
Wedderburn decomposition is

FqG4
∼= F4

q ⊕M2(Fq)8 ⊕M3(Fq)8. (19)
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Now we consider that k is odd. We shall discuss this possibility in the following two cases:
Case 1: pk ≡ 1 mod 6. In this case, Wedderburn decomposition is given by (19).
Case 2. pk ≡ 5 mod 6. In this case, we have

S(γt) = {γt, γt2}, S(γxt) = {γxt, γxt2}, S(γyt) = {γyt, γyt2}, S(γxyt) = {γxyt, γxyt2},

and S(γg) = {γg} for all the remaining representatives g of conjugacy classes. Hence, (17), Theorems 2.1
and 2.2 imply that

FqG4
∼= Fq ⊕11

r=1 Mnr
(Fq)⊕15

r=12 Mnr
(Fq2).

Above with Theorem 2.5 yields

FqG4
∼= F4

q ⊕8
r=1 Mnr

(Fq)⊕12
r=9 Mnr

(Fq2), where nr ≥ 2 with 104 =

8∑
r=1

n2r + 2

12∑
r=9

n2r. (20)

Further, consider the normal subgroup H4 = 〈t〉 of G4 having order 3 with K4 = G4/H4
∼= C2 × ((C3 ×

C3) o C2). It can be verified that K4 has 12 conjugacy classes as shown in the table below.

r e x y z w xy yz yw zw yzw z2w yz2w

s 1 9 1 2 2 9 2 2 2 2 2 2
o 1 2 2 3 3 2 6 6 3 6 3 6

It can be seen that for all the representatives g of K4, |S(γg)| = 1 which means by Theorems 2.1 and 2.2,
we have

FqK4
∼= Fq ⊕11

r=1 Mtr (Fq), tr ∈ Z.

Observe that K4/K
′
4
∼= C2 × C2. This with above and Theorem 2.5 imply that

FqK4
∼= F4

q ⊕8
r=1 Mtr (Fq), with 32 =

8∑
r=1

t2r, tr ≥ 2.

This gives us the only choice (28) for values of t′rs. Therefore, Theorem 2.6 and (20) yields

FqG4
∼= F4

q ⊕M2(Fq)8 ⊕4
r=1 Mnr (Fq2), nr ≥ 2 with 36 =

4∑
r=1

n2r.

Above leaves us with the only choice (34) for values of n′rs which means the required Wedderburn
decomposition is

FqG4
∼= F4

q ⊕M2(Fq)8 ⊕M3(Fq2)4.

4. Discussion

We have characterized the unit groups of semisimple group algebras of 4 non-metabelian groups
having order 108 and the results are verified using GAP. Clearly, the complexity in the calculation of
Wedderburn decomposition upsurges with the increase in order of the group and we need to look into the
Wedderburn decompositions of the quotient groups. The technique used for obtaining the Wedderburn
decomposition works well provided the group has non-trivial normal subgroups of small order.
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