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Abstract

Spatial analysis plays a prominent role in revealing and characterizing the spatial patterns over a geographical region by considering
both the attributes of objects in a data set and their locations. The response variable can display spatial autocorrelation. The objects
close together tend to produce more similar observations than objects further apart. Despite covariates in the model, we cannot
capture spatial autocorrelation explicitly. It remains in the model residuals. Then, the independence assumption is violated by the
residuals. We apply conditional autoregressive (CAR) model to prevent the residual spatial autocorrelation. In this study, we consider
the problem of identifying the provinces at high risk to respiratory diseases mortality in Turkey. The number of deaths from
respiratory diseases in 81 provinces of Turkey is modelled by using Leroux Model. We assume that the observed number of deaths
have a Poisson distribution. Disease mapping is performed over calculated risk values. The results show that an increase in the
household consumption of alcoholic beverages, cigarettes and tobacco and, also in the rate of people aged over 65 years in a province
trigger a significant increase in respiratory disease mortality. Furthermore, Kastamonu has the highest mortality risk from respiratory

diseases.

Keywords: spatial autocorrelation, CAR models, MCMC, respiratory disease, mortality risk.

Introduction

The response variable of spatial data obtained from each
areal unit displays spatial dependence. The reason of this
dependence is the neighbourhood or grouping effects
since the areal units close together tend to produce more
similar observations than the areal units further apart.
Thus, the assumption of independence of errors is
violated because of spatial dependency. For this
situation, random effect part is included in the model in
order to get rid of residual spatial autocorrelation. In
such cases, Spatial Generalized Linear Mixed Models
(SGLMM) are used and spatial correlation can be
modelled by CAR prior distributions in the R packages.

There are several packages such as hSDM, spatcounts,
spdep and INLA implemented in R for the analysis of
CAR models. Although these models have some
restrictions or weakness, CARBayes have some
advantages over other packages for fitting CAR models
(Lee, 2013). It gives an opportunity to identify the
neighbourhood matrix in order to explain the spatial
adjacency and this matrix can be implemented easily by
a single function. Moreover, response variable can
follow Gaussian, Binomial or Poisson distributions. In
this package, regression parameters and random effects
are updated using Metropolis and block Metropolis-
Hastings algorithms, respectively. Besides, Gibbs
sampling is used for the sample of variance parameters
(Lee, 2011).

There are various models for CAR prior distribution as
well. For instance, intrinsic autoregressive model is the
simplest CAR prior and convolution model is the
combination of intrinsic model and a set of independent
random effects. Both models are proposed by Besag et
al. (1991). Later, Cressie (1993) and Leroux et al. (2000)
developed their models. Lee (2011) compares the
performance of four different models and concludes that
the Leroux model is the best model after simulation and
real life example. Therefore, in this study, Leroux model
is preferred to model the random effects rather than
others.

The aim of this study is to get the spatial distribution of
respiratory disease mortality in Turkey and make an
inference about provinces with elevated levels of
respiratory disease mortality risk. Thus, for this study, 81
provinces of Turkey were chosen as areal units and the
numbers of deaths from respiratory diseases in each
province were used as the response variable. The
presence of spatial autocorrelation was tested by
Moran’s | statistics over standardized mortality ratio
(SMR) values. Then, using the CARBayes package,
Leroux model was applied to the data set for estimating
and mapping the mortality risk of the respiratory disease
in Turkey. Hereby, this study is the first application of
CAR models to Turkish disease data via the CARBayes
package in R.

The methodology of the study including disease
mapping and Leroux model is explained and it is
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mentioned how the neighbourhood matrix is defined.
Then, the Bayesian mapping respiratory disease
mortality after the SGLMM in Turkey is presented and
the detailed information about features of spatial data is
given. The last section summaries the main part of our
study and gives a conclusion.

Methodology

When modelling data, we actually attempt to represent
the data as the sum of two parts: ‘fit’ and ‘error’. ‘fit’ is
the variation in the data explained by the model;
however, ‘error’ is the remaining variation in the data
unexplained by the model. There is a core assumption
behind the modelling process. It is that errors are
assumed to be independent of each other. When
modelling spatial data, the response variable typically
exhibits spatial autocorrelation because of
neighbourhood and grouping effects of features.
Neighbourhood effect defines the tendency of feature’s
behaviour, which is influenced by that of neighbouring
features. Each feature also chooses to be close to features
with similar characteristics, which is known as grouping
effect. On the other hand, an important spatially
correlated covariate can be either unmeasured or
unknown in the modelling process. As a natural result of
these factors, spatial autocorrelation cannot be captured
explicitly and remains in the residuals part of the model
and thus the residual spatial autocorrelation violates the
assumption of independence.

As the solution, we use Spatial Generalized Linear
Mixed Models to avoid from the spatial autocorrelation
remaining in the residuals. The linear predictor includes
the random effects for modelling any spatial correlation
and over-dispersion in the data, which has not been
accounted for by the available covariate information.
These random effects are assigned a CAR prior
distribution. A number of CAR models have been
developed within this general class of CAR priors to deal
with the random effects which exhibit a single global
level of autocorrelation (Besag et al., 1991; Leroux et al.,
2000) and a localized spatial autocorrelation (Lee and
Mitchell, 2012; Lee and Sarran, 2015). Lee (2011) has
compared the performance of commonly used CAR
models and showed that the CAR model proposed by
Leroux et al. (2000) is the best overall. Based on Lee
(2011), we used Leroux model for estimating and then
mapping the risk of the respiratory disease mortality in
Turkey. The remaining part of this section interprets the
disease mapping and then the Leroux model.

Disease Mapping

Spatial statistics have been widely applied in disease
mapping for providing a representation of the spatial
distribution of the disease risk over a defined
geographical region and detecting “which areas exhibit
elevated levels of disease risk”. The disease risk reflects
the mortality or the morbidity of a disease within a
period of time for the population at risk. In this study, we
focus on the mortality risk of the respiratory diseases in
Turkey and therefore we address the disease mapping
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through the mortality risk (Dogru et al., 2017; Ulker et
al., 2018; Badur et al., 2021).

In disease mapping studies, the geographical region is
generally partitioned into K nonoverlapping small areal
units. The observed number of deaths in each area are
collectively denoted by Y = (Y;,..,Y;), where Y,
(k =1,...,K) denotes the number of deaths in area k.
The observed number of deaths alone gives no
information about the mortality risk. To fairly determine
and appraise the areas with elevated risk levels, the
expected number of deaths for each area is calculated.
The expected number of deaths for area k is calculated
as E, = P,r, where, P, is the population at risk in area k
and, r, is the overall deaths ratio. r, equals to (Y, /P,)
where, Y, is the total number of deaths and P, is the total
population at risk. Bivand et al. (2013) state that the
population at risk can be the number of children born
during the period of study or the reduced subset of the
total population.

The observed number of deaths in area k is assumed to
follow a Poisson distribution with mean u, = 6E)
where, 6, is the true mortality risk in area k. The true
mortality risk is simply estimated by the standardized
mortality ratio (SMR). SMR for area k is calculated as
SMR,, = (Y, /Ey). If SMR,, > 1, the mortality risk for
area k is worse than expected in the population at risk
and thus area k represents an elevated risk. On the
contrary, if SMR, < 1, the mortality risk for area k is
better than expected in the population at risk and thus
area k indicates comparatively a healthier area.

The raw definition of SMR is deficient for some reasons.
First, when the underlying disease is rare or the
population at risk is small, E;, will be small and thus
elevated risks are likely to happen by chance. Second,
the raw SMR does not borrow strength from values in
neighbouring areas, which can also lead the mortality
risk to increase by chance. Last, the raw SMR does not
include the effects of covariates on the mortality risk. As
a result of these deficiencies, SMRs can badly
misrepresent the spatial distribution of the mortality risk.
They may be the extremes of the map in some areas and
hence these extremes disrupt the patterns of the map. To
overcome these problems, Spatial Generalized Linear
Mixed Models is used for disease mapping. The class of
these models can be found in Bivand et al. (2013),
Lawson (2008) and Banerjee et al. (2014). The general
form of these models is given by

Y lge~Poisson(u,), k = 1,2,...,K
In(uy) = In(Ey) XpB + b
B~N(pg, Zp)

)

where, In(E,) is the known offset term, X. =
(1, Xg1, Xk2,» - Xiep) 18 the vector of p covariates for area
k (including the intercept term), B = (Bo, By, .- Bp) is the
vector of regression parameters, ¢, is the random effect
for area k, pg and Zg are the 1 X p mean vector and the
p X p diagonal variance matrix for S, respectively. The
inference for this type of model is based on Markov
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chain Monte Carlo (MCMC) simulations, using a
combination of Gibbs sampling and Metropolis Hastings
algorithms.

Leroux Model

The random effects in Equation 1 comprise the spatial
structure  component @ = (¢4, b, ..., Pg).  This
component plays an important role in the spatial
modelling process. Random effects are expected to
model both over dispersion and spatial correlation which
remains in the response data after covariate effects have
been accounted for. The spatial closeness among the
areas influence the spatial correlation between the
random effects. The spatial closeness is identified by a
neighbourhood matrix W, which defines how K area are
spatially located with respect to each other. W =
[Wijlkxk 1S @ symmetric and non-negative K X K
matrix. The k j-th element wy; is the spatial weight for
areas k and j. The most commonly used specification of
W is the binary specification given by

o {1, if (k,j) share a common border (k~j)
ki 710, otherwise

This specification means that the random effects related
to adjacent areas are correlated while those related to
non-adjacent areas are conditionally independent, given
the remaining random effects.

The random effects are modelled by different types of
CAR prior distribution. CAR priors are commonly
specified by a set of A  univariate full conditional
distributions  f(¢rld_x), k=12,..,K  where,
G_r = (D1, P2 o Pr—1, Dier -, P ). Many CAR models
have been developed with different specifications of
CAR priors. Leroux et al. (2000) have proposed a CAR
prior distribution for modelling varying strengths of

spatial dependence. The proposed prior distribution
includes separate parameters for over dispersion and the
strength of spatial dependence between the random
effects. The univariate full conditional distributions for
the random effects are given by

P XSy wijd; 72
Pl - 'WrTZ'P~N< ,
Kk pES wij+1—p pEi wj+1-p
2~Inverse — Gamma(a, b) )

p~Uniform(0,1)

where, 72 is the variance parameter to control the
amount of the variation between the random effects, p is
the spatial autocorrelation parameter for controlling the
strength of the spatial autocorrelation. p = 1 indicates
that there is a strong positive spatial correlation between
random effects and hence perfect clustering of similar
areas. If p =0, the random effects are independent,
which shows that similar areas are neither close nor
distant from each other.

Mapping Respiratory Disease Mortality in Turkey

In our study, we analyse the number of deaths from
respiratory diseases in 81 provinces of Turkey in 2015.
Figure 1 shows the observed number of deaths in each
province. The highest number of deaths occurred in
Istanbul, Izmir, Ankara, Bursa and Konya, respectively.
Hakkari, Tunceli, Kilis, Bayburt and Bingol are,
respectively, in the first five provinces with the least
deaths. These observed numbers of deaths alone are not
sufficient to determine the provinces with elevated risk
levels and therefore we estimate the risk by combining
covariate information with neighbouring and grouping
information of provinces.

= Kirklareli Bartin ™
Zon‘guldak, 238,/ Kastamonu S'Zggp

Edime 639 509 S
ol i N e
478 245 Ord Tabzon
ki rdu
Yaiows 813 S8 "oy Cankarr~ cony (. Aty 671 Giresun g0, |
BT"¥ 29 = 403 22 _Tokat 241 ‘Somash { Kars
Bileck 513 "m:"soaneﬁaybun 187
AAE e Akara  rkkale g Eanen Todr
2 Balikesir 1 Eskigehir 2355 176 Yozgat Svas Erz;ggan An 105
1082 Katahya 573 Kirgehir 1 485 203
605 150Ne ) Tugzcell Bingdl 2
vsehir 87 ug
Manisa
fios gk POorearamar Zaq  Keyeei MaEse Bazg 122 T gitis Van
23 646 Aksaray 26 479 o1 -
Tzmir o 177 o 67
2184 nya S h Diyarbakir
Aydin Isparta 1297 270 ‘ Ka valllggmarﬁ Adyamen e %lzn
07 Denel_gyrdur Adan 24 137 Simak Hakkari
Mugia 22 Karaman %97 smane g B 102
-510 140 217/ Gazantep i
Mggga Mersin 646
e 856 Hatay -
693

Fig. 1. Number of Deaths from Respiratory Diseases in 81 Provinces of Turkey in 2015.

The data for this study were obtained from the databases
of Republic of Turkey Ministry of Environment and
Urbanization (2017), Republic of Turkey General
Directorate of Forestry (2014), The Union of Chambers
and Commodity Exchanges of Turkey (2014) and
Turkish Statistical Institute (2017). All the variables used
for mapping respiratory disease mortality in Turkey are
given below.

(1) Y: Number of deaths from respiratory diseases by
provinces of Turkey in 2015

(2) Number of births in each province in 2015

(3) PM10: Average of PM10 values (mcg/m®) in each
province within the period of 2011-2014

(4) HCE: The percentage of the household
consumption expenditures for alcoholic beverages,
cigarette and tobacco by statistical regions in 2014
(5) FA: The percentage of forest area per km? in each
province in 2014
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(6) PD: Population density (number of people per
km?) by province in 2014

(7) NI: Provincial rate of net migration (%o)

(8) AGR: Annual growth rate of population (%o) in
each province for 2014-2015

(9) PRO14: Population ratio for 14 years and under
aged group by province in 2014

(10) PR65: Population ratio for 65 years and over
aged group by province in 2014

Y is taken as the response variable. The second one is the
population at risk for calculating the overall deaths ratio
(r,) and the expected number of deaths E,
(k=1,..,81) for each province. The remaining
variables are the covariates.

To assess whether or not there is a spatial correlation in
the response variable, we realized a permutation test (at
the 5% level) of Moran’s | statistic for SMR values. P-
value turns out to be 0.000002, which is much less than
0.05. Moran’s | statistic for SMR values is equal to
0.61404, which indicates the presence of a high degree
of positive spatial autocorrelation.

Table 1. Modelling Results for Leroux Model.

The respiratory data set is explained by the CAR model
given in Equations 1 and 2. Bayesian inference was
based on 2000000 MCMC samples. The initial 2000000
samples were discarded for burn-in. Every fifteenth
iteration values are kept after burn-in. Table 1 shows the
modelling results.

All Geweke’s Z scores fall within the 95% confidence
interval and thus each chain has converged to its target
posterior distribution. Posterior medians are Bayesian
estimates for model parameters. HCE, PD, AGR, PR014
and PR65 are found as the statistically significant
covariates at the 5% level because their related 95%
credible intervals do not contain zero value. 96% percent
of the total variation has been explained by the model.
Deviance information criteria (DIC) is equal to 793.7394
and the log-likelihood value is —313.19216.

The residuals were controlled for the presence of spatial
autocorrelation by using a permutation test (at the 5%
level) of Moran’s | statistic. P-value was 0.7638, which
is greater than 0.05. Therefore, residuals do not contain
any spatial autocorrelation.

95% Credible Interval

Parameters Poste_rior 2.5% 97.5% Geweke Diagnostic
Median Bound Bound Z-Scores
Intercept 0.1802 -0.698 1.1187 -1.9
PM10 0.0027 -0.0003 0.0056 0.3
HCE 0.1+ 0.0245 0.178 0.9
FA -0.0004 -0.0032 0.0026 -0.7
PD 0.0003* 0.0001 0.0004 -0.7
NI 0.013 -0.0032 0.0281 1.8
AGR -0.0149+ -0.0267 -0.0022 -1.5
PR0O14 -0.054* -0.0781 -0.0284 1.8
PR65 0.085* 0.0468 0.1194 1.6
72 0.0707 0.0375 0.1244 -1.4
0 0.4807 0.1377 0.8802 0.5
* Significant Parameters
Table 2. Effects of Covariates.
95% Credible Interval
. Estimated 2.5% 97.5% .
Covariates Relative Risks Bound Bound Interpretation
PM10 1.00270 0.99970 1.00562 2.7%o increased risk
HCE 1.10517" 1.02480 1.19483 10.5% increased risk
FA 0.99960 0.99681 1.00260 0.4%o reduced risk
PD 1.00030" 1.00030 1.00040 0.3%o increased risk
NI 1.01308 0.99681 1.02850 1.3% increased risk
AGR 0.98521" 0.97365 0.99780 1.5% reduced risk
PRO14 0.94743" 0.92487 0.97200 5.3% reduced risk
PR65 1.08872" 1.04791 1.12682 8.9% increased risk

* Significant Relative Risks

Table 2 presents the estimated relative risks and their
95% credible intervals. The estimated relative risks
indicate the effects of covariates on disease risk for
respiratory morality at a one-unit increase in each
covariate.

According to Table 2, the estimated relative risks related
to significant covariates are interpreted as the following:

¢ 1% increase in HCE and PR65 result in 10.5%
and 8.9% increased risk in respiratory mortality,

respectively.

« One person increase per km? causes a very low
level of risk increase for respiratory mortality.

e One unit increase in AGR leads to 1.5%
reduced risk in respiratory mortality.
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e 1% increase in PR014 results in 5.3% reduced
risk in respiratory mortality.

Figure 2 displays the map of the estimated relative risks
for respiratory disease mortality. They range from 0.214
to 3.843. The riskiest province in Turkey is Kastamonu
with the value of 3.843. Then, the second risky provinces
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In order to determine whether the mortality risks for
areas are significantly elevated or not, we computed the
95% credible intervals of the true mortality risks for 81
provinces in Turkey. Figure 3 summarizes these credible
intervals. The dot in each interval represents the
estimated mortality risk for the underlying area. There is
a statistically significant elevated mortality risk for areas
whose credible intervals are above the value of one,
i.e, Hy:0, =1 versus H;:6, > 1. Kastamonu has the
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Fig. 2. Estimated Relative Risks for Respiratory Disease Mortality.

are Bartin and Cankiri, which are neighbours of
Kastamonu. In the third riskiest groups, Edirne, Sinop,
Zonguldak, Giresun and Kiitahya are placed,
respectively. The comparatively least risky provinces
are, respectively, Sirnak, Sanlwurfa, Diyarbakir and
Batman.

highest credible interval among 81 provinces and
therefore carries the highest risk for respiratory disease
mortality. After Kastamonu, the riskiest provinces are
Bartin, Cankiri, Edirne, Zonguldak and Sinop,
respectively. Their lower bound is above the level of 2.5.
On the other hand, Konya, Malatya, Bursa and Kayseri
are significantly the least risky provinces, respectively.
Their lower bound is above one but below 1.15.
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We calculated the posterior probabilities that the risks
are greater than 1 and 2 for all provinces in Turkey.
Figure 4 and Figure 5 show the maps of these posterior
probabilities, respectively. Light-coloured provinces
carry less risk of respiratory diseases deaths, compared
to dark-coloured provinces in both maps.

According to Figure 4, the risk is definitely not expected
to be greater than 1 in all provinces in the South-eastern
Anatolia Region; Istanbul and Kocaeli in the Marmara
Region; Adana, Antalya, Hatay, Osmaniye and
Kahramanmaras in the Mediterranean Region; Van,
Mus, Hakkari, Bitlis, Bingol, Agr1 and Igdir in the

Latitude

Longitude

Eastern Anatolia Region. Additionally, Ankara and
Aksaray have posterior probabilities less than 1% for the
risk to be greater than 1.

In Figure 5, the risk for respiratory diseases deaths is
definitely to be higher than two in Kastamonu, Sinop,
Ordu, Giresun, Bartin, Zonguldak, Karabiik, Cankiri,
Kirklareli, Edirne, Canakkale, Balikesir and Kiitahya.
Artvin and Tokat have also posterior probabilities that
are slightly higher than 90% for the risk to be greater
than 2.

PROB.
075
o 05

025

Fig. 4. Posterior Probabilities that Mortality Risks are Greater than 1

Latitude

Lo;gnude
Fig. 5. Posterior Probabilities that Mortality Risks are Greater than 2

Conclusion

In this study, we used Leroux model for modelling the
counts of deaths from respiratory diseases in 81
provinces of Turkey.

As known that cigarette and alcohol consumption play
a significant role in the increase of the respiratory
diseases. The respiratory disease mortality increases
10.5% for one percent increase in covariate HCE
which is related to cigarette and alcohol consumption
in the population. HCE is the most effective covariate
among other covariates. As for the riskiest province for
deaths from respiratory diseases, Kastamonu,
household consumption for cigarette and alcohol in

that province is higher than most of the other provinces
of Turkey.

The other significant covariates are respectively PR65,
which is the rate of people aged over 65 years in the
population, PR014, which is the rate of people aged
under 14 years in the population, and AGR, which is
the annual growth rate of the population. As known
that  various anatomical, physiological and
immunological changes occur in the respiratory system
with aging. Due to the effects of aging on respiratory
system, older people are more prone to have severe
respiratory diseases. As a result of this fact, the rate of
people aged over 65 years leads to a significant
increase in respiratory disease mortality. Conversely,
the rate of young people in population leads to a
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significant decrease in respiratory disease mortality.
One percent increases in the PR65 increases the
mortality from respiratory diseases by 8.9%. Contrary
to PR65, one percent increase in the PR0O14 result in
5.3% reduced risk in the mortality from respiratory
diseases and also 1%o increase in the AGR results in
1.5% reduced risk in mortality from respiratory
diseases. As the riskiest province, Kastamonu is the
second province with the highest population ratio for
65 years and over aged group. Also, the population
ratio for 14 years and under aged groups in Kastamonu
is lower than most of the other provinces in Turkey.
The annual growth rate of population in Kastamonu is
neither too high nor to low compared to other
provinces of Turkey.

The least effective covariate is PD, which is the
number of people per km? in a province. One person
increase in the PD results in 0.3%o increased risk in the
mortality from respiratory diseases. This indicates that
the mortality from respiratory diseases in a province
rises as the population density of a province increases.
PM10 concentration of the air in a province shows the
degree of air pollution in that province. As known that
air pollution causes severe respiratory diseases, the
covariate PM10 should have been a significant
covariate in this study. However, based on the
modelling results, it is not a significant covariate.
PM10 concentration of the air varies depending on
meteorological conditions, natural and anthropogenic
factors. Therefore, during the time period when data
are collected, anthropogenic factors and meteorological
conditions may not significantly affect the amount of
PM10 in the air in terms of increasing deaths from
respiratory diseases. In that case, the spatial-temporal
data models can be used for representing the temporal
evolution of the objects over time.
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