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Abstract: In this paper we propose and study the so called Pólya-Aeppli process of order k of the second
type. Firstly, the process is defined using probability generating function, followed by its definition as a birth
process. The distribution of the related counting process is presented by recursion formulae. The Pólya-
Aeppli process of order k of the second type is considered within the framework of the risk process and
corresponding probability of ruin is studied. Using simulation, some interesting results for the probability of
ruin are obtained. Also, a comparison between the Pólya-Aeppli process of order k and Pólya-Aeppli process
of order k of the second type is discussed.
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1. Introduction
Our motivation is based on the risk process, {X(t), t≥ 0}, and its use as a main tool in modeling

of the surplus of an insurance company. In details, the risk process is given by

X(t) = c t−
N(t)∑
i=1

Zi, (1.1)

where c is a premium income per unit time, N(t) is a counting process, {Zi}∞i=1 is a sequence
of independent identically distributed, positive random variables, independent of N(t), with Zi
representing the size of the ith claim. We assume that the individual claim amount has a continuous
distribution with distribution function F , F (0) = 0, and mean value µ=EZ1 <∞. In the classical
risk model the process N(t) is assumed to be a homogeneous Poisson process.

Let us consider the following stochastic process N(t) =X1 + . . .+XN1(t), where X1,X2, . . . are
mutually independent random variables and also independent of the process N1(t).

It is well known that if the compounding random variable X has a discrete distribution with a
finite support and truncated at 0, the random variable N(t) has a distribution of order k, see for
example [1], [3], [8] and [2]

Pólya-Aeppli distribution of order k was introduced by [10], and applied as a counting distribu-
tion in the risk model considered in [4]. There, the random variable N1(t) is Poisson distributed
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with parameter λ and Xi are truncated geometrically distributed with probability mass function
(PMF) and probability generating function (PGF) given by

P (X = i) =
1− ρ
1− ρk

ρi−1, i= 1,2, . . . k, (1.2)

and

ψX(s) =
(1− ρ)s

1− ρk
1− ρksk

1− ρs
,

where k ≥ 1 is a fixed integer number and ρ ∈ [0,1). As a result, the above process N(t) is called
Pólya-Aeppli process of order k, denoted by PAk(λ,ρ).

In this paper we introduce another Pólya-Aeppli process of order k and call it Pólya-Aeppli
process of order k of the second type, and denote it by PAkII(λ,ρ). The two Pólya-Aeppli processes
of order k are different due to the difference of the compounding distributions included in their
definitions. In the truncated geometric distribution in (1.2) the mass from k + 1 to infinity is
uniformly distributed over the points 1,2, . . . , k. Here, we consider the case when the mass from
k+ 1 to infinity is clumped at point k.

So, what is the motivation for this new model PAkII(λ,ρ), and what is the difference between
the current model and the model PAk(λ,ρ) in [4]? As mentioned above, our motivation for both
modeling approaches comes from the risk process presented in (1.1). For the first model (the model
in [4]) we consider (1.1) embedded in an usual operational environment for the insurance company,
i.e., an environment without any major natural disasters or calamities, say storms, hurricanes,
floods, earthquakes and so on. The only restriction we impose in this model is a limitation on the
maximum possible number of simultaneous claims at any time, say k, which reasonably represents
the reality faced by the insurance company in its everyday operations. Also, an environment with no
major natural disasters, suggests no preference on any of the allowed integer numbers within [1, k] of
simultaneous claims, which means that the tail probability should be uniformly distributed over the
domain [1, k], leading to the truncated distribution considered in [4]. So, what is the motivation for
the current model? The modeling in this study is for (1.1) embedded in an operational environment
for the insurance company under the occurrence of a major natural disaster. As before, we preserve
the limitation on the maximum possible number of simultaneous claims k at any time, but due to
the external disastrous conditions we expect to have high number of simultaneous claims, so we
place the tail probability at the maximum possible number of simultaneous claims to reflect the
severity of the disaster, which leads to our model in this study.

The paper is organize as follows. In Section 2, we introduce the Pólya-Aeppli process of order
k of second type. In Section 3, we define this process as a birth process. Some applications of
this process to the risk model are given in Section 4. In Section 5, we present and discuss some
simulation results related to Pólya-Aeppli process of order k of second type and Section 6 concludes
this study.

2. Pólya-Aeppli process of order k of the second type
In this section we introduce the distribution of the Pólya-Aeppli process of order k of the second

type as a compound Poisson distribution. The distribution of the compounding random variables
Xi is given by the following PMF, which clumps the right tail of the distribution at point k:

P (X = i) =

 (1− ρ)ρi−1, i= 1,2, . . . k− 1

ρi−1, i= k.
(2.1)

The corresponding PGF is given by

ψX(s) =
(1− ρ)s+ (1− s)(ρs)k

1− ρs
. (2.2)



Chukova et al.: Pólya-Aeppli process of order k of the second type with an application
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Definition 1. The distribution defined by (2.1) or (2.2) is called a clumped geometric distribution
with parameters k and 1− ρ, and it is denoted by CGe(k,1− ρ).
In this case, the PGF of the N(t) is given by

ψN(t)(s) = e
−λt

(
1− (1−ρ)s+(1−s)(ρs)k

1−ρs

)
. (2.3)

Definition 2. The process defined by the PGF in (2.3) is called a Pólya-Aeppli process of order
k of the second type with parameters λ> 0 and ρ∈ [0,1), and denoted by PAkII(λ,ρ).
If k→∞, the clumped geometric distribution approaches the usual geometric distribution with
parameter 1− ρ.
If k→∞, the Pólya-Aeppli process of order k of second type, approaches the usual Pólya-Aeppli
process, see [9] and [5]. If ρ= 0, it is the usual homogeneous Poisson process.
The mean and the variance functions of the PAkII(λ,ρ) are given by

EN(t) = λt
1− ρk

1− ρ

and

V ar(N(t)) =
λt

(1− ρ)2
[1 + ρ− (2k+ 1)ρk + (2k− 1)ρk+1].

For the Fisher index, we obtain

FI(N(t)) =
V ar(N(t))

E(N(t))
=

1 + ρ

1− ρ
− 2k

ρk

1− ρk
.

The Fisher index of the distribution of the Pólya-Aeppli process is equal to 1+ρ
1−ρ , see [5]. Hence, the

distribution of the counting process PAkII(λ,ρ) is underdispersed with respect to the distribution
of the Pólya-Aeppli process.

Let us denote by Pn(t) = P (N(t) = n), n= 0,1, . . . The following proposition gives an extension
of the Panjer recursion formulas, see [11].

Proposition 1. The PMF of the N(t)∼ PAkII(λ,ρ) satisfies the following recursion formulae:

P1(t) = λt(1− ρ)P0(t),

Pn(t) = (2ρ+ λt(1−ρ)−2ρ
n

)Pn−1(t)− (1− 2
n

)ρ2Pn−2(t), n= 2,3, . . . k− 1

Pn(t) = (2ρ+ λt(1−ρ)−2ρ
n

)Pn−1(t)− (1− 2
n

)ρ2Pn−2(t) +λtρk k
n
Pn−k(t)

−λtρk[k+1
n

+ k−1
n
ρ]Pn−k−1(t) +λtρk+1 k

n
Pn−k−2(t), n= k, k+ 1, k+ 2, . . .

and P−1(t) = P−2(t) = 0.

Proof. Differentiation in (2.3) leads to

(1− ρs)2 ∂
∂s
ψN(t)(s) = λt[1− ρ+ kρksk−1− ρk((k+ 1) + (k− 1)ρ)sk + kρk+1sk+1]ψN(t)(s), (2.4)

where ψN(t)(s) =
∑∞

n=0Pn(t)sn and ∂
∂s
ψN(t)(s) =

∑∞
n=0(n+1)Pn+1(t)s

n. The recursions are obtained
by equating the coefficients of sn on both sides of (2.4) for fixed n= 0,1,2, . . . .

�
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İSTATİSTİK: Journal of the Turkish Statistical Association 13(3), pp. 98–107, © 2021 İstatistik 101

3. Pólya-Aeppli process of order k of the second type as a birth process
Suppose that N(t)∼ PAkII(λ,ρ). The properties of this process are specified by the following

assumptions: For any small h> 0

P (N(t+h) = n |N(t) =m) =


1−λh+ o(h), n=m,

(1− ρ)ρi−1λh+ o(h), n=m+ i,
i= 1,2, . . . , k− 1,

ρk−1λh+ o(h), n=m+ k,

(3.1)

for every m = 0,1, . . . , where o(h)→ 0 as h→ 0. Note that the assumptions imply that for i =
k+ 1, k+ 2, . . . , P (N(t+h) =m+ i |N(t) =m) = o(h).

The above assumptions yield the following Kolmogorov forward equations:∣∣∣∣∣∣∣∣∣∣

P ′0(t) =−λP0(t),

P ′n(t) =−λPn(t) + (1− ρ)λ
∑n

j=1 ρ
j−1Pn−j(t), n= 1,2, . . . , k− 1,

P ′n(t) =−λPn(t) + (1− ρ)λ
∑k−1

j=1 ρ
j−1Pn−j(t) +λρk−1Pn−k(t), n= k, k+ 1, . . . ,

(3.2)

with the conditions

P0(0) = 1 and Pn(0) = 0, n= 1,2, . . . . (3.3)

Multiplying the nth equation of (3.2) by sn and summing for all n= 0,1,2, . . . we get the following
differential equation

∂ΨN(t)(s)

∂t
=−λ[1−ψX(s)]ΨN(t)(s). (3.4)

The solution of (3.4) with the initial condition

ΨN(1)(s) = 1

is given by (2.3), which is the PGF of the distribution of PAkII(λ,ρ). This leads to the following
definition for the Pólya-Aeppli process of order k of second type, namely:
Definitin 3.The process defined by (3.2) and (3.3) is the Pólya-Aeppli process of order k of second
type.

4. Application to risk model
We consider the risk model (1.1), where N(t)∼ PAkII(λ,ρ). We call this model a Pólya-Aeppli

of order k of second type risk model. In this case the relative safety loading θ is defined by

θ=
EX(t)

E
∑N(t)

i=1 Zi
=

c(1− ρ)

λµ(1− ρk)
− 1.

To ensure that θ > 0, the premium income per unit time c should satisfy the following inequality

c >
λµ(1− ρk)

1− ρ
.

Denote by τ = inf{t :X(t)<−u} the time to ruin of an insurance company having initial capital
u≥ 0, and by

Ψ(u) = P (τ <∞) (4.1)
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the related ruin probability. Let G(u, y) be the probability of the following event:
{ruin occurs with initial capital u and deficit, immediately after ruin occurs, is at most y} with u≥
0 and y≥ 0. Hence

G(u, y) = P (τ <∞,D≤ y), (4.2)

where D= |u+X(τ)| is the deficit immediately after ruin occurs. Therefore

lim
y−→∞

G(u, y) = Ψ(u). (4.3)

Using the assumptions in (3.1), and for any small h> 0, we have

G(u, y) = (1−λh)G(u+ ch, y)+

+(1− ρ)λh
k−1∑
i=1

ρi−1
[∫ u+ch

0

G(u+ ch−x, y)dF ∗i(x) +
(
F ∗i(u+ ch+ y)−F ∗i(u+ ch)

)]
+

+ρk−1λh

[∫ u+ch

0

G(u+ ch−x, y)dF ?k(x) +
(
F ?k(u+ ch+ y)−F ?k(u+ ch)

)]
+ o(h),

(4.4)

where F ?i(x), i= 1,2, . . . is the distribution function of Z1 +Z2 + . . .+Zi.
Let us denote by

H(x) = (1− ρ)

k−1∑
i=1

ρi−1F ∗i(x) + ρk−1F ∗k(x) (4.5)

the non defective probability distribution function of the claims with

H(0) = 0, H(∞) = 1.

Rearranging the terms in (4.4) and letting h→ 0 we obtain the following differential equation

∂G(u, y)

∂u
=
λ

c

[
G(u, y)−

∫ u

0

G(u−x, y)dH(x)− [H(u+ y)−H(u)]

]
. (4.6)

In terms of the safety loading the equation has the form

∂G(u, y)

∂u
=

1− ρ
µ(1− ρk)

1

1 + θ

[
G(u, y)−

∫ u

0

G(u−x, y)dH(x)− [H(u+ y)−H(u)]

]
. (4.7)

4.1. Ruin probability

Theorem 1. The probability of ruin Ψ(u) satisfies the equation

dΨ(u)

du
=
λ

c

[
Ψ(u)−

∫ u

0

Ψ(u−x)dH(x)− [1−H(u)]

]
, u≥ 0. (4.8)

Proof. The result follows from (4.6) and (4.3).
�

Similarly to [4], we obtain the function G(0, y) given by

G(0, y) =
λ

c

∫ y

0

[1−H(u)]du, (4.9)

and for the ruin probability with no initial capital we obtain

Ψ(0) =
λµ

(1− ρ)c
(1− ρk). (4.10)
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4.2. Exponentially distributed claims
Let us consider the case of exponentially distributed claim sizes with mean µ, i.e. F (x) = 1−

e−
x
µ , x≥ 0, µ > 0. In this case, the function

F ∗i(x) = 1−
i−1∑
j=0

(
x
µ

)j
j!

e−
x
µ , x≥ 0

is an Erlang distribution function. Then, the distribution function H(x) in (4.5) is given by

H(x) = 1−
k−1∑
i=0

(
ρx
µ

)i
i!

e−
x
µ .

The density function h(x) has the form

h(x) =
1

µ

(1− ρ)

k−2∑
i=0

(
ρx
µ

)i
i!

+

(
ρx
µ

)k−1
(k− 1)!

e− xµ .
So, the initial condition (4.9) in the case of exponential distribution is

G(0, y) =
λµ

c

k−1∑
i=0

ρi

i!
γ(i+ 1, y/µ),

where γ(α,x) =
∫ x
0
tα−1e−tdt is the incomplete Gamma function.

5. Simulation
In what follows, we apply the simulation approach for calculating the probability of ruin sug-

gested in [6] for the case of exponentially distributed claims with initial capital u= 0. We confirm
the validity of our simulated results by matching them with the value of the ruin probability
computed analytically using (4.10). Then, using our simulator, we provide results for the case
of non-zero initial capital not only for exponentially distributed claims but also for claims with
gamma and Weibull distributions. For a summary of the simulation approach for calculating the
probability of ruin see [4]. All of our simulation results are based on 3 000 000 runs. Next, we pro-
vide some results regarding the probability of ruin for different scenarios of the claim distribution
as well as the value of the initial capital.

5.1. Results
We consider the case of exponentially distributed claims and no initial capital u= 0. We verify

the correctness of our simulator by comparing the results for the probability of ruin for fixed model
parameters, produced in two different ways : (i) by the simulator, given in column “simulated“,
and (ii) computed using (4.10) given in column “analytical“. These are given in Table 1.

λ k ρ simulated Exp(1) analytical Exp(1)
1.0 15 0.6 0.208117 0.208235
1.5 4 0.8 0.316531 0.316286
2.0 10 0.4 0.256365 0.256383
2.5 3 0.9 0.423526 0.423437
3.0 6 0.2 0.288426 0.288443

Table 1: Simulated and analytical Exp(1)
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As it is easy to see, the “analytical“ and “simulated“ results are very close. So, we use our
simulator, written in MATHEMATICA, to compute a reasonable approximation of the probability
of ruin for non-exponentially distributed claims and non-zero initial capital (u 6= 0) and a summary
of our results is given in subsection 5.1.1.

5.1.1. Case 1: Exponentially distributed claims
Here, we present some simulation results for the case of exponentially distributed claims with

non-zero initial capital.
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Figure 1. Probability of ruin: exponentially distributed claims

Comparing part(b) and part(d) of Figure 1, both with x-label k, it is easy to see that the
probability of ruin is shifted downwards as the initial capital increases. If the initial capital is u= 0,
the smallest values for the probability of ruin is just above 0.35 for ρ= 0.1, whereas the analogous
value for u = 5 is just below 0.1. The depicted overall dependence on ρ, regardless of the value
of the initial capital, is as expected, the probability of ruin increases as ρ increases. The overall
trends depicted in part(a), with x-label ρ, and part(c), with x-label k, of Figure 1 also agree with
our intuition. Namely, for a fixed value of ρ, the probability of ruin is higher for low values of the
initial capital and it increases on k. It is worth to point out the sharp increase of the probability
of ruin for large values of ρ and large k, as shown in part(a) of Figure 1.

5.1.2. Case 2: Gamma distributed claims
Next, we consider gamma distributed claims with parameters α and β, i.e., the density function

of the claim sizes is

f(x) =
xα−1

βαΓ(α)
e−

x
β , x≥ 0,
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İSTATİSTİK: Journal of the Turkish Statistical Association 13(3), pp. 98–107, © 2021 İstatistik 105

where Γ(α) is the Gamma function. Suppose that α= 2 and β = 0.5. In this case the mean values
of the claims are EZi = αβ = 1. We present results for different values of the model parameters u,
k and ρ.
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Figure 2. Probability of ruin: gamma distributed claims

The trends observed for the gamma distributed claims are similar to the one we have presented
and discussed for the case of exponentially distributed claims in subsection 5.1.1. Here, in Figure
2, with x-label ρ, we depict the dependence of the probability of ruin from u, for similar ρ and
k. Overall the probability of ruin for lower value of the capital u is higher, similar to what we
have observed in the exponential case. In addition we see that for high values of u and ρ, k have a
strong impact on the probability of ruin, e.g., see for u= 0 and ρ= 0.9, the range of the probability
of ruin is approximately (0.35,0.65), whereas for u = 5 this range is much larger, approximately
(0.05,0.53).

5.1.3. Case 3: Weibull distributed claims
Next, we consider the Weibull distribution with parameters α= 1.43552259 and β = 1.1013206

distributed claims. Here α is the shape parameter and β is the scale parameter. The parameters
of the Weibull and gamma distributions were selected so that the three claim size distributions
considered in sections 5.1.1, 5.1.2 and 5.1.3 have the same expectation µ= 1 and the Weibull and
gamma claim sizes have the same variances.
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Figure 3. Probability of ruin: Weibull distributed claims
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We were quite surprised to see that the behavior of the probability of ruin under Weibull dis-
tributed claims, part(a) and part(b) in Figure 3, with x-label ρ, mimics quite closely the behavior
of this probability for gamma distributed claims. So, then the natural question is: under a risk
model based on the Pólya-Aeppli process of order k, are the mean value and the variance of the
claim distribution what determines the probability of ruin, i.e., the actual form of the claim size
distribution does not have an effect on the probability of ruin. Interestingly, similar observations
were made in [4]. Again, observing these results is a good motivation for future research because
at this point we are not able to answer this question.

5.2. Comparison between M1 and M2
For brevity we will refer to the current model as M2 and to PAk(λ,ρ) from [4] as M1. Here we

provide a brief comparison between the probabilities of ruin for the two models.
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Figure 4. Probability of ruin: comparison between M1 and M2

In part(a) and part(b) in Figure 4, we fix the value of the parameter u= 3, and illustrate the
dependence of the probability of ruin for M1 and M2 for two different values of ρ= 0.7,0.9. Again,
the probability of ruin for M1 and M2 is similar for the selected exponential and Weibull claim size
distributions. The probability of ruin is an increasing function of k and its value is shifted upwards
for higher values of parameter ρ. As expected, the probability of ruin for M2 is higher than for
M1 and this is exactly what we expect to observe as an outcome for the insurance company at the
time of severe natural disaster. Having model PAkII(λ,ρ) in place provides a reasonable theoretical
background for the company to plan accordingly for natural calamities. From the observations
above a natural question arises: are there any condition on the mean and the variance of the
claim size distribution that will guaranty the satisfaction of some inequalities on the related ruin
probabilities. These inequalities will be very useful in the sense that, even at the time of calamity,
the probability of ruin would not exceed a known value. Again, further numerical and theoretical
studies are needed to gain some insight on this question.

6. Conclusions
In the present study we have defined and studied the Pólya-Aeppli process of order k of second

type as a compound Poisson process with clumped geometric compounding distribution with suc-
cess probability equal to 1− ρ > 0. We have discussed some possible application of this process in
risk theory. We have studied the probability of ruin for the related risk model and have derived
an exact expression for the ruin probability in the particular case of zero initial capital. Also, we
have adopted a simulation approach, given in [6] for our particular model. Using this simulation
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approach we have provided results for general cases of the model, such as non-exponential claim
distribution and non-zero initial capital. The simulation results have opened for discussion several
very interesting questions related to the probability of ruin for Pólya-Aeppli of order k second
type risk model. Also, a motivation for PAk(λ,ρ) studied in [4] and PAkII(λ,ρ) is outlined and a
comparison between these two models is discussed.
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