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Abstract
We study the existence of weak solutions for a parabolic reaction diffusion model applied
in Quenching endowed with singular production terms by reaction. The singularity is due
to a potential occurrence of quenching localized to the domain boundary. The techniques
used are based on energy estimates to approach nonsingular problems and uniform control
on the set where singularities are localizing.
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1. Introduction
The applications of reaction diffusion systems are numerous, particularly in the model-

ing of real diffusion phenomena in biology, chemistry and engineering, see Levenspiel [19]
and Murray [27,28]. A very interesting case is that of quenching. We recall that quenching
is the rapid cooling of a hot object in the air or in a liquid such as water or oil to obtain
certain properties. The study of quenching phenomena began in 1975 with an article by
Kawarada [15], where he studied a model in one space dimension. This article initiated a
broad study of the quenching problem by many scientific researchers, including work on
existence, the structure of quenching points, the asymptotic behaviour of solutions, etc.
Since then, this notion has been widely studied and developed in hundreds of books and
scientific articles. For a detailed survey, we refer also to Levine [20].

The quenching phenomena have been studied by many researchers and therefore we find
a lot of works in this field. This is due to its many and varied applications in the fields of
science, especially engineering. We find a lot of models in Constantin et al. [6], Kiselev
and Zlatos [16] and Marion [22]. For example, quenching can increase the hardness of
metallic or plastic materials, to see other examples we refer to Aris [3], Muntean [26] and
references given there. In this kind of problems, singularities can appear in the solutions of
the systems formulated. This can complicate the theoretical and numerical mathematical
analysis of the problem.

In this work, we are interested in the study of a singular reaction diffusion system. For
modeling and mathematical analysis of this type of problem, several methods have been
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proposed; see for example, [1,2], [4], [5], [7], [9–14], [21–24], [29–33], [37] and corresponding
references therein.

The study of specialized behaviour for reaction diffusion systems has been an active
area of research for decades. Two types of specialized behaviour, solution explosion and
solution quenching, have been of particular interest more recently. In explosion problems,
the solution becomes unbounded in finite time, i.e. when t approaches the explosion
instant T , which is finite. Naturally, the reason for this behaviour of the solution is due to
the singularity of the nonlinearities. In quenching problems, the solution remains bounded
while the first order time derivative becomes unbounded in finite time. We refer also to
Salin’s works [30–33], Selçuk [34] and to references therein for more detailed information
and a mathematical analysis of models involving singular terms.

So, the objective here is the study of a notion which one calls “quenching” generalizing
that of the explosion. We are then interested in the study of the existence of weak solutions
of the following reaction diffusion system with singular nonlinearities :

∂u

∂t
− ∆u = F (t, x, u, v) in QT

∂v

∂t
− ∆v = G (t, x, u, v) in QT

(1.1)

with the initial conditions {
u (0, x) = u0 (x) in Ω
v (0, x) = v0 (x) in Ω (1.2)

and the following boundary conditions

u (t, x) = 0 on Γ1 × (0, T )
v (t, x) = 0 on Γ2 × (0, T )
∂u

∂ν
= 0 on Γ2 × (0, T )

∂v

∂ν
= 0 on Γ1 × (0, T )

(1.3)

with 
F (t, x, r, s) = f (t, x) s

rγ

G (t, x, r, s) = g (t, x) s

rγ

(1.4)

where QT = Ω × (0, T ), Ω is a bounded Lipschitz domain of RN , N ≥ 2 and T > 0. γ is a
real parameter such as 0 < γ ≤ 1. Γ1 and Γ2 are such that Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ϕ.
The Haussdorff measure of Γ1 and Γ2 does not vanish. Here ν denotes the outer normal
to ∂Ω. The functions f, g : QT → R and satisfy the following conditions :

f, g ∈ L1 (QT ) , f ≥ 0 and f + g ≤ 0 (1.5)
Note that the functions F and G are singular at r = 0, and we assume that the functions

u0 and v0 are such that
u0, v0 ≥ 0 and u0, v0 ∈ L∞ (Ω) (1.6)

We will study our problem in the following spaces :
V = {φ ∈ H1(Ω) : φ = 0 on Γ1}
W = {ψ ∈ H1(Ω) : ψ = 0 on Γ2}

The dual spaces of V and W , respectively, are denoted by V ∗ and W ∗.
The problem (1.1) − (1.4) consists of a weakly coupled system whose right term is

singular in the variable u. We hear that the nonlinearities F (t, x, r, s) and G (t, x, r, s) can
become unbounded to the neighborhood of r = 0.
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The main contribution is to study a reaction diffusion system with singular and nonreg-
ular nonlinearities F and G dependent on the independent variables t and x and on the
unknown functions u and v. The functions f and g verify simple properties, this allows
us to choose them from a wide range.

We confirm that the studied model is not only applied to the quenching phenomenon,
but can also be applied to other singular reaction diffusion models in different scientific
fields.

Before stating the main result of this work, it is worth mentioning that several math-
ematicians have dealt with this type of problem using various analytical and numerical
techniques and methods, under different hypotheses as appropriate, see for example, [4],
[7], [9–14] and [37].

This document is organized as follows : In the next section, we state our main result.
In the third section, we give a result concerning the nonsingular approximating problem.
In the fourth section, we give important a priori estimates. The fifth section is devoted
to some important results of convergence and compactness. In the sixth section, we prove
certain properties relating to our problem near the singularity. The last section is devoted
to prove the main result. The paper ends with a conclusion and some perspectives.

The difficulties in this work are similar to those in [9–14], and the techniques are of the
same spirit, but specific new difficulties due to the nature of the system must be handled.

2. The main result
We first introduce the notion of weak solution to the problem (1.1) − (1.4) used here.

Definition 2.1. A weak solution to problem (1.1) − (1.4) is a nonnegative couple

(u, v) ∈ [L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)] × [L2(0, T ;W ) ∩ L∞(0, T ;L2(Ω))]
with

(ut, vt) ∈ [L2(0, T ;V ∗) + L1(0, T ;L1
loc(Ω))] × [L2(0, T ;W ∗) + L1(0, T ;L1

loc(Ω))]
such that

u (0, x) = u0 (x) , v (0, x) = v0 (x) a.e. x ∈ Ω∫
QT

f
v

uγ
ϕ < +∞ ,

∫
QT

g
v

uγ
η < +∞

and

−
∫

Ω
u0(x)φ(0, x) −

∫
QT

u
∂φ

∂t
+
∫

QT

∇u∇φ =
∫

QT

Fφ

−
∫

Ω
v0(x)ψ(0, x) −

∫
QT

v
∂ψ

∂t
+
∫

QT

∇v∇ψ =
∫

QT

Gψ

for all ϕ, η, φ, ψ ∈ C∞
0 ([0, T ) × Ω).

Now, we can state the main result of this work :

Theorem 2.2. Assume (1.4) − (1.6), then there exists a weak solution (u, v) to problem
(1.1) − (1.4) in the sense of Definition 2.1.

3. Nonsingular approximating problem
To study the problem (1.1)−(1.4), we consider the nonsingular approximating problem.

Essentially, we are truncating in such a way as to eliminate the singularity. In this case,
we define the sequences of functions fn and gn, such that

fn (t, x) = min {n, f (t, x)}
gn (t, x) = − min {n,−g (t, x)}
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It is easily seen that fn and gn satisfy the same properties as f and g, moreover,
0 ≤ fn ≤ f , lim

n→+∞
fn = f

g ≤ gn ≤ 0 , lim
n→+∞

gn = g

The approximate problem is the following :

Find (un, vn) in [L2(0, T ;V ) ∩ L∞(QT )] × [L2(0, T ;W ) ∩ L∞(QT )]

such that 

(un)t − ∆un = Fn (t, x, un, vn) in QT

(vn)t − ∆vn = Gn (t, x, un, vn) in QT

un (0, x) = u0,n (x) in Ω
vn (0, x) = v0,n (x) in Ω
un (t, x) = 0 on Γ1 × (0, T )
vn (t, x) = 0 on Γ2 × (0, T )
∂un

∂ν
= 0 on Γ2 × (0, T )

∂vn

∂ν
= 0 on Γ1 × (0, T )

(3.1)

where

Fn(t, x, un, vn) =

fn (t, x) vn

(un + 1
n)γ

if un ≥ 0 and vn ≥ 0

0 otherwise

Gn(t, x, un, vn) =

gn (t, x) vn

(un + 1
n)γ

if un ≥ 0 and vn ≥ 0

0 otherwise

while u0,n, v0,n ∈ L∞(Ω) ∩H1
0 (Ω) are suitable regularizations of the initial data obtained

by a standard convolution technique (see [8]) such that

lim
n→∞

1
n

∥u0,n∥H1
0 (Ω) = 0 (3.2)

lim
n→∞

1
n

∥v0,n∥H1
0 (Ω) = 0 (3.3)

We have the following important result :

Lemma 3.1. Problem (3.1) admits a nonnegative couple of solutions :

(un, vn) ∈ [L2(0, T ;V ) ∩ L∞(QT )] × [L2(0, T ;W ) ∩ L∞(QT )]

such that

−
∫

Ω
u0,n(x)φ(0, x) −

∫
QT

un
∂φ

∂t
+
∫

QT

∇un∇φ =
∫

QT

Fn(t, x, un, vn)φ (3.4)

−
∫

Ω
v0,n(x)ψ(0, x) −

∫
QT

vn
∂ψ

∂t
+
∫

QT

∇vn∇ψ =
∫

QT

Gn(t, x, un, vn)ψ (3.5)

for every φ, ψ ∈ C∞
0 (Ω × [0, T )).

Proof. For simplicity, we suppose u0,n = 0 and v0,n = 0. Then, by a direct application of
the method of Stampacchia in [36], we can prove the positivity of the solution by taking
as test function in the first equation of the problem (3.1) the function φ = −u−

n , where

un = u+
n − u−

n , u+
n = max {un, 0} , u−

n = max {−un, 0}
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Since u+
n = 0 on the support of u−

n , we have that the right hand side of (3.4) is zero
because

Fn(t, x, un, vn) =

fn (t, x) vn

(un + 1
n)γ

if un ≥ 0 and vn ≥ 0

0 otherwise
so we have ∫

QT

(un)t(−u−
n ) +

∫
QT

∇un∇(−u−
n ) = 0

which give ∫
QT

(u+
n − u−

n )t(−u−
n ) +

∫
QT

∇(u+
n − u−

n )∇(−u−
n ) = 0

We observe that on the support of u−
n we have u+

n .u
−
n = 0, he comes

1
2

∫
Ω

(u−
n )2 (t) +

∫
Qτ

∣∣∇ (
u−

n

)∣∣2 = 0, for all t ∈ [0, T ]

and we deduce that
u−

n = 0 a.e. in QT

i.e. that un ≥ 0 a.e. in Ω and for all t ∈ [0, T ). In the same way, we prove that vn ≥ 0,
by choosing as test function ψ = −v−

n . �
In everything that follows, we denote with C a generic constant. Usually C is thought

to be independent of n, if not otherwise mentioned. Before giving the proof of our result,
let us denote by Tk the truncation function

Tk (s) = max{−k,min{k, s}}, k ≥ 0, s ∈ R
and by Gk the function

Gk (s) = s− Tk (s)
In the following, we will denote by ⟨·, ·⟩ the duality product between V ∗ and V (and

also between W ∗ and W ).

4. A priori uniform estimates
4.1. Uniform estimate for (un, vn) in L∞(QT )
Proposition 4.1. There exist positive constants M1 and M2, independent of n, such that

∥un∥L∞(QT ) ≤ M1 (4.1)

∥vn∥L∞(QT ) ≤ M2 (4.2)

Proof. The uniform estimate (4.1) for the sequence {un} follows directly by Proposition
2.13 in [11] with some abbreviations that go along with our problem. For simplicity we
suppose v0,n(x) = 0. To handle the equation solved by vn we choose as test function

ψ = GM2(vn) := (vn −M2)+

with M2 > 1 fixed, we obtain, with Qt := Ω × [0, t)∫
Qt

(vn)t (vn −M2)+ +
∫

Qt

∇vn.∇ (vn −M2)+

=
∫

Qt

gn (t, x) vn(
un + 1

n

)γ (vn −M2)+ ≤ 0

Neglecting the nonnegative term on the left hand side, it comes
(vn −M2)+ = 0 a.e. in QT

which proves (4.2). �
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4.2. Energy estimate for (un, vn) in L2(0, T ; V ) × L2(0, T ; W )
Proposition 4.2. There exists a positive constant C, independent of n, such that

∥un∥L2(0,T ;V ) + ∥vn∥L2(0,T ;W ) ≤ C (4.3)

Proof. Choosing as test function φ = un ∈ L2(0, T ;V ) in the first equation of problem
(3.1) solved by un and integrating over Ω × [0, t), we obtain

1
2
d

dt

∫
QT

u2
ndt+

∫
QT

|∇un|2 =
∫

QT

fn (t, x) vnun(
un + 1

n

)γ

which give
1
2

∫
Ω
u2

n (t) dt+
∫

QT

|∇un|2 = 1
2

∥u0,n∥2
L2(Ω) +

∫
QT

fn (t, x) vnun(
un + 1

n

)γ

By observing that un

(un+ 1
n )γ ≤ u1−γ

n and 0 < 1 − γ < 1, we obtain∫
QT

fn (t, x) vnun(
un + 1

n

)γ ≤
∫

QT

fn (t, x)u1−γ
n vn ≤ sup

∣∣∣u1−γ
n vn

∣∣∣ ∫
QT

fn ≤ C

We then obtain
∥un∥L∞(0,T ;L2(Ω)) ≤ C

For the second equation of problem (3.1), we choose as test function ψ = vn ∈ L2(0, T ;W ).
We obtain

1
2

∫
Ω
v2

n (t) dt+
∫

QT

|∇vn|2 = 1
2

∥v0,n∥2
L2(Ω) +

∫
QT

gn (t, x) vnun(
un + 1

n

)γ

≤ 1
2

∥v0,n∥2
L2(Ω)

which give
∥vn∥L∞(0,T ;L2(Ω)) ≤ C

hence the inequality (4.3). �
Proposition 4.3. There exists a positive constant C, independent of n, such that∫

QT

fn (t, x) vn(
un + 1

n

)γ φ
2 (x) ≤ C , for all n ∈ N (4.4)

∫
QT

|gn (t, x)| vn(
un + 1

n

)γ ψ
2 (x) ≤ C , for all n ∈ N (4.5)

for every φ,ψ ∈ C∞
0 (Ω).

Proof. (i) We multiply the first equation of problem (3.1) by the test function φ2(x), we
get ∫ T

0

⟨
(un)t, φ

2(x)
⟩

+ 2
∫

QT

∇unφ∇φ =
∫

QT

fn (t, x) vn(
un + 1

n

)γ φ
2 (x)

which give ∫
QT

fn (t, x) vn(
un + 1

n

)γ φ
2 (x) ≤ 2

∫
QT

|∇un| . |φ| . |∇φ| + C

this gives, by applying the Hölder’s inequality and the previous Proposition∫
QT

fn (t, x) vn(
un + 1

n

)γ φ
2 (x) ≤ C + 2

(∫
QT

|∇un|2 .φ2
) 1

2
.

(∫
QT

|∇φ|2
) 1

2
≤ C2
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which proves the inequality (4.4).
(ii) In the same way, but this time we multiply the second equation of problem (3.1) by

the test function ψ2(x), we get∫ T

0

⟨
(vn)t, ψ

2(x)
⟩

+ 2
∫

QT

∇vnψ∇ψ =
∫

QT

gn (t, x) vn(
un + 1

n

)γ ψ
2 (x)

which give∣∣∣∣∣
∫ T

0

⟨
(vn)t, ψ

2(x)
⟩∣∣∣∣∣+ 2

∣∣∣∣∫
QT

∇vnψ∇ψ
∣∣∣∣ ≥

∣∣∣∣∣∣
∫

QT

gn (t, x) vn(
un + 1

n

)γ ψ
2 (x)

∣∣∣∣∣∣
We choose C so that∫

QT

|gn (t, x)| vn(
un + 1

n

)γ ψ
2 (x) ≤ C + 2

∫
QT

|∇vn| . |ψ| . |∇ψ|

this gives, by applying the Hölder’s inequality and the previous Proposition∫
QT

|gn (t, x)| vn(
un + 1

n

)γ ψ
2 (x) ≤ C + 2

(∫
QT

|∇vn|2 .ψ2
) 1

2
.

(∫
QT

|∇ψ|2
) 1

2
≤ C2

which gives the desired result (4.5). �

4.3. Uniform estimate on critical sets
In this paragraph we will consider the following critical sets

{(t, x) ∈ QT : un(t, x) ≤ δ} and {(t, x) ∈ QT : vn(t, x) ≤ δ}

These sets are prone to hosting the locations of the singularity. In fact, we wish to
avoid a potential blow up of the solutions on these sets. This is ensured by the following
Proposition :

Proposition 4.4. For γ > 0, we have∫
QT ∩{0≤un≤δ}

fn (t, x) vn(
un + 1

n

)γ φ
2 (x) ≤ Cδ (4.6)

∫
QT ∩{0≤vn≤δ}

fn (t, x) vn(
un + 1

n

)γ φ
2 (x) ≤

{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1 (4.7)

∫
QT ∩{0≤vn≤δ}

|gn (t, x)| vn(
un + 1

n

)γ φ
2 (x) ≤ Cδ (4.8)

∫
QT ∩{0≤un≤δ}

|gn (t, x)| vn(
un + 1

n

)γ φ
2 (x) ≤

{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1 (4.9)

for every φ ∈ C∞
0 (Ω) with φ ≥ 0.

Proof. (i) We prove first (4.6). Following the same ideas as in the proof of Proposition
2.20 in [11], we choose as test function in the equation solved by un the function φσ =
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Tσ(−(un−δ)−)
σ φ2(x), with φ ∈ C∞

0 (Ω) and φ ≥ 0. Therefore we get

∫ T
0

⟨
(un)t ,

Tσ(−(un − δ)−)
σ

φ2(x)
⟩

+ 1
σ

∫
QT

∇un∇ (Tσ(−(un − δ)−))φ2(x)

+2
∫

QT
∇un

Tσ(−(un − δ)−)
σ

φ∇φ

=
∫

QT
fn (t, x) vn(

un + 1
n

)γ
Tσ(−(un − δ)−)

σ
φ2(x)

(4.10)

First, we show that ∫ T

0
⟨(un)t,

Tσ(−(un − δ)−)
σ

φ2(x)⟩ ≥ −δ|Ω| (4.11)

where |Ω| is the Lebesgue measure of Ω. For that, we introduce the function vσ,ν =
Tσ(−(un,ν−δ)−)

σ , where un,ν is, for any fixed n ∈ N and σ ∈ N, the solution of the following
ordinary differential equation problem

1
σ

[un,ν ]t + un,ν = un

un,ν (0) = u0,n

(4.12)

The function un,ν satisfies the following properties (see [17] and [18]) :

un,ν ∈ L2(0, T ;H1
0 (Ω)), (un,ν)t ∈ L2(0, T ;H1

0 (Ω))
∥un,ν∥L∞(QT ) ≤ ∥un∥L∞(QT )

un,ν → un in L2(0, T ;H1
0 (Ω)) as ν → +∞

(un,ν)t → (un)t in L2(0, T ;H−1
0 (Ω)) as ν → +∞

So, we have

∫ T
0

⟨
(un)t ,

Tσ(−(un − δ)−)
σ

φ2(x)
⟩

= lim
ν→∞

∫
QT

[
(un,ν − δ)+

t

] Tσ(−(un,ν − δ)−)
σ

φ2(x)

− lim
ν→∞

∫
QT

[
(un,ν − δ)−

t

] Tσ(−(un,ν − δ)−)
σ

φ2(x)

= lim
ν→∞

∫
QT

[
(un,ν − δ)−

t

] Tσ((un,ν − δ)−)
σ

φ2(x)

(4.13)

Introducing now the function Φσ(s) :=
∫ (s−δ)−

0
Tσ(ρ)

σ dρ, from (4.13), we obtain

lim
ν→∞

∫
QT

(un,ν − δ)−
t

Tσ((un,ν − δ)−)
δ

φ2(x)

= lim
ν→∞

∫
QT

d

dt
Φσ(un,ν)

= lim
ν→∞

∫
Ω

Φσ(un,ν − δ)−(T ) − lim
ν→∞

∫
Ω

Φσ(un,ν − δ)−(0)

≥ − lim
ν→∞

∫
Ω

Φσ(un,ν − δ)−(0) = −
∫

Ω
Φσ(un − δ)−(0) ≥ −δ|Ω|
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which proves (4.11). By (4.11), observing also that Tσ(−(un−δ)−)
σ = 0 on the set {(x, t) ∈

QT : un(x, t) ≥ δ}, the equality (4.10) becomes

1
σ

∫
QT ∩{δ−σ≤un≤δ} |∇un|2 .φ2 (x) +

∫
QT

fn (t, x) vn(
un + 1

n

)γ
Tσ((un,ν − δ)−)

σ
φ2 (x)

≤ 2
∫

QT ∩{un≤δ} |∇un| .φ. |∇φ| + δ |Ω|
(4.14)

Using Hölder’s inequality in the right hand side of (4.14), we obtain∫
QT

fn (t, x) vn(
un + 1

n

)γ
Tσ((un,ν − δ)−)

σ
φ2 (x)

≤ 2
(∫

QT ∩{un≤δ}
|∇un|2 .φ2

) 1
2 (∫

QT

|∇φ|2
) 1

2
+ δ |Ω|

Now, we can prove that ∫
QT ∩{un≤δ}

|∇un|2φ2(x) ≤ Cδ (4.15)

Indeed, multiplying problem (3.1) by the test function −(un − δ)−φ2(x), φ ∈ C∞
0 (Ω),

φ ≥ 0, we obtain ∫ T
0 ⟨(un)t, (−(un − δ)−)φ2⟩+∫

QT ∩{un≤δ} |∇un|2φ2 − 2
∫

QT
∇un(un − δ)−φ∇φ ≤ 0

(4.16)

For the first term of (4.16), we follow the same arguments as those used to obtain (4.11),
he comes ∫ T

0
⟨(un)t, (−(un − δ)−)φ2(x)⟩ ≥ −δ |Ω| (4.17)

By (4.17), the inequality (4.16) becomes∫
QT ∩{un≤δ}

|∇un|2φ2 ≤ 2
∫

QT ∩{un<δ}
|∇un|(δ − un)φ|∇φ| + δ|Ω|

which, by Hölder’s inequality and (4.3), leads to∫
QT ∩{un≤δ}

|∇un|2φ2 ≤ 2δ
(∫

QT

|∇un|2φ2
) 1

2
(∫

QT

|∇φ|2
) 1

2
+ δ|Ω|

≤ Cδ

Thus, (4.15) holds. Finally, we have obtained that∫
QT

fn (t, x) vn(
un + 1

n

)γ
Tσ((un,ν − δ)−)

δ
φ2 (x) ≤ Cδ (4.18)

Now, we can pass to the limit in (4.18) for σ → 0 and n fixed. For this we use Lebesgue
dominate convergence Theorem since Tσ((un−δ)−)

σ → 1 a.e. on the set {(x, t) ∈ QT :
un(t, x) < δ}. Therefore, we obtain∫

QT ∩{0≤un≤δ}
fn (t, x) vn(

un + 1
n

)γ φ
2 ≤ Cδ

and hence (4.6) holds.
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(ii) We are now focusing on estimation (4.7). If 0 < γ < 1, we consider the decomposi-
tion ∫

QT ∩{0≤vn≤δ} fn (t, x) vn(
un + 1

n

)γ φ
2 (x)

=
∫

QT ∩{0≤vn≤δ}∩{0≤un≤δ} fn (t, x) vn(
un + 1

n

)γ φ
2 (x)

+
∫

QT ∩{0≤vn≤δ}∩{un>δ} fn (t, x) vn(
un + 1

n

)γ φ
2 (x)

≤
∫

QT ∩{0≤un≤δ} fn (t, x) vn(
un + 1

n

)γ φ
2 (x)

+
∫

QT ∩{0≤vn≤δ}∩{un>δ} fn (t, x) vn(
un + 1

n

)γ φ
2 (x)

= I1 + I2

(4.19)

By (4.6), we obtain
I1 ≤ Cδ (4.20)

To handle the term I2, we proceed as follows : Since vn ≤ δ and
( 1
n

+ un

)γ

> δγ , he

comes 1
(un+ 1

n )γ < 1
δγ . Then

I2 ≤
∫

QT ∩{0≤vn≤δ}∩{un>δ} fn (t, x) δ

δγ
φ2 (x) = δ1−γ

∫
QT

fn (t, x)φ2 (x)
≤ δ1−γsup

x∈Ω

∣∣φ2 (x)
∣∣ ∫

QT
fn (t, x) ≤ Cδ1−γ (4.21)

If γ = 1, we consider the decomposition∫
QT ∩{0≤vn≤δ} fn (t, x) vn

un + 1
n

φ2 (x)

=
∫

QT ∩{0≤vn≤δ}∩{0≤un≤
√

δ} fn (t, x) vn

un + 1
n

φ2 (x)

+
∫

QT ∩{0≤vn≤δ}∩{un>
√

δ} fn (t, x) vn

un + 1
n

φ2 (x)

≤
∫

QT ∩{0≤un≤
√

δ} fn (t, x) vn

un + 1
n

φ2 (x)

+
∫

QT ∩{0≤vn≤δ}∩{un>
√

δ} fn (t, x) vn

un + 1
n

φ2 (x)

= J1 + J2

(4.22)

Choosing as test function in the equation solved by un the function

ϕσ =
Tσ

(
−(un −

√
δ)−

)
σ

φ2(x)

with φ ∈ C∞
0 (Ω), φ ≥ 0, and repeating the same arguments of the proof of (4.6), we obtain

J1 ≤ C
√
δ (4.23)

For the term J2, since vn ≤ δ and 1
n + un >

√
δ, he comes 1

un+ 1
n

< 1√
δ
, we obtain∫

QT ∩{0≤vn≤δ}∩{un>
√

δ} fn (t, x) vn

un + 1
n

φ2 (x)

≤
√
δ
∫

QT ∩{0≤vn≤δ}∩{un>
√

δ} fn (t, x)φ2 (x)
≤

√
δsup

x∈Ω
|φ (x)|

∫
QT

fn (t, x) ≤ C
√
δ

(4.24)

Therefore, by (4.18) − (4.24), we finally obtain (4.7).
We proceed as in the previous cases (i) and (ii), we easily arrive at (4.8) and (4.9). �
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5. Convergence and compactness results
To pass to the limit as n → ∞ in (3.4) and (3.5) we need strongly convergent subse-

quences, which ensured by the following Proposition.

Proposition 5.1. There exists a couple

(u, v) ∈
[
L2(0, T ;V ) ∩ L∞(QT )

]
×
[
L2(0, T ;W ) ∩ L∞(QT )

]
such that, as n → ∞, we have

un ⇀ u weakly in L2(0, T ;V ) (5.1)
vn ⇀ v weakly in L2(0, T ;W ) (5.2)
un ⇀ u weakly in L∞(QT ) (5.3)
vn ⇀ v weakly in L∞(QT ) (5.4)
un → u strongly in L1(QT ) (5.5)
vn → v strongly in L1(QT ) (5.6)

un → u a.e. in QT (5.7)
vn → v a.e. in QT (5.8)

up to a subsequence.

Proof. Convergences (5.1) and (5.2) are direct consequences of (4.3). The same thing
applies to convergences (5.3) and (5.4). To prove (5.5) and (5.7), we observe that the
estimate (4.4) leads to

fn (t, x) vn

(un + 1
n)γ

φ2 ∈ L1(QT ) , ∀φ ∈ C∞
0 (Ω) (5.9)

In addition, we have
∂(unφ

2)
∂t

is bounded in L2(0, T ;V ∗) + L1(QT ) (5.10)

By (5.10), choosing s such that s > N

2
+ 1, using the same argument as Lemma 2.3 in

[25], we deduce that ∂(unφ)
∂t

is also bounded in L1(0, T ;H−s). Consequently, since s > N

2
,

we find that
V ⊂ Lp(Ω) ⊂ H−s(Ω)

and the embedding V ↪→ Lp(Ω) is compact. Applying now Corollary 4 in [35], by (5.10)
and the compactness results we deduce that unφ is relatively compact in L2(QT ). Hence,
up to a subsequences, convergences (5.5) and (5.7) are satisfied. In the same way for the
sequence {vn}, we find (5.6) and (5.8). �

Proposition 5.2. We have

lim
n→∞

∫
QT

|∇ (un − u)|2 = 0 (5.11)

lim
n→∞

∫
QT

|∇ (vn − v)|2 = 0 (5.12)

Therefore,
∇un → ∇u a.e. in QT (5.13)
∇vn → ∇v a.e. in QT (5.14)

Proof. This result can be obtained as a particular case of Proposition 3.14 in [11]. �
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6. Uniform estimate near the singularity
We consider the set {(t, x) ∈ QT : u(t, x) = 0 a.e. in QT }. As a consequence of the

uniform estimate near the singularity (4.6), we have the following Proposition :

Proposition 6.1. The couple (u, v) as a solution to (1.1)−(1.4), in the sense of Definition
2.1, satisfies ∫

QT ∩{u=0}
f (t, x) v

uγ
ψ = 0 (6.1)∫

QT ∩{u=0}
g (t, x) v

uγ
ϕ = 0 (6.2)

for all ψ, ϕ ∈ C∞
0 ([0, T ) × Ω) with ψ, ϕ ≥ 0. Moreover, it holds∫

QT

f (t, x) v

uγ
ψ =

∫
QT ∩{u>0}

f (t, x) v

uγ
ψ (6.3)

∫
QT

g (t, x) v

uγ
ϕ =

∫
QT ∩{u>0}

g (t, x) v

uγ
ϕ (6.4)

Proof. (i) We consider a test function ψ ∈ C∞
0 ([0, T ) × Ω), ψ ≥ 0, with suppψ =

[0, T1] × Y , T1 < T , Y ⊂⊂ E ⊂⊂ Ω and φ ∈ C1
0 (Ω) with φ(x) = 1 over Y , φ ≥ 0 with

suppφ = E. By the uniform estimate (4.6), we obtain∫
QT ∩{un<δ}

fn (t, x) vn

(un + 1
n)γ

ψ (t, x)

≤ ∥ψ∥∞

∫
[0,T ]×Y

fn (t, x) vn

(un + 1
n)γ

χ{un<δ}

≤ ∥ψ∥∞

∫
QT

fn (t, x) vn

(un + 1
n)γ

φ2(x)χ{un<δ} ≤ Cδ

On the other hand, ∫
QT

fn (t, x) vn

(un + 1
n)γ

χ{un<δ}ψ (t, x)

=
∫

QT
fn (t, x) vn

(un + 1
n)γ

χ{un<δ}χ{u=δ}ψ (t, x)

+
∫

QT
fn (t, x) vn

(un + 1
n)γ

χ{un<δ}χ{u̸=δ}ψ (t, x) ≤ Cδ

(6.5)

We observe that there exists at most a countable set D1 such that meas{(t, x) : u (t, x) =
δ} > 0. We choose δ outside of this set D1, so that, in (6.5), the integral∫

QT

fn (t, x) vn

(un + 1
n)γ

χ{un<δ}χ{u=δ}ψ(t, x) = 0

So, we have ∫
QT

fn (t, x) vn

(un + 1
n)γ

χ{un<δ}ψ (t, x)

=
∫

QT
fn (t, x) vn

(un + 1
n)γ

χ{un<δ}χ{u̸=δ}ψ(t, x) ≤ Cδ
(6.6)

Since by (5.7),
χ{un<δ}χ{u̸=δ} → χ{u<δ} a.e. in QT

Applying Fatou’s Lemma in (6.6) for δ fixed, leads to∫
QT

f (t, x) v

uγ
χ{u<δ}ψ(t, x) ≤ Cδ
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Using again Fatou’s Lemma in the last inequality for δ → 0, we get∫
QT

f (t, x) v

uγ
χ{u=0}ψ(t, x) =

∫
QT ∩{u=0}

f (t, x) v

uγ
ψ(t, x) = 0 (6.7)

this leads to ∫
QT

f (t, x) v

uγ
ψ(t, x) =

∫
QT ∩{u>0}

f (t, x) v

uγ
ψ(t, x) (6.8)

which are the desired identities.
(ii) In the same way with some simplifications, we prove (6.2) and (6.4). We consider a

test function ϕ ∈ C∞
0 ([0, T )×Ω), ϕ ≥ 0, with suppϕ = [0, T2]×Y , T2 < T , Ȳ ⊂⊂ E ⊂⊂ Ω

and φ ∈ C1
0 (Ω) with φ(x) = 1 over Ȳ , φ ≥ 0 with suppφ = E. By the uniform estimate

(4.9), we obtain ∫
QT ∩{un<δ}

|gn (t, x)| vn

(un + 1
n)γ

ϕ (t, x)

≤ ∥ϕ∥∞

∫
[0,T ]×Y

|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}

≤ ∥ϕ∥∞

∫
QT

|gn (t, x)| vn

(un + 1
n)γ

φ2(x)χ{un<δ}

≤
{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1

On the other hand, ∫
QT

|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}ϕ (t, x)

=
∫

QT
|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}χ{u=δ}ϕ (t, x)

+
∫

QT
|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}χ{u̸=δ}ϕ (t, x)

≤
{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1

(6.9)

We observe that there exists at most a countable set D̄2 such that meas{(t, x) : u (t, x) =
δ} > 0. We choose δ outside of this set D̄2, so that, in (6.9), the integral∫

QT

|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}χ{u=δ}ϕ(t, x) = 0

So, we have ∫
QT

|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}ϕ (t, x)

=
∫

QT
|gn (t, x)| vn

(un + 1
n)γ

χ{un<δ}χ{u̸=δ}ϕ(t, x)

≤
{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1

(6.10)

Since by (5.7),
χ{un<δ}χ{u̸=δ} → χ{u<δ} a.e. in QT

Applying Fatou’s Lemma in (6.10) for δ fixed, leads to∫
QT

|gn (t, x)| v
uγ
χ{u<δ}ϕ(t, x) ≤

{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1
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Using again Fatou’s Lemma in the last inequality for δ → 0, we get∫
QT

|g (t, x)| v
uγ
χ{u=0}ϕ(t, x) =

∫
QT ∩{u=0}

|g (t, x)| v
uγ
ϕ(t, x) = 0 (6.11)

this leads to ∫
QT

|g (t, x)| v
uγ
ϕ(t, x) =

∫
QT ∩{u>0}

|g (t, x)| v
uγ
ϕ(t, x) (6.12)

which also means that∫
QT

g (t, x) v

uγ
ϕ(t, x) =

∫
QT ∩{u>0}

g (t, x) v

uγ
ϕ(t, x)

this is the desired result �

7. Proof of the main result
Now, we give the proof of the main result of this paper. Since un, vn ≥ 0 a.e. in QT ,

thanks to (5.3) and (5.4) we obtain u, v ≥ 0. Thanks to the convergences (5.5) and (5.6),
we can now go to the limit in the parts involving the time derivatives of (3.4) and (3.5).

By (5.11) and (5.12), the sequences (∇un) and (∇vn) are equi-integrable. By (5.7),
(5.8), (5.13) and (5.14), thanks to Vitali’s Theorem (see Theorem 1.0.16 in [19]), we
obtain

∇un → ∇u in L2(QT ) (7.1)

∇vn → ∇v in L2(QT ) (7.2)

We deal now with the singular lower order terms. Let be D = [0, T1] ×K, T1 < T , such
that K ⊂⊂ E ⊂⊂ Ω and ψ ∈ C∞

0 ([0, T ) × Ω) with suppψ = D. Let φ be a function such
that φ(x) = 1 on the set K, 0 ≤ φ ≤ 1 and supp(φ) = E. For any δ > 0 we have∫

QT
fn (t, x) vn

(un + 1
n)γ

ψ(t, x)

=
∫

QT ∩{0≤un<δ} fn (t, x) vn

(un + 1
n)γ

ψ (t, x)

+
∫

QT ∩{un≥δ} fn (t, x) vn

(un + 1
n)γ

ψ (t, x)

= A+B

(7.3)

Concerning the term A, we proceed as follows :

A ≤ ∥ψ∥∞

∫
D∩{0≤un<δ}

fn (t, x) vn

(un + 1
n)γ

φ2(x)

≤ ∥ψ∥∞

∫
QT ∩{0≤un<δ}

fn (t, x) vn

(un + 1
n)γ

φ2(x)

By (4.6), we get to
A ≤ Cδ (7.4)

where C is a constant independent of n. For the term B, we see that

B =
∫

QT

fn (t, x) vn

(un + 1
n)γ

χ{un≥δ}χ{u̸=δ}ψ (t, x)

+
∫

QT

fn (t, x) vn

(un + 1
n)γ

χ{un≥δ}χ{u=δ}ψ (t, x)

= B1 +B2
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We observe that there is at most a countable set O1 such that meas{(t, x) : u (t, x) =
δ} > 0. We choose δ outside of this set O1, so that the term B2 is zero. Since (5.7) holds,
for the term B1 we have that

χ{un≥δ}χ{u̸=δ} → χ{u>δ} a.e. in QT

fn (t, x) vn

(un + 1
n)γ

χ{un≥δ}χ{u̸=δ}ψ(x, t) ≤ f (t, x) vn

δγ
ψ (t, x) ∈ L1(QT )

Thanks to (5.7) and (5.8), the Lebesgue Dominate Convergence Theorem guarantees that

lim
n→+∞

∫
QT

fn (t, x) vn

(un + 1
n)γ

χ{un≥δ}χ{u̸=δ}ψ (t, x)

=
∫

QT

f (t, x) v

uγ
χ{u>δ}ψ (t, x)

Then
lim

n→+∞
B =

∫
QT

f (t, x) v

uγ
χ{u>δ}ψ (t, x) (7.5)

By (7.3), (7.4), (7.5) and (6.8), we can deduce that

lim
n→∞

∫
QT

fn (t, x) vn

(un + 1
n)γ

ψ (t, x) = lim
δ→0

n→∞

∫
QT

fn (t, x) vn

(un + 1
n)γ

ψ (t, x)χ{un>δ}

=
∫

QT ∩{u>0}
f (t, x) v

uγ
ψ (t, x)

=
∫

QT

f (t, x) v

uγ
ψ (t, x)

In the same way, we have for any δ > 0∫
QT

gn (t, x) vn

(un + 1
n)γ

ψ(t, x)

=
∫

QT ∩{0≤un<δ} gn (t, x) vn

(un + 1
n)γ

ψ (t, x)

+
∫

QT ∩{un≥δ} gn (t, x) vn

(un + 1
n)γ

ψ (t, x)

= Ā+ B̄

(7.6)

Concerning the term Ā, we have∣∣∣Ā∣∣∣ ≤ ∥ψ∥∞

∫
QT ∩{0≤un<δ}

|gn (t, x)| vn

(un + 1
n)γ

φ2(x)

By (4.9), we get to ∣∣∣Ā∣∣∣ ≤ ∥ψ∥∞.

{
Cδ1−γ if 0 < γ < 1
C

√
δ if γ = 1 (7.7)

which implies lim
δ→0

∣∣∣Ā∣∣∣ = 0, where C is a constant independent of n. For the term B̄, we
see that

B̄ =
∫

QT

gn (t, x) vn

(un + 1
n)γ

χ{un≥δ}χ{u̸=δ}ψ (t, x)

+
∫

QT

gn (t, x) vn

(un + 1
n)γ

χ{un≥δ}χ{u=δ}ψ (t, x)

= B̄1 + B̄2
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We observe that there is at most a countable set O2 such that meas{(t, x) : u (t, x) =
δ} > 0. We choose δ outside of this set O2, so that the term B̄2 is zero. Since (5.7) holds,
for the term B̄1 we have that

χ{un≥δ}χ{u̸=δ} → χ{u>δ} a.e. in QT

|gn (t, x)| vn

(un + 1
n)γ

χ{un≥δ}χ{u̸=δ}ψ(x, t) ≤ |g (t, x)| vn

δγ
ψ (t, x) ∈ L1(QT )

Thanks to (5.7) and (5.8), the Lebesgue Dominate Convergence Theorem guarantees that

lim
n→∞

B̄ =
∫

QT

g (t, x) v

uγ
χ{u>δ}ψ (t, x) (7.8)

By (7.6), (7.7), (7.8) and (6.8), we can deduce

lim
n→∞

∫
QT

gn (t, x) vn

(un + 1
n)γ

ψ (t, x) = lim
δ→0

n→∞

∫
QT

gn (t, x) vn

(un + 1
n)γ

ψ (t, x)χ{un>δ}

=
∫

QT ∩{u>0}
g (t, x) v

uγ
ψ (t, x)

=
∫

QT

g (t, x) v

uγ
ψ (t, x)

Repeating the same argument for un to deal with the case of vn, but this time we use
(4.7) and (4.8), which ends the proof of our main result Theorem 2.2.

8. Concluding remarks and perspectives
This work has mainly focused on the question of the existence of weak solutions for a

class of singular reaction diffusion systems. Many important results have been obtained
with additional assumptions that can be applied to extinction models and other models
in biology, ecology, physics, and others as appropriate.

We have developed original methods to overcome certain difficulties, and despite the
complexity of the model studied, we have succeeded in obtaining an existence result.

In addition to this work, we can address the following interesting questions :
• Question of uniqueness, by considering the notion of entropic solutions.
• Mathematical analysis of anisotropic system, which consists in adding diffusion

coefficients to the studied system depending on (t, x) or more generally depending
on (t, x, u,∇u).

• Asymptotic behaviour of solutions.
• Numerical simulation.

This list of loose themes corresponds to work in progress or prospective. Some are a
continuation of the work already done, and some are new research projects.

This not only makes it possible to be closer to the reality and concerns of the current
industrial world, but also goes beyond the theoretical framework by developing models
and tools that can be used and transferred to various industries.
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