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Abstract 

Spatial analysis plays a prominent role in revealing and characterizing the spatial patterns over a geographical region by considering 

both the attributes of objects in a data set and their locations. The response variable can display spatial autocorrelation. The objects 

close together tend to produce more similar observations than objects further apart. Despite covariates in the model, we cannot 

capture spatial autocorrelation explicitly. It remains in the model residuals. Then, the independence assumption is violated by the 

residuals. We apply conditional autoregressive (CAR) model to prevent the residual spatial autocorrelation. In this study, we consider 

the problem of identifying the provinces at high risk to respiratory diseases mortality in Turkey. The number of deaths from 

respiratory diseases in 81 provinces of Turkey is modelled by using Leroux Model. We assume that the observed number of deaths 

have a Poisson distribution. Disease mapping is performed over calculated risk values. The results show that an increase in the 

household consumption of alcoholic beverages, cigarettes and tobacco and, also in the rate of people aged over 65 years in a province 

trigger a significant increase in respiratory disease mortality. Furthermore, Kastamonu has the highest mortality risk from respiratory 

diseases.  

Keywords: spatial autocorrelation, CAR models, MCMC, respiratory disease, mortality risk. 

Introduction 

The response variable of spatial data obtained from each 

areal unit displays spatial dependence. The reason of this 

dependence is the neighbourhood or grouping effects 

since the areal units close together tend to produce more 

similar observations than the areal units further apart. 

Thus, the assumption of independence of errors is 

violated because of spatial dependency. For this 

situation, random effect part is included in the model in 

order to get rid of residual spatial autocorrelation. In 

such cases, Spatial Generalized Linear Mixed Models 

(SGLMM) are used and spatial correlation can be 

modelled by CAR prior distributions in the R packages. 

There are several packages such as hSDM, spatcounts, 

spdep and INLA implemented in R for the analysis of 

CAR models. Although these models have some 

restrictions or weakness, CARBayes have some 

advantages over other packages for fitting CAR models 

(Lee, 2013). It gives an opportunity to identify the 

neighbourhood matrix in order to explain the spatial 

adjacency and this matrix can be implemented easily by 

a single function. Moreover, response variable can 

follow Gaussian, Binomial or Poisson distributions. In 

this package, regression parameters and random effects 

are updated using Metropolis and block Metropolis-

Hastings algorithms, respectively. Besides, Gibbs 

sampling is used for the sample of variance parameters 

(Lee, 2011). 

There are various models for CAR prior distribution as 

well. For instance, intrinsic autoregressive model is the 

simplest CAR prior and convolution model is the 

combination of intrinsic model and a set of independent 

random effects. Both models are proposed by Besag et 

al. (1991). Later, Cressie (1993) and Leroux et al. (2000) 

developed their models. Lee (2011) compares the 

performance of four different models and concludes that 

the Leroux model is the best model after simulation and 

real life example. Therefore, in this study, Leroux model 

is preferred to model the random effects rather than 

others. 

The aim of this study is to get the spatial distribution of 

respiratory disease mortality in Turkey and make an 

inference about provinces with elevated levels of 

respiratory disease mortality risk. Thus, for this study, 81 

provinces of Turkey were chosen as areal units and the 

numbers of deaths from respiratory diseases in each 

province were used as the response variable. The 

presence of spatial autocorrelation was tested by 

Moran’s I statistics over standardized mortality ratio 

(SMR) values. Then, using the CARBayes package, 

Leroux model was applied to the data set for estimating 

and mapping the mortality risk of the respiratory disease 

in Turkey. Hereby, this study is the first application of 

CAR models to Turkish disease data via the CARBayes 

package in R. 

The methodology of the study including disease 

mapping and Leroux model is explained and it is 
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mentioned how the neighbourhood matrix is defined. 

Then, the Bayesian mapping respiratory disease 

mortality after the SGLMM in Turkey is presented and 

the detailed information about features of spatial data is 

given. The last section summaries the main part of our 

study and gives a conclusion. 

Methodology 

When modelling data, we actually attempt to represent 

the data as the sum of two parts: ‘fit’ and ‘error’. ‘fit’ is 

the variation in the data explained by the model; 

however, ‘error’ is the remaining variation in the data 

unexplained by the model. There is a core assumption 

behind the modelling process. It is that errors are 

assumed to be independent of each other. When 

modelling spatial data, the response variable typically 

exhibits spatial autocorrelation because of 

neighbourhood and grouping effects of features. 

Neighbourhood effect defines the tendency of feature’s 

behaviour, which is influenced by that of neighbouring 

features. Each feature also chooses to be close to features 

with similar characteristics, which is known as grouping 

effect. On the other hand, an important spatially 

correlated covariate can be either unmeasured or 

unknown in the modelling process. As a natural result of 

these factors, spatial autocorrelation cannot be captured 

explicitly and remains in the residuals part of the model 

and thus the residual spatial autocorrelation violates the 

assumption of independence. 

As the solution, we use Spatial Generalized Linear 

Mixed Models to avoid from the spatial autocorrelation 

remaining in the residuals. The linear predictor includes 

the random effects for modelling any spatial correlation 

and over-dispersion in the data, which has not been 

accounted for by the available covariate information. 

These random effects are assigned a CAR prior 

distribution. A number of CAR models have been 

developed within this general class of CAR priors to deal 

with the random effects which exhibit a single global 

level of autocorrelation (Besag et al., 1991; Leroux et al., 

2000) and a localized spatial autocorrelation (Lee and 

Mitchell, 2012; Lee and Sarran, 2015). Lee (2011) has 

compared the performance of commonly used CAR 

models and showed that the CAR model proposed by 

Leroux et al. (2000) is the best overall. Based on Lee 

(2011), we used Leroux model for estimating and then 

mapping the risk of the respiratory disease mortality in 

Turkey. The remaining part of this section interprets the 

disease mapping and then the Leroux model. 

Disease Mapping 

Spatial statistics have been widely applied in disease 

mapping for providing a representation of the spatial 

distribution of the disease risk over a defined 

geographical region and detecting “which areas exhibit 

elevated levels of disease risk”. The disease risk reflects 

the mortality or the morbidity of a disease within a 

period of time for the population at risk. In this study, we 

focus on the mortality risk of the respiratory diseases in 

Turkey and therefore we address the disease mapping 

through the mortality risk (Doğru et al., 2017; Ülker et 

al., 2018; Badur et al., 2021). 

In disease mapping studies, the geographical region is 

generally partitioned into 𝐾 nonoverlapping small areal 

units. The observed number of deaths in each area are 

collectively denoted by 𝒀 = (𝑌1, … , 𝑌𝑘), where 𝑌𝑘

(𝑘 = 1, … , 𝐾) denotes the number of deaths in area 𝑘. 

The observed number of deaths alone gives no 

information about the mortality risk. To fairly determine 

and appraise the areas with elevated risk levels, the 

expected number of deaths for each area is calculated. 

The expected number of deaths for area 𝑘 is calculated 

as 𝐸𝑘 = 𝑃𝑘𝑟+ where, 𝑃𝑘  is the population at risk in area 𝑘
and, 𝑟+ is the overall deaths ratio. 𝑟+  equals to (𝑌+/𝑃+)

where, 𝑌+ is the total number of deaths and 𝑃+ is the total

population at risk. Bivand et al. (2013) state that the 

population at risk can be the number of children born 

during the period of study or the reduced subset of the 

total population. 

The observed number of deaths in area 𝑘 is assumed to 

follow a Poisson distribution with mean 𝜇𝑘 = 𝜃𝑘𝐸𝑘

where, 𝜃𝑘 is the true mortality risk in area 𝑘. The true

mortality risk is simply estimated by the standardized 

mortality ratio (SMR). SMR for area 𝑘 is calculated as 

𝑆𝑀𝑅𝑘 = (𝑌𝑘/𝐸𝑘). If 𝑆𝑀𝑅𝑘 > 1, the mortality risk for

area 𝑘 is worse than expected in the population at risk 

and thus area 𝑘 represents an elevated risk. On the 

contrary, if 𝑆𝑀𝑅𝑘 < 1, the mortality risk for area 𝑘 is

better than expected in the population at risk and thus 

area 𝑘 indicates comparatively a healthier area. 

The raw definition of SMR is deficient for some reasons. 

First, when the underlying disease is rare or the 

population at risk is small, 𝐸𝑘  will be small and thus

elevated risks are likely to happen by chance. Second, 

the raw SMR does not borrow strength from values in 

neighbouring areas, which can also lead the mortality 

risk to increase by chance. Last, the raw SMR does not 

include the effects of covariates on the mortality risk. As 

a result of these deficiencies, SMRs can badly 

misrepresent the spatial distribution of the mortality risk. 

They may be the extremes of the map in some areas and 

hence these extremes disrupt the patterns of the map. To 

overcome these problems, Spatial Generalized Linear 

Mixed Models is used for disease mapping. The class of 

these models can be found in Bivand et al. (2013), 

Lawson (2008) and Banerjee et al. (2014). The general 

form of these models is given by 

𝑌𝑘|𝜇𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑘), 𝑘 = 1,2, … , 𝐾
𝑙𝑛(𝜇𝑘) = 𝑙𝑛(𝐸𝑘) 𝑿𝑘

𝑇𝜷 + 𝜙𝒌 (1) 

𝜷~𝑁(𝝁𝜷, 𝜮𝜷)

where, 𝑙𝑛(𝐸𝑘) is the known offset term, 𝑿𝑘
𝑇 =

(1, 𝑥𝑘1, 𝑥𝑘2, , … 𝑥𝑘𝑝) is the vector of 𝑝 covariates for area

𝑘 (including the intercept term), 𝜷 = (𝛽0, 𝛽1, … 𝛽𝑝) is the

vector of regression parameters, 𝜙𝒌 is the random effect

for area 𝑘, 𝝁𝜷 and 𝜮𝜷 are the 1 × 𝑝 mean vector and the

𝑝 × 𝑝 diagonal variance matrix for 𝛽, respectively. The 

inference for this type of model is based on Markov 
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chain Monte Carlo (MCMC) simulations, using a 

combination of Gibbs sampling and Metropolis Hastings 

algorithms. 

Leroux Model 

The random effects in Equation 1 comprise the spatial 

structure component 𝝓 = (𝜙1, 𝜙2, … , 𝜙𝐾). This

component plays an important role in the spatial 

modelling process. Random effects are expected to 

model both over dispersion and spatial correlation which 

remains in the response data after covariate effects have 

been accounted for. The spatial closeness among the 

areas influence the spatial correlation between the 

random effects. The spatial closeness is identified by a 

neighbourhood matrix 𝑾, which defines how 𝐾 area are 

spatially located with respect to each other. 𝑾 =
[𝑤𝑘𝑗]𝐾×𝐾 is a symmetric and non-negative 𝐾 × 𝐾

matrix. The 𝑘 𝑗-th element 𝑤𝑘𝑗  is the spatial weight for

areas 𝑘 and 𝑗. The most commonly used specification of 

𝑊 is the binary specification given by 

𝑤𝑘𝑗 = {
1, 𝑖𝑓 (𝑘, 𝑗) 𝑠ℎ𝑎𝑟𝑒 𝑎 𝑐𝑜𝑚𝑚𝑜𝑛 𝑏𝑜𝑟𝑑𝑒𝑟 (𝑘~𝑗)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This specification means that the random effects related 

to adjacent areas are correlated while those related to 

non-adjacent areas are conditionally independent, given 

the remaining random effects. 

The random effects are modelled by different types of 

CAR prior distribution. CAR priors are commonly 

specified by a set of 𝐾 univariate full conditional 

distributions 𝑓(𝜙𝑘|𝜙−𝑘), 𝑘 = 1,2, … , 𝐾 where,

𝜙−𝑘 = (𝜙1, 𝜙2, … , 𝜙𝑘−1, 𝜙𝑘 , … , 𝜙𝐾). Many CAR models

have been developed with different specifications of 

CAR priors. Leroux et al. (2000) have proposed a CAR 

prior distribution for modelling varying strengths of 

spatial dependence. The proposed prior distribution 

includes separate parameters for over dispersion and the 

strength of spatial dependence between the random 

effects. The univariate full conditional distributions for 

the random effects are given by 

𝜙𝑘|𝜙−𝑘 , 𝑾, 𝜏2, 𝜌~𝑁 (
𝜌 ∑ 𝑤𝑘𝑗𝜙𝑗

𝐾
𝑗=1

𝜌 ∑ 𝑤𝑘𝑗 + 1 − 𝜌𝐾
𝑗=1

,
𝜏2

𝜌 ∑ 𝑤𝑘𝑗 + 1 − 𝜌𝐾
𝑗=1

) 

𝜏2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) (2) 

𝜌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

where, 𝜏2 is the variance parameter to control the

amount of the variation between the random effects, 𝜌 is 

the spatial autocorrelation parameter for controlling the 

strength of the spatial autocorrelation. 𝜌 = 1 indicates 

that there is a strong positive spatial correlation between 

random effects and hence perfect clustering of similar 

areas. If 𝜌 = 0, the random effects are independent, 

which shows that similar areas are neither close nor 

distant from each other. 

Mapping Respiratory Disease Mortality in Turkey 

In our study, we analyse the number of deaths from 

respiratory diseases in 81 provinces of Turkey in 2015. 

Figure 1 shows the observed number of deaths in each 

province. The highest number of deaths occurred in 

İstanbul, İzmir, Ankara, Bursa and Konya, respectively. 

Hakkâri, Tunceli, Kilis, Bayburt and Bingöl are, 

respectively, in the first five provinces with the least 

deaths. These observed numbers of deaths alone are not 

sufficient to determine the provinces with elevated risk 

levels and therefore we estimate the risk by combining 

covariate information with neighbouring and grouping 

information of provinces. 

Fig. 1. Number of Deaths from Respiratory Diseases in 81 Provinces of Turkey in 2015. 

The data for this study were obtained from the databases 

of Republic of Turkey Ministry of Environment and 

Urbanization (2017), Republic of Turkey General 

Directorate of Forestry (2014), The Union of Chambers 

and Commodity Exchanges of Turkey (2014) and 

Turkish Statistical Institute (2017). All the variables used 

for mapping respiratory disease mortality in Turkey are 

given below. 

(1) Y: Number of deaths from respiratory diseases by 

provinces of Turkey in 2015 

(2) Number of births in each province in 2015 

(3) PM10: Average of PM10 values (mcg/m
3
) in each 

province within the period of 2011-2014 

(4) HCE: The percentage of the household 

consumption expenditures for alcoholic beverages, 

cigarette and tobacco by statistical regions in 2014 

(5) FA: The percentage of forest area per km
2 

in each 

province in 2014 
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(6) PD: Population density (number of people per 

km
2
) by province in 2014 

(7) NI: Provincial rate of net migration (‰) 

(8) AGR: Annual growth rate of population (‰) in 

each province for 2014-2015 

(9) PR014: Population ratio for 14 years and under 

aged group by province in 2014 

(10) PR65: Population ratio for 65 years and over 

aged group by province in 2014 

𝑌 is taken as the response variable. The second one is the 

population at risk for calculating the overall deaths ratio 

(𝑟+) and the expected number of deaths 𝐸𝑘

(𝑘 = 1, … ,81) for each province. The remaining 

variables are the covariates. 

To assess whether or not there is a spatial correlation in 

the response variable, we realized a permutation test (at 

the 5% level) of Moran’s I statistic for SMR values. P-

value turns out to be 0.000002, which is much less than 

0.05. Moran’s I statistic for SMR values is equal to 

0.61404, which indicates the presence of a high degree 

of positive spatial autocorrelation. 

The respiratory data set is explained by the CAR model 

given in Equations 1 and 2. Bayesian inference was 

based on 2000000 MCMC samples. The initial 1000000 

samples were discarded for burn-in. Every fifteenth 

iteration values are kept after burn-in. Table 1 shows the 

modelling results. 

All Geweke’s Z scores fall within the 95% confidence 

interval and thus each chain has converged to its target 

posterior distribution. Posterior medians are Bayesian 

estimates for model parameters. HCE, PD, AGR, PR014 

and PR65 are found as the statistically significant 

    cov    ariates at the 5% level because their related 95% 

credible intervals do not contain zero value. 96% percent 

of the total variation has been explained by the model. 

Deviance information criteria (DIC) is equal to 793.7394 

and the log-likelihood value is −313.19216. 

The residuals were controlled for the presence of spatial 

autocorrelation by using a permutation test (at the 5% 

level) of Moran’s I statistic. P-value was 0.7638, which 

is greater than 0.05. Therefore, residuals do not contain 

any spatial autocorrelation. 

Table 1. Modelling Results for Leroux Model. 
95% Credible Interval 

Parameters 
Posterior 

Median 

2.5% 

Bound 

97.5% 

Bound 

Geweke Diagnostic 

Z-Scores 

Intercept 0.1802 -0.698 1.1187 -1.9 

PM10 0.0027 -0.0003 0.0056 0.3 

HCE 0.1∗ 0.0245 0.178 0.9 

FA -0.0004 -0.0032 0.0026 -0.7 

PD 0.0003∗ 0.0001 0.0004 -0.7 

NI 0.013 -0.0032 0.0281 1.8 

AGR -0.0149∗ -0.0267 -0.0022 -1.5 

PR014 -0.054∗ -0.0781 -0.0284 1.8 

PR65 0.085∗ 0.0468 0.1194 1.6 

𝜏2 0.0707 0.0375 0.1244 -1.4 

𝜌 0.4807 0.1377 0.8802 0.5 

∗ Significant Parameters 
Table 2. Effects of Covariates. 

95% Credible Interval 

Covariates 
Estimated 

Relative Risks 

2.5% 

Bound 

97.5% 

Bound 
Interpretation 

PM10 1.00270 0.99970 1.00562 2.7‰ increased risk 

HCE 1.10517
* 

1.02480 1.19483 10.5% increased risk 

FA 0.99960 0.99681 1.00260 0.4‰ reduced risk 

PD 1.00030
* 

1.00030 1.00040   0.3‰ increased risk 

NI 1.01308 0.99681 1.02850 1.3% increased risk 

AGR 0.98521
* 

0.97365 0.99780 1.5% reduced risk 

PR014 0.94743
*
 0.92487 0.97200 5.3% reduced risk 

PR65 1.08872
*
 1.04791 1.12682 8.9% increased risk 

∗ Significant Relative Risks 

Table 2 presents the estimated relative risks and their 

95% credible intervals. The estimated relative risks 

indicate the effects of covariates on disease risk for 

respiratory morality at a one-unit increase in each 

covariate.

According to Table 2, the estimated relative risks related 

to significant covariates are interpreted as the following: 

• 1% increase in HCE and PR65 result in 10.5%

and 8.9% increased risk in respiratory mortality, 

respectively. 

• One person increase per km
2 

causes a very low

level of risk increase for respiratory mortality. 

• One unit increase in AGR leads to 1.5%

reduced risk in respiratory mortality. 
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• 1% increase in PR014 results in 5.3% reduced

risk in respiratory mortality. 

Figure 2 displays the map of the estimated relative risks 

for respiratory disease mortality. They range from 0.214 

to 3.843. The riskiest province in Turkey is Kastamonu 

with the value of 3.843. Then, the second risky provinces 

are Bartın and Çankırı, which are neighbours of 

Kastamonu. In the third riskiest groups, Edirne, Sinop, 

Zonguldak, Giresun and Kütahya are placed, 

respectively. The comparatively least risky provinces 

are, respectively, Şırnak, Şanlıurfa, Diyarbakır and 

Batman.

Fig. 2. Estimated Relative Risks for Respiratory Disease Mortality. 

In order to determine whether the mortality risks for 

areas are significantly elevated or not, we computed the 

95% credible intervals of the true mortality risks for 81 

provinces in Turkey. Figure 3 summarizes these credible 

intervals. The dot in each interval represents the 

estimated mortality risk for the underlying area. There is 

a statistically significant elevated mortality risk for areas 

whose credible intervals are above the value of one, 

i.e., 𝐻0: 𝜃𝑘 = 1 versus 𝐻1: 𝜃𝑘 > 1. Kastamonu has the

highest credible interval among 81 provinces and 

therefore carries the highest risk for respiratory disease 

mortality. After Kastamonu, the riskiest provinces are 

Bartın, Çankırı, Edirne, Zonguldak and Sinop, 

respectively. Their lower bound is above the level of 2.5. 

On the other hand, Konya, Malatya, Bursa and Kayseri 

are significantly the least risky provinces, respectively. 

Their lower bound is above one but below 1.15.

(a) (b) 

(c) (d) 

Fig. 3. 95% Credible Intervals of the True Mortality Risks for 81 Provinces in Turkey 
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We calculated the posterior probabilities that the risks 

are greater than 1 and 2 for all provinces in Turkey. 

Figure 4 and Figure 5 show the maps of these posterior 

probabilities, respectively. Light-coloured provinces 

carry less risk of respiratory diseases deaths, compared 

to dark-coloured provinces in both maps. 

According to Figure 4, the risk is definitely not expected 

to be greater than 1 in all provinces in the South-eastern 

Anatolia Region; İstanbul and Kocaeli in the Marmara 

Region; Adana, Antalya, Hatay, Osmaniye and 

Kahramanmaraş in the Mediterranean Region; Van, 

Muş, Hakkari, Bitlis, Bingöl, Ağrı and Iğdır in the 

Eastern Anatolia Region. Additionally, Ankara and 

Aksaray have posterior probabilities less than 1% for the 

risk to be greater than 1. 

In Figure 5, the risk for respiratory diseases deaths is 

definitely to be higher than two in Kastamonu, Sinop, 

Ordu, Giresun, Bartın, Zonguldak, Karabük, Çankırı, 

Kırklareli, Edirne, Çanakkale, Balıkesir and Kütahya. 

Artvin and Tokat have also posterior probabilities that 

are slightly higher than 90% for the risk to be greater 

than 2. 

Fig. 4. Posterior Probabilities that Mortality Risks are Greater than 1 

Fig. 5. Posterior Probabilities that Mortality Risks are Greater than 2 

Conclusion 

In this study, we used Leroux model for modelling the 

counts of deaths from respiratory diseases in 81 

provinces of Turkey. 

As known that cigarette and alcohol consumption play 

a significant role in the increase of the respiratory 

diseases. The respiratory disease mortality increases 

10.5% for one percent increase in covariate HCE 

which is related to cigarette and alcohol consumption 

in the population. HCE is the most effective covariate 

among other covariates. As for the riskiest province for 

deaths from respiratory diseases, Kastamonu, 

household consumption for cigarette and alcohol in 

that province is higher than most of the other provinces 

of Turkey.  

The other significant covariates are respectively PR65, 

which is the rate of people aged over 65 years in the 

population, PR014, which is the rate of people aged 

under 14 years in the population, and AGR, which is 

the annual growth rate of the population. As known 

that various anatomical, physiological and 

immunological changes occur in the respiratory system 

with aging. Due to the effects of aging on respiratory 

system, older people are more prone to have severe 

respiratory diseases. As a result of this fact, the rate of 

people aged over 65 years leads to a significant 

increase in respiratory disease mortality. Conversely, 

the rate of young people in population leads to a 

Can et al.,  / IJEGEO 9(1):140-146 (2022) 
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significant decrease in respiratory disease mortality. 

One percent increases in the PR65 increases the 

mortality from respiratory diseases by 8.9%. Contrary 

to PR65, one percent increase in the PR014 result in 

5.3% reduced risk in the mortality from respiratory 

diseases and also 1‰ increase in the AGR results in 

1.5% reduced risk in mortality from respiratory 

diseases. As the riskiest province, Kastamonu is the 

second province with the highest population ratio for 

65 years and over aged group. Also, the population 

ratio for 14 years and under aged groups in Kastamonu 

is lower than most of the other provinces in Turkey. 

The annual growth rate of population in Kastamonu is 

neither too high nor to low compared to other 

provinces of Turkey. 

The least effective covariate is PD, which is the 

number of people per km
2 

in a province. One person 

increase in the PD results in 0.3‰ increased risk in the 

mortality from respiratory diseases. This indicates that 

the mortality from respiratory diseases in a province 

rises as the population density of a province increases.   

PM10 concentration of the air in a province shows the 

degree of air pollution in that province. As known that 

air pollution causes severe respiratory diseases, the 

covariate PM10 should have been a significant 

covariate in this study. However, based on the 

modelling results, it is not a significant covariate. 

PM10 concentration of the air varies depending on 

meteorological conditions, natural and anthropogenic 

factors. Therefore, during the time period when data 

are collected, anthropogenic factors and meteorological 

conditions may not significantly affect the amount of 

PM10 in the air in terms of increasing deaths from 

respiratory diseases. In that case, the spatial-temporal 

data models can be used for representing the temporal 

evolution of the objects over time.  
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