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ABSTRACT 

This study proposes a bi-level optimization model for the transit frequency setting problem 
in bi-modal networks. The objective of the upper-level problem is to obtain a solution set of 
bus line frequencies that provide the minimum total travel cost of the car and bus users. 
Differential Evolution (DE) algorithm is employed in the upper-level model to determine the 
optimal headways for a given route structure. The lower-level model is a congested multi-
modal user equilibrium assignment model, which considers the interactions of car and bus 
flows, for determining joint mode/route preferences of the network users, which considers 
the interactions of car and bus flows. The developed model is tested on Mandl's benchmark 
network to evaluate its performance and applicability. The comparative experiments 
demonstrate that the proposed model leads to reductions in transportation costs. Also, the 
result of numerous optimization runs shows that DE performs well in finding similar 
frequency sets in independent optimizations.  

Keywords: Transit frequency setting problem, bus frequency optimization, multi-modal 
assignment, differential evolution algorithm, bi-level optimization. 

 

1. INTRODUCTION 

Increasing population and urbanization, along with economic development, lead to higher 
mobility needs and transportation demand, especially in developing countries, such as 
Turkey. Commonly, the main policy of decision-makers is to mitigate transportation-related 
problems emerging due to increasing demand and meeting this demand by public 
transportation. However, unplanned public transit services may lead to insufficient supply 
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causing high travel costs or oversupply causing high operational costs. Furthermore, it can 
increase private transportation travel times by discouraging the use of public transit. On the 
other hand, a well-planned transit system can enhance transportation system for both public 
and private transportation. 

Public transit networks can be improved through measures such as redesigning bus line 
routes, optimizing operational decisions such as bus line frequency setting, and traffic control 
measures such as allocating road network lanes like exclusive bus lanes. Optimal transit 
operation planning is a four-stage process, namely, network route design, timetable 
development, vehicle scheduling, and crew scheduling [1]. All stages should be handled 
simultaneously to obtain the optimum design. However, it is not possible with modern 
computing technology due to complex nature of these kind of problems [2]. Accordingly, 
each stage is usually solved sequentially [3]. 

Urban Transportation Network Design Problems are usually formulated as bi-level problems 
to allow considering passengers' reactions in network design decisions. The bi-level 
transportation network optimization problem is generally an NP-hard problem [4] commonly 
characterized by inherent non-convexity [5]. Due to the complexity of the problem, meta-
heuristics were proposed for network design problems in the literature for obtaining nearly 
global optimal solutions with high computation speeds at the expense of solution accuracy 
[6,7]. 

Total user travel cost and operator cost minimization are frequently used objective functions 
for transit network design problems. It is possible to satisfy these objectives in a transit 
network solely by optimizing bus frequencies, which is studied under Transit Network 
Frequency Setting Problems (TNFSP). 

There are numerous studies conducted related to TNFSP using heuristic approaches for 
mono-modal networks. [8] is one of the early studies adopting the bi-level model approach, 
in which the frequency setting problem is handled using a projected sub-gradient algorithm 
in the upper level with the aim of minimizing the total travel time and waiting times. The 
proposed model is performed in the transit networks of Stockholm (Sweden), Winnipeg 
(Canada), and Portland (USA). The study of [9] determines the line frequencies using a basic 
heuristic minimization algorithm, and implementing the proposed model to a small-size 
network. [10] proposes a frequency setting model to maximize demand under frequency 
value and fleet size constraints utilizing a gradient projection method. [11] determines both 
optimal frequencies and optimal bus sizes to minimize the sum of the total user cost and 
operator cost. The frequencies are determined using the Hooke-Jeeves algorithm, while the 
congested transit assignment is performed using ESTRAUS simulation software. In [12], a 
frequency setting model that minimizes total travel time of all users and required fleet size 
for the operators by Tabu Search is tested on a real-size network for morning-peak and off-
peak periods. [13] determines frequencies by two different frequency determination methods, 
named optimum frequency and demand-based frequency methods, on the routes obtained by 
Ant Colony Optimization. Lastly, [14] develops a frequency setting model based on a novel 
objective function with the aim of decreasing the spread of COVID-19 derived from 
crowding at transit stops. The model aims to minimize the total infection risk at the stops, 
under a limited fleet size, employing the Differential Evolution Algorithm (DE). 
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The studies presented above adopt the mono-modal assignment approach. This assumption 
is considered applicable for the networks where nonsignificant changes occur on the network 
since the minor improvements are unlikely to lead to user mode shifts between transit and 
private cars. However, if significant changes occur on the network, the network should be 
designed in consideration of elastic demand; thus, network design models should utilize 
multi-modal assignment.  There are several transit frequency setting studies regarding the 
multi-modal assignment in the literature. [15] minimizes the weighted sum of users' costs, 
operator cost, and external cost using a heuristic algorithm, testing the model and the 
algorithm for a real-scale transit network. [16] determines the optimal frequency on a small-
scale network with three transportation modes to minimize the total disutility using a 
stochastic user equilibrium assignment. 

Reviewing the studies presenting the comparative performances of metaheuristics in different 
engineering fields; in [17], DE is compared to well-known metaheuristics, such as Genetic 
Algorithm (GA) and Simulated Annealing (SA), in the loop-layout design problem, and the 
findings show that DEA is superior to others; [18] addresses the performance comparison 
among the metaheuristics, Cuckoo-Search (CK), Particle Swarm Optimization (PSO), 
Differential Evolution (DE), and Artificial Bee Colony (ABC) by testing over 50 different 
benchmark functions. Statistical analysis demonstrates that the problem-solving success of 
DE and CK is relatively better than that of PSO and ABC; [19] presents a comparison of six 
meta-heuristic techniques to solve the multilevel thresholding problem: GA, PSO, DE, Ant 
Colony Optimization (ACO), SA, and Tabu Search (TS), and concluding that Differential 
Evolution is the most efficient in terms of the quality of the solution. Based on the results of 
these studies, in this study, DE is employed for performance evaluation in the problem of 
frequency optimization of transit lines in multi-modal networks. 

In this study, a bi-level TNFSP model employing the Differential Evolution Algorithm (DE), 
an evolutionary metaheuristic algorithm, for optimizing frequencies in multi-modal networks 
is presented. The upper-level of the bi-level model is an optimization model that minimizes 
the total user cost by frequency setting, while the lower-level is a bi-modal assignment model 
that determines the transportation mode choice of the network users in addition to the route 
choices of private and public transportation modes. Therefore, the model proposed is suitable 
to be utilized as a decision support tool to optimize frequencies of public transportation lines 
considering the tradeoff between private car and public transportation use preferences, to 
minimize the costs of the users of both modes. 

To our knowledge, there is no study employing DE for solving Transit Network Frequency 
Setting problems. The main contributions of this study are: proposing DE for a multi-modal 
TNFSP; examining the effect of different parameter values on the performance of DE in 
TNFSP; considering both private and public transportation modes in TNFSP for minimizing 
the total system cost by utilizing a multi-modal deterministic user equilibrium assignment in 
the lower-level model. 

Section 2 of the study describes the upper-level and the lower-level models. Section 3 
presents the numerical applications made on the benchmark network and discusses the results 
of the comparative experiments. Section 4 draws the conclusions of the study and highlights 
the possible directions for future research. 
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2. OPTIMIZATION MODEL 

In transportation planning, the effect of network design decisions on the performance of the 
transportation system and network users must be taken into consideration. Therefore, the 
transportation network design problem is usually formulated as a bi-level problem. The 
upper-level of the bi-level structure represents the decision-maker, whereas the lower-level 
represents travelers. This structure allows the decision-maker to take the reactions of travelers 
as well as network performance into consideration. 

In this study, TNFSP is handled as a bi-level problem. The upper-level is a frequency 
optimization problem to minimize the total travel cost, and the lower-level is a multi-modal 
assignment problem. 

 

2.1. Upper-Level Model 

The objective of the optimization model is to determine the bus line frequency set, 
minimizing the total car and bus travel cost in the transportation system, which can be 
formulated as in (Eq. 1):  

min ∑ ∑ 𝑞 × 𝑡 + ∑ 𝑞 × �̂� ∀𝑟𝑠 ∈ 𝑊, ∀𝑘 ∈ 𝐾 , ∀𝑘 ∈ 𝐾            (1) 

where W is the set of origin-destination (OD) pairs, 𝐾  is the set of car paths on road network 
connecting OD pair rs, 𝐾  is the set of transit paths on transit network connecting OD pair 
rs, 𝑞   is the car flow on path k, 𝑞   is the bus trip flow on path 𝑘, 𝑡  is the travel time on 
path k, �̂�  is the travel time on the path 𝑘. 

Car path travel time is the sum of congested travel time of member links. The bus travel time 
of passengers consists of in-vehicle travel time and congested waiting time. Bus in-vehicle 
travel time is congested link travel time affected by both car and bus vehicle flows. Operator 
cost is not considered in this study for determining the optimal frequencies. The design 
constraint of the upper-level model regarding the bus fleet size  𝑛 , imposes 
 0 < 𝑛 ≤ 𝑛 , where 𝑛  is the maximum allowed fleet size, and 𝑛  is the minimum 
required number of buses to operate the transit network calculated by the frequency value 
and run time of each line. 

Increased bus frequencies decrease waiting time, and consequently, total travel time 
decreases. Therefore, it is expected to result in shifts from private to public transportation. In 
this case, as the modal share of bus transportation increases, private car usage decreases, 
resulting in decreased car flows in the road network. As a result of lower car volumes, link 
travel times decrease. Subsequently, in a bi-modal transportation system, lower private car 
transportation costs induce shifts from public to private transportation. Decreasing bus 
frequencies, on the other hand, results in increased bus travel time and shifts from public to 
private transportation. In this case, increased link travel times due to high vehicle flow lead 
to an increase in travel times for both private and public transportation. An iterative process 
between the trip assignment model and optimization model is necessary to determine the 
optimal frequency set, minimizing the total travel cost. Due to the complex nature of the bi-
level problems, it is not possible to determine the optimal solution using exact solution 
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methods, especially in large-scale networks. Therefore, meta-heuristics are applied to obtain 
near-optimal solutions, especially for real-scale problems [20]. 

We employed DE for optimizing transit line frequencies in multi-modal networks in this 
study. DE, developed by [21], is an evolutionary approach to solve continuous-space 
problems and is considered to be one of the most prominent metaheuristics. DE consists of 
three main operators like genetic algorithms: mutation, crossover, selection operators. 

 

 

Figure 1 - The flowchart of traditional DE 
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In the mutation operator, a mutant vector is created by weighting three random vectors (i.e., 
parent chromosomes) selected from the current population using the mutation constant, F, 
which controls the amplification of the differential variation. It should be noted that the 
selected three vectors must be different from each other. Following the generation of the 
mutant vector, a trial vector is generated by combining the target vector and the mutant vector 
with the help of the crossover constant, CR, that controls which genes of mutant and target 
vectors contribute to the trial vector. Finally, in the selection operator, a new target vector for 
the next generation is selected between the current target vector and the trial vector based on 
their fitness values. If the trial vector yields a smaller fitness value than the target vector 
value, the trial vector is replaced in the next generation; otherwise, the target vector is 
retained. The traditional DE steps are presented as a flowchart in Figure (1). 

The algorithm that we used to solve the multi-modal frequency setting problem using DE is 
outlined as follows: 

Step 0: Initialization. For each agent of the population with size nPop, generate a set of 
elements (frequencies for each line, nVar) 𝒇 = {𝑓 , , 𝑓 , , … , 𝑓 ,nVar}, with random positions 
(frequency values) in the search space  (𝑓 < 𝑓 < 𝑓 ). 

Step 1: Calculation. Calculate cost (total travel time on the transportation system) for each 
frequency set, 𝒇  by performing multi-modal trip assignment.  

Step 2: For each agent of population, 𝑛 ∈ {1,2, … ,nPop}: 

Step 2.1: Mutation. Randomly select three different frequency set indices a, b and c from the 
population and generate mutation vector: 𝒚 = 𝒇 + 𝐹(𝒇 − 𝒇 ) where 𝒚 =
{𝑦 , , 𝑦 , , … 𝑦 ,nVar} and mutation constant, 𝐹 ∈ [0,2]. 

Step 2.2: Crossover. Generate a random index 𝑟 ∈ {1,2, … ,nVar} and for each element of an 
agent (frequency of line) generate a random number 𝑅 ∈ [0,1]. For each element 𝑖 ∈
{1,2, … ,nVar}: ℎ , = {𝑦 ,  if 𝑅 ≤ 𝐶𝑅 or 𝑖 = 𝑟; 𝑓 ,  otherwise}, where crossover constant, 
𝐶𝑅 ∈ [0,1] is the crossover probability. 

Step 2.3: Selection. Perform trip assignment with 𝒉 . Replace the corresponding element 𝒇 , 
with 𝒉  if the solution is improved: 𝒇 = {𝒉  if 𝐶(𝐡 ) ≤ 𝐶(𝒇 );   𝒇  otherwise} 

Step 3: Termination criterion. Stop if the maximum iteration number 𝑧 is reached and output 
the best solution; Otherwise, go to Step 2. 

 

2.2. Lower-Level Model 

Total travel cost calculation of the transportation system in the upper-level optimization 
model is possible through the output of the lower-level trip assignment model. The lower-
level problem is a multi-modal network equilibrium assignment model with elastic demand 
in mode choice level, considering car and bus networks with flow interactions under the 
following assumptions: (1) All network users are assumed to choose the path minimizing 
their travel cost and transit network users are assumed to board the first arriving bus in the 
attractive lines set. (2) Transit stops are used as zones where demand originates and 
terminates. (3) Walking links are not included in the network; therefore, the assignment 
model does not allow passengers to walk between stops (4) All bus lines are assumed to have 
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the same in-vehicle travel times while passing through the same itineraries. (5) Road network 
trip costs are calculated using the BPR link cost function, which does not consider the costs 
occurring at intersections. Thus, the assignment model assumes that congestions occur only 
on links and there are no delays caused by spillback queues and traffic lights, etc. (6) For the 
sake of simplicity, the car occupancy rate is assumed 1 passenger/car. (7) It is assumed that 
all travelers have access to a car, and therefore all public transportation users are considered 
choice riders in this study.  

The assignment model acquires a solution that both car and transit flows to satisfy the 
deterministic user equilibrium criterion. The modal distributions are calculated using a logit 
type mode choice function (Eq. 2). The mode choice function employs the minimum travel 
costs of modes between OD pairs as parameters, and road network link travel time is assumed 
to follow the Bureau of Public Roads (BPR) function (Eq. 3), including bus vehicle flows 
considering passenger car equivalency. 

𝑞 = �̄� ( ) ∀𝑟𝑠 ∈ 𝑊          (2) 

where 𝑞  is the car mode demand between OD pair rs, �̄�  is total travel demand between 
rs, 𝑢  is the cost of the shortest path between rs on the road network, 𝑢  is the cost of the 
shortest path between rs on transit network, 𝛹  is the car preference parameter. 

𝑡 = 𝑡 1 + 𝛼 , ×PCEbus ∀𝑎 ∈ 𝐴 (3) 

where 𝑡  is congested link travel cost of link a, 𝑡  is the free-flow travel time of a, 𝑥  is car 
flow on a, 𝑥 ,  is bus vehicle flow on a, PCEbus is passenger car equivalency factor of bus, 
𝑐  is the practical capacity of a, α and β are calibration parameters. 

Bus mode travel times are calculated utilizing a BPR-like function, given in Eq. 4, 
representing the effect of increased waiting time at stops due to congestion, as proposed by 
[22], in a transit network converted from line-segment representation to route-section 
representation as a proper method for handling common lines problem.  It is possible to solve 
transit assignment problems similar to road network assignment problems utilizing route-
section networks. The route section between a node pair consists of attractive lines that are a 
subset of bus lines that passengers can travel between the same node pair. In the route-section 
representation, nodes generally represent bus stops while links represent the route sections.  

In this study, determining attractive lines to be included in each route section is based on the 
minimization of expected travel time as proposed in [23], and it is assumed that all lines 
passing through a road link have the same in-vehicle travel time. Consequently, all lines 
passing through the same road link sequence between a node pair are associated with a route 
section as attractive lines. 

�̂� = �̄� + + 𝛽 × ∀𝑠 ∈ 𝑆 (4) 
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where �̂�  is the total congested travel cost of route section s, �̄� is the in-vehicle travel time of 
bus trips on s which depends on vehicle flows on corresponding road network link set A, 𝑓 
is total frequencies of lines contained in s, 𝛼 is the calibration parameter for non-congested 
wait time at the stop,  𝑥  is the number of passengers waiting for lines contained in s, 𝑥  is 
the total number of competitive passengers of s, who wait for other route sections that use 
lines contained in s in the same stop, and passengers boarding the lines contained  in s at a 
node before the origin node of s and alighting after, 𝐶  is the practical capacity of s, which is 
the total capacity of the lines it contains, 𝛽 is the calibration parameter for congested wait 
time at the stop. 

Flow interaction between road and transit network links due to shared lane usage together 
with flow interaction on transit network due to competitive flows in transit network results 
in an asymmetric cost function in the assignment model employed in this study. Therefore, 
the assignment problem can be solved using the diagonalization method, which is commonly 
used for trip assignment problems with asymmetric cost functions due to non-symmetric link 
flow interactions [24,25]. Diagonalization is an iterative method that involves 
diagonalization of link cost functions to fix cross-link effects by fixing all arguments of a 
link other than its own flow in each iteration to solve a sub-problem [26]. The sub-problem 
solved at each iteration of the diagonalization algorithm using Frank and Wolfe Algorithm 
[27] for the multi-modal assignment problem presented in this study is formulated as: 

min �̃�( ) = ∑ ∫ t 𝜔, 𝑥 ,
( )

𝑑𝜔 + ∑ ∫ t̂ 𝜔, 𝒙
( )

, 𝒙 ,
( )

𝑑𝜔 +

∑ ∫ 𝑙𝑛
̄

+ 𝛹 𝑑𝜔 (5a) 

subject to 

∑ 𝑋 = �̄� − 𝑞     ∀𝑟𝑠;  (5b) 

 ∑ 𝑋 = 𝑞     ∀𝑟𝑠; (5c) 

 𝑋 , 𝑋 ≥ 0     ∀𝑘, 𝑘, 𝑟𝑠 (5d) 

Equation (5a) is the objective function of the assignment problem composed of three terms. 
The first term is the sum of the integrals of the road network link cost functions to satisfy the 
road network user equilibrium criterion where 𝑡  is the road link cost function, (n) is the 

iteration number and 𝑥 ,
( )  is the bus vehicle flow on the link at the nth iteration. The second 

term is the sum of the integrals of the route section network link cost functions to satisfy the 

transit network user equilibrium criterion where �̂�  is the cost function of route section s, 𝒙( ) 

is the bus competitive flow vector of s at the nth iteration, and 𝒙 ,
( )  is the vector of car flows 

on the road network links that s incorporates, affecting the in-vehicle cost of s at the nth 
iteration. The last term is the sum of integrals of the inverse of the logit demand function for 
each OD pair, ensuring the equilibrium criterion for the car and transit demand share as 
proposed by [26]. Equations (5b) and (5c) are flow conservation constraints for the road 
network and route section network, respectively, and equation (5d) is the nonnegativity of 
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flow constraint for both networks, where 𝑋  is the flow on path k between OD pair rs on the 
road network, 𝑋  is the flow on path 𝑘 between rs on the route section network.  

 

3. TEST NETWORK APPLICATION 

The proposed model is tested on Mandl's Swiss network, which has been used by several 
authors in the literature [28-30]. The test network consists of 15 nodes and 42 unidirectional 
links. The line routes to be used are obtained from the study of [29]. Automatically generated 
route-section network with the given road network and bus lines consists of 282 
unidirectional links. The original demand is increased by a factor of 2 considering the modal 
choice since the original network is used solely for the transit demand.  

 

Figure 2 - Test network and bus lines 

 

In Figure 2, the bus line routes of the test network are represented by different colors. The 
free-flow travel times of each link independent of directions, are indicated on the relevant 
link in minutes. The node sequence of each route in one direction is also presented on the 
right of the network. The OD matrix of the total trip demand in the analysis period used in 
numerical applications is given in Table 1. 

In the transit network, assuming that the operator has a limited fleet size, a fleet size constraint 
is incorporated into the optimization model. Fleet size and bus capacities are assumed 300 
buses and 100 passengers, respectively. For all links in the road network, practical capacities 
are 800 veh/h. Cost function parameters of the assignment model are defined as 𝜃 = 0.3, 
𝛹 = 0, 𝛼 = 0.15, 𝛽 = 4, PCEbus = 3, 𝛼 = 0.5, 𝛽 = 1, 𝑛 = 1. Allowed minimum and 
maximum values of line frequency are defined as 1 and 60, respectively. 
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Table 1 - Node-to-node trip demand matrix used in test network application 

OD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 800 400 120 160 300 150 150 60 320 60 50 70 0 0 

2 800 0 100 240 40 360 180 180 30 260 40 20 20 10 0 

3 400 100 0 80 120 360 180 180 30 90 40 20 20 10 0 

4 120 240 80 0 100 200 100 100 30 480 80 50 20 10 0 

5 160 40 120 100 0 100 50 50 20 240 40 30 10 0 0 

6 300 360 360 200 100 0 200 200 60 1760 120 30 30 20 0 

7 150 180 180 100 50 200 0 100 30 880 70 20 20 10 0 

8 150 180 180 100 50 200 100 0 30 880 70 20 20 10 0 

9 60 30 30 30 20 60 30 30 0 280 40 10 0 0 0 

10 320 260 90 480 240 1760 880 880 280 0 1200 500 1000 400 0 

11 60 40 40 80 40 120 70 70 40 1200 0 150 190 30 0 

12 50 20 20 50 30 30 20 20 10 500 150 0 140 0 0 

13 70 20 20 20 10 30 20 20 0 1000 190 140 0 90 0 

14 0 10 10 10 0 20 10 10 0 400 30 0 90 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Algorithms used in this study were coded using MATLAB R2020a and carried out on a 64-
bit computer with an AMD Ryzen 5 3600 3.60 GHz CPU and 16 GB RAM. The average 
duration of an optimization terminated at the 100th iteration is 280 minutes.  

Metaheuristic algorithms are sensitive to the values of the parameters. In problems with 
numerous local optima such as TNFSP, reaching optimal or near-optimal solutions may be 
difficult and time-consuming for the algorithms because of improper parameter values. Thus, 
DE is executed with the different combinations of parameter values to better show the effect 
of different parameter values on the performance of DE. 

Parameters F and CR values are chosen from the sets {0.5, 1.0, 1.5, 2.0} and 
{0.2, 0.4, 0.6, 0.8}, respectively, resulting in 16 combinations. Also, three replications for 
each combination are carried out to avoid statistical deviations, leading to 48 optimization 
runs in total.  It is likely that the increase in nPop and 𝑧 values obtain better solutions; 
therefore, the effects of these parameters are not investigated in this study. nPop and the 
maximum iteration number are defined as 50 and 100, respectively. Table 2 demonstrates the 
results of 16 different parameter combinations, showing the average total system cost of five 
optimizations for each parameter combination. 

Table 2 clearly shows that the best combination of parameter values is obtained in the 
combination 𝐹 = 0.5 and 𝐶𝑅 = 0.6, with a cost of 901,757. To demonstrate the stability of 
the algorithm, 30 optimizations are performed using the calibrated parameter values. The 
obtained frequency sets and the corresponding costs of 30 optimization runs are given in 
Table 3.  
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Table 2 - The results of different combinations of parameter values (Average total system 
costs in min) 

CR                
 F   

0.2 0.4 0.6 0.8 

0.5 914,264 903,797 901,757 902,014 

1.0 908,573 913,523 912,798 909,029 

1.5 914,523 920,224 932,105 916,026 

2.0 930,134 926,153 941,997 949,893 

Standart Deviation = 14,885, Coefficient of Variation = 0.016 in 48 runs 

 

Table 3 - The results of 30 solutions by the calibrated parameter values 

Total System 
Cost (min) 

Frequency values of the lines (runs/h) 
{ f1,  f2,  f3,  f4,  f5,  f6,  f7, f8,  f9 , f10 } 

Frequency of Being 
Obtained as a Solution 

899,220 {1.0,1.9,1.6,1.0,18.6,1.3,28.6,24.2,21.2,19.9} 1 

900,079 {1.0,1.7,1.0,3.0,12.9,1.3,29.0,26.8,20.8,21.9} 4 

900,686 {1.4,1.0,1.0,1.0,15.2,1.0,28.5,25.9,22.5,21.9} 1 

900,691 {1.8,3.9,1.0,2.5,13.6,1.0,29.7,27.3,19.7,16.8} 2 

902,120 {1.2,2.2,2.1,2.1,11.8,1.1,29.5,29.4,19.9,18.5} 2 

902,309 {1.1,1.0,1.0,1.0,13.0,1.1,32.3,27.5,18.5,18.0} 2 

902,509 {1.1,1.0,1.0,1.2,15.5,1.0,30.2,24.0,21.7,19.5} 1 

902,795 {1.0,4.6,1.4,1.2,21.3,1.2,27.8,21.6,19.2,20.8} 4 

902,845 {1.0,3.9,1.3,5.2,18.8,1.0,29.8,17.9,20.0,19.6} 1 

902,866 {1.0,12.1,3.3,1.0,19.1,1.0,29.4,25.7,17.5,5.3} 2 

902,991 {1.0,3.6,1.1,1.0,17.5,1.0,30.2,26.7,21.5,12.0} 1 

903,329 {1.0,1.0,1.2,4.4,14.0,1.0,30.8,24.1,17.5,25.1} 1 

905,035 {1.0,13.1,5.4,1.0,19.2,1.5,27.8,24.8,16.6,7.2} 2 

905,343 {1.0,14.8,2.4,1.0,25.4,2.0,26.5,20.9,16.4,4.6} 1 

906,114 {1.5,5.2,3.1,1.0,21.2,1.0,29.7,25.4,15.4,14.3} 2 

906,743 {1.1,15.3,5.2,1.0,23.0,2.0,27.6,24.4,13.9,2.8} 1 

Standard Deviation = 1,921, Coefficient of Variation = 0.0021  in 30 optimizations 

 

The statistical outputs given in the last row of both tables affirm the necessity of the 
calibration process for the parameter values. The best solution obtained is given in the first 
row of Table 3, with a total system cost of 899,220. Network performance outputs, namely 
average travel times and modal share ratios, are calculated by running the combined mode 
choice assignment process using the frequency set obtained from the optimization. In the best 
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solution, the average travel times of car and bus trips are 17.38 min and 11.49 min per user, 
respectively, and the transit modal share is 40%. Figure 3 depicts the convergence process 
along 100 iterations for 30 runs by the calibrated parameter values. As can be seen, the 
algorithms complete the convergence process in approximately 40 iterations. 

 

Figure 3 - Convergence of 30 solutions along with iterations 

 

Firstly, the bus line frequencies are optimized using a model without a fleet size constraint. 
The results given in Table 4 show that minimum system cost is obtained with a fleet size of 
339. Therefore, optimizing with a fleet size constraint greater than 339 buses is unnecessary 
since the same solution is expected to be obtained. 

 

Table 4 - The results without fleet size constraint by the proposed model 

Total 
System 

Cost 
(min) 

Private 
Car 
Cost 
(min) 

Public 
Transportation 

Cost (min) 

Fleet 
Size 

Frequency values of the lines (runs/h) 
{ f1  , f2  , f3  , f4  , f5  , f6  , f7  , f8  , f9  , f10 } 

874,568 504,033 370,534 339 {1.0,1.1,1.0,2.0,18.8,1.1,40.8,35.8,26.2,36.4} 

 

In multi-modal networks with link flow interaction, the increase in the frequency of transit 
lines makes transit systems more attractive and leads to an increase in the use of transit 
systems. Thus, the congestion on the roads and the total system cost for all users are reduced. 
However, the further increase in frequency values of transit lines causes an increase in transit 
vehicle flow on the road links, triggering congestion for the vehicles of both modes. To prove 
this argument, following a simple assumption, the total system costs are calculated for the 
scenarios that all lines take the same frequency values between 1 and 60, as shown in Figure 
4. The best frequency set is obtained using the frequency set of 18 runs/h for all lines with a 
minimum total system cost of 923,140, and 446 buses are needed to operate the network. 
Further improvement in total system cost is possible by optimizing the frequency values of 
lines individually. 
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Figure 4 - Total system costs (min) for frequency sets in multi-modal networks 

 

To assign the same frequency value to all lines, as shown in Figure 4, is a simple method; 
however, in order to demonstrate the stability and robustness of the proposed algorithm, we 
benefit from the solutions for comparison purposes. The frequency sets with 6, 12, and 15 
runs/h for all lines require 199, 308, and 374 buses to operate the network, respectively. The 
optimization model is run with these fleet size constraints to compare the optimization model 
results with fixed-frequency calculation results in terms of private transportation and public 
transportation total user costs. The comparison results are given in Table 5. The reductions 
in total system costs for the optimizations with fleet size constraints of 199, 308, and 374 
buses are 12%, 7%, and 6%, respectively.  

 

Table 5 - The comparison between the results of the proposed model and the simple method 

Fleet 
Size 
(bus) 

Reduction 
(%) 

Total 
System 

Cost  
(min) 

Private 
Car Cost 

(min) 

Public 
Trans. 
Cost 
(min) 

Public 
Trans. 
Share 

(%) 

Frequency values of the lines (runs/h) 
{ f1  , f2  , f3  , f4  , f5  , f6  , f7  , f8  , f9  , f10 } 

 

199 -12 
1,115,326 765,749 349,576 32 {13.3,10.1,1.3,1.0,13.3,1.0,7.4,9.4,2.7,1.0} 

1,265,426 920,639 344,787 28 {6,6,6,6,6,6,6,6,6,6} 

308 -7 
901,333 544,349 356,983 39 {1.0,1.0,1.3,7.7,9.1,1.7,33.7,23.0,21.0,18.2} 

967,510 605,094 362,416 37 {12,12,12,12,12,12,12,12,12,12} 

374 -6 
877,787 511,514 366,273 42 {1.0,2.0,1.2,2.2,16.2,1.0,37.2,34.7,25.1,30.6} 

933,608 563,192 370,415 40 {15,15,15,15,15,15,15,15,15,15} 
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4. CONCLUSION 

In this study, we propose a bi-level optimization model utilizing DE for TNFSP in bi-modal 
networks. The objective is to minimize the total travel cost in the transportation system for 
both car and bus modes. The proposed model is calibrated and tested on a benchmark 
network. The optimization results are compared with a simple fixed-frequency cost 
calculation approach. Numerous optimization runs resulted in similar and consistent 
solutions with significant decreases in cost, showing that DE is applicable in TNFSPs. Also, 
the significant reductions in the total system cost obtained using the proposed model are 
shown as proof of the necessity of optimization models for determining bus line frequencies. 

Multi-modal assignment results indicate that bus link travel times are significantly affected 
by car flows. Consequently, bus travel time is always higher than car travel time since bus 
travel time also includes waiting time, even in uncongested situations, as expected. Therefore, 
the use of exclusive bus lanes can be considered to achieve a competitive public transit 
network leading to an increased modal share of bus mode. 

Bi-level models with meta-heuristics in the upper level require numerous repetitions of the 
lower-level model. Therefore, a computationally less expensive static assignment model is 
utilized in this study to ensure reasonable optimization durations. However, using static 
models compared to dynamic assignment models or microscopic simulation models may lead 
to less realism regarding trip costs, path choices, etc. Another limitation of this study is that 
all public transportation users are considered choice riders and have access to a car. 

In future studies, taking captive riders into consideration will lead to a more realistic trip 
assignment model. Additionally, to develop a more realistic and more sustainable transit 
network design model, the proposed model will be improved by including the exclusive bus 
lane location decisions in transit network design. 

 

Acknowledgments 

The authors would like to thank two anonymous reviewers for their constructive comments 
that contributed to improve this paper. 

 

References 

[1] Ceder. A., Public Transit Planning and Operation: Modeling, Practice and Behavior, 
CRC Press, Boca Raton, USA, 2015. 

[2] Magnanti, T. L., Wong, R. T., Network Design and Transportation Planning: Models 
and Algorithms. Transportation Science, 18(1), 1–55, 1984. 

[3] Guihaire, V., Hao, J.-K. K., Transit network design and scheduling: A global review. 
Transportation Research Part A: Policy and Practice, 42(10), 1251–1273, 2008. 

[4] Zhao, F., Large-Scale Transit Network Optimization by Minimizing User Cost and 
Transfers. Journal of Public Transportation, 9(2), 107–129, 2006. 

[5] Yang, H., Bell, M. G. H., Models and algorithms for road network design: a review and 
some new developments. Transport Reviews, 18(3), 257–278, 1998. 



Mehmet Metin MUTLU, İlyas Cihan AKSOY, Yalçın ALVER 

12615 

[6] Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., Rashidi, H., A review of urban 
transportation network design problems. European Journal of Operational Research, 
229(2), 281–302, 2013. 

[7] Ibarra-Rojas, O. J., Delgado, F., Giesen, R., Munoz, J. C., Planning, operation, and 
control of bus transport systems: A literature review. Transportation Research Part B: 
Methodological, 77, 38–75, 2015. 

[8] Constantin, I., Florian, M., Optimizing Frequencies in a Transit Network: A Nonlinear 
Bi-level Programming Approach. International Transactions in Operational Research, 
2(2), 149–164, 1995. 

[9] Gao, Z., Sun, H., Shan, L. L., A continuous equilibrium network design model and 
algorithm for transit systems. Transportation Research Part B: Methodological, 38(3), 
235–250, 2004. 

[10] Yoo, G. S., Kim, D. K., Chon, K. S., Frequency design in urban transit networks with 
variable demand: Model and algorithm. KSCE Journal of Civil Engineering, 14(3), 
403–411, 2010. 

[11] dell'Olio, L., Ibeas, A., Ruisánchez, F., Optimizing bus-size and headway in transit 
networks. Transportation, 39(2), 449–464, 2012. 

[12] Giesen, R., Martinez, H., Mauttone, A., Urquhart, M. E., A method for solving the 
multi-objective transit frequency optimization problem. Journal of Advanced 
Transportation, 50 (8), 2323-2337, 2016. 

[13] Gholami, A., Tian, Z., The comparison of optimum frequency and demand based 
frequency for designing transit networks. Case Studies on Transport Policy, 7(4), 698–
707, 2019. 

[14] Mutlu, M. M., Aksoy, İ. C., Alver, Y., COVID-19 transmission risk minimization at 
public transportation stops using Differential Evolution algorithm. European Journal of 
Transport and Infrastructure Research, 21(1), 53-69, 2021. 

[15] Gallo, M., D'Acierno, L., Montella, B., A multimodal approach to bus frequency 
design. 17th International Conference on Urban Transport and the Environment, Pisa, 
Italy, 2011. 

[16] Uchida, K., Sumalee, A., Watling, D., Connors, R., Study on Optimal Frequency 
Design Problem for Multimodal Network Using Probit-Based User Equilibrium 
Assignment. Transportation Research Record: Journal of the Transportation Research 
Board, 1923(1), 236-345, 2005. 

[17] Nearchou, A. C., Meta-heuristics from nature for the loop layout design problem. 
International Journal of Production Economics, 101(2), 312-328, 2006. 

[18] Civicioglu, P., Besdok, E., A conceptual comparison of the Cuckoo-search, particle 
swarm optimization, differential evolution and artificial bee colony algorithms. 
Artificial Intelligence Review, 39, 315-346, 2013. 



Transit Frequency Optimization in Bi-modal Networks Using Differential … 

12616 

[19] Hammouche, K., Diaf, M., Siarry, P., A comparative study of various metaheuristic 
techniques applied to the multilevel thresholding problem. Engineering Applications of 
Artificial Intelligence, 23(5), 676-688, 2010. 

[20] Miandoabchi, E., Daneshzand, F., Szeto, W. Y., Farahani, R. Z., Multi-objective 
discrete urban road network design. Computers & Operations Research.  40(10), 2429–
2449, 2013. 

[21] Storn, R., Price, K.,. Differential Evolution – A Simple and Efficient Heuristic for 
Global Optimization over Continuous Spaces. Journal of Global Optimization, 11, 341–
359, 1997. 

[22] De Cea, J., Fernández, E., Transit Assignment for Congested Public Transport Systems: 
An Equilibrium Model. Transportation Science, 27(2), 133–147, 1993. 

[23] Chriqui, C., Robillard, P., Common Bu Lines. Transportation Science, 6(2), 115-121, 
1975. 

[24] Florian, M., Spiess, H., The convergence of diagonalization algorithms for asymmetric 
network equilibrium problems. Transportation Research Part B: Methodological, 16(6), 
477–483, 1982. 

[25] Miandoabchi, E., Farahani, R. Z., Szeto, W. Y., Bi-objective bimodal urban road 
network design using hybrid metaheuristics. Central European Journal of Operations 
Research, 20(4), 583–621, 2012. 

[26] Sheffi. Y., Urban transportation networks, Prentice-Hall, NJ, USA, 1985. 

[27] Frank, M., Wolfe, P., An algorithm for quadratic programming. Naval Research 
Logistics, 3(1‐2), 95–110, 1956. 

[28] Mandl, C. E., Evaluation and optimization of urban public transportation networks. 
European Journal of Operational Research, 5(6), 396–404, 1980. 

[29] Arbex, R. O., da Cunha, C. B., Efficient transit network design and frequencies setting 
multi-objective optimization by alternating objective genetic algorithm. Transportation 
Research Part B: Methodological, 81(2), 355–376, 2015. 

[30] Jha, S. B., Jha, J. K., Tiwari, M. K., A multi-objective meta-heuristic approach for 
transit network design and frequency setting problem in a bus transit system. 
Computers and Industrial Engineering, 130, 166–186, 2019. 

 


