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Abstract
A system of k components that functions as long as at least s components survive is termed
as s-out-of-k:G system, where G refers to "good". In this study, we consider the s-out-
of-k:G system when X1, X2, · · · , Xk are independent and identically distributed strength
components and each component is exposed to common random stress Y when the under-
lying distributions all belong to the standard two-sided power distribution. The system is
regarded as surviving only if at least s out of k (1 < s < k) strengths exceed the stress.
The reliability of such a system is the surviving probability and is estimated by using
the maximum likelihood and Bayesian approaches. Parametric and nonparametric boot-
strap confidence intervals for the maximum likelihood estimates and the highest posterior
density confidence intervals for Bayes estimates by using the Markov Chain Monte Carlo
technique are obtained. A real data set is also analyzed to illustrate the performances of
the estimators.
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1. Introduction
The standard two-sided power distribution, denoted by STSP, is introduced by [26]

and proposed as a peaked alternative to the beta distribution by [17]. It has the fol-
lowing probability density function (pdf) and the cumulative distribution function (cdf),
respectively,

f(x|α, β) =
{

α( x
β )α−1 , 0 < x ≤ β

α( 1−x
1−β )α−1 , β ≤ x < 1 (1.1)

F (x|α, β) =
{

β( x
β )α , 0 ≤ x ≤ β

1 − (1 − β)( 1−x
1−β )α , β ≤ x ≤ 1 (1.2)

where α > 0 is the shape and 0 < β < 1 is the reflection/threshold parameter. Since
it is defined on a bounded support and has a similar flexibility, the STSP distribution is
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a beta-like distribution. The parameters in the distribution determine the shapes of the
distribution. For example, for 0 < β < 1 and α > 0, the distribution is unimodal; for
0 < β < 1 and 0 < α < 1, the distribution is U shaped; for α = 1 the distribution is
uniform on (0, 1); for α = 2, the distribution is triangular. When β = 0.5, the distribution
is symmetric (see Figure 1). The left-skewed and right-skewed distributions are obtained
when β > 0.5 and β < 0.5, respectively, for α > 1. The STSP distribution is clearly
more flexible than the power function distribution which is obtained for the case β = 1.
When the support of the distribution is extended to a finite interval (a, b), it is called the
two-sided power (TSP) distribution. In literature, the STPS distribution is commonly
used for modeling financial data with excess kurtosis. Many authors studied the STSP
distribution and its extensions in detail. Recently, Akther et al. [2] handled new explicit
expressions for the moments of order statistics of the STSP distribution. Kharazmi et al.
[13] proposed a general change-point family of distributions as an extension of the STSP
distribution. A matrix variate two-sided power distribution is proposed by [27].

The STSP distribution has also applications in risk analysis such as project evaluation
and review technique (PERT) [22]. The STSP distribution can be used in reliability and
life testing experiments on [0, 1]. Particularly, when these types of lifetime data have any
threshold point, they are convenient for modeling by a two-sided distribution. Mance et
al. [21] studied some features of the TSP which is an extension of the STSP distribution
in reliability analysis, firstly. They introduced the reliability and hazard functions of
the TSP distribution and presented their plots with usefulness in engineering. Using an
analytical estimation procedure, they obtained the TSP parameters and compared the
distribution with the Weibull distribution. Recently, Çetinkaya and Genç [7] studied the
STSP distribution for the stress-strength reliability where a component operates if its
strength exceeds the stress imposed on it, respectively. The aim of this paper is to study
the reliability of a multicomponent stress-strength model under the STSP distribution.

Figure 1. Plots of probability denstiy function of the STSP distribution for various
choices of its parameters

A multicomponent system has more than one component and occurs when a component
under consideration of k independent components with the strengths X1, X2, · · · , Xk and
each component of the system is subjected to common stress Y [18]. A system belonging
to this class can be one of the two types:

• The system functions when at least s (1 ≤ s ≤ k), components are working;
denoted by s-out-of-k:G system, where G refers to "good",

• The system fails when the failure of the kth component (1 ≤ s ≤ k); denoted by
s-out-of-k:F system, where F refers to "fail".

Many examples of s-out-of-k system can be considered. For example; A panel consisting
of k identical solar cells maintains an adequate power output if at least s of the cells are
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active during the duration of the mission. The external force interfering with the operation
of the cells may be extreme temperatures and the strength of a cell, in this context, may
be taken as its capacity to withstand the external temperatures [12]. As another example,
we consider a suspension bridge consisting of n vertical cable pairs. One vertical cable pair
consists of two cables on both sides of a deck. The bridge will only survive if a minimum
of s vertical cable pairs through the deck are not damaged when subjected to stresses due
to wind loading, heavy traffic, corrosion, and so on. These types of systems also appear
in different areas such as industrial and military applications.

Suppose a system with the strengths of the components, X1, X2, · · · , Xk, are inde-
pendent and identically distributed random variables with cdf FX and subjected to the
common stress Y having cdf FY , then the reliability, probability of successful operation,
of the s-out-of-k system defined by [4] is given by

Rs,k = P [at least s of the (X1, X2, · · · , Xk) exceed Y ]

=
k∑

i=s

(
k

i

)∫ ∞

−∞
[1 − FX(y)]i[FX(y)]k−idFY (y).

(1.3)

When the system operates whenever at least one of k components survives, that is s = 1,
it is named as a parallel system. However, if the system operates when all s components
survive, that is s = k, it is termed as a series system.

Reliability estimation of a s-out-of-k system has been discussed by several authors in
the literature. In recent years, there has been growing interest for the s-out-of-k and
related systems under different probability distributions. This type of multicomponent
stress-strength reliability estimation studies is considered for log-logistic distribution by
[24], generalized exponential by [23], PoissonWeibull models by [10], Weibull distribution
by [16], Kumaraswamy distribution by [8], the general class of inverse exponential distri-
butions by [14], Topp-Leone distribution by [1]. Furthermore, Kzlaslan [15] considered a
multicomponent system when the underlying distributions belonging to the proportional
reversed hazard rate model. Barbiero [3] defined a general discretization procedure for
both stress and strength are defined as complex functions of continuous random variables.

Unlike all previous studies based on multicomponent stress-strength reliability, we stud-
ied a distribution with bounded support and two-sided. With these aspects, the STSP
distribution provides more flexibility for the lifetimes which have a threshold point. Fur-
ther, it has a bathtub failure curve which makes it useful for modeling early life, useful
life, and wear out processes of a component lifetime with only a single model for α < 1
values of its shape parameter. Also, it belongs to the increasing failure rate (IFR) class
of distributions for α > 1 and has a better chance of surviving any shorter period and a
worse chance of surviving any larger period (see Figure 2).

Figure 2. Hazard function plots of the symmetrical ST SP distribution (β = 0.5) for
different shape parameters.
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2. Maximum likelihood estimation of Rs,k

Let us assume that X1, X2, · · · , Xk are independently and identically distributed (iid)
random strengths from STSP (α1, β1) and Y is a common stress from STSP (α2, β2).
We will first derive an expression for Rs,k and then construct the likelihood function. To
compute Rs,k, we can assume, without loss of generality, that β2 < β1. Then, the reliability
of a multicomponent stress-strength model for the STSP distribution using Equation(1.1)
and Equation (1.2) can be obtained by

Rs,k =
k∑

i=s

(
k

i

)∫ ∞

−∞
[1 − FX(y)]i[FX(y)]k−idFY (y)

=
k∑

i=s

(
k

i

)[ ∫ β2

0
[1 − FX(y)]i[FX(y)]k−idFY (y)

+
∫ β1

β2
[1 − FX(y)]i[FX(y)]k−idFY (y) +

∫ 1

β1
[1 − FX(y)]i[FX(y)]k−idFY (y)

]
.

(2.1)

The three integrals from the left to right in Equation(2.1) are denoted by Ii, i = 1, 2, 3
and can be evaluated as in the following. The first one is

I1 =
∫ β2

0
[1 − FX(y)]i[FX(y)]k−idFY (y)

=
∫ β2

0

[
1 − β1

(
y

β1

)α1]i[
β1

(
y

β1

)α1]k−i

α2

(
y

β2

)α2−1
dy.

by change of variable u = β1

(
y
β1

)α1

, we obtain I1 as

I1 = ρ
β

ρ(α1−1)
1

β
(α2−1)
2

B(β1δα1 ; k − i + ρ, i + 1).

where B(x; a, b) is the incomplete beta function defined by

B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1dt.

ρ = α2/α1 and δ = β2/β1. The second integral

I2 =
∫ β1

β2
[1 − FX(y)]i[FX(y)]k−idFY (y)

=
∫ β1

β2

[
1 − β1

(
y

β1

)α1]i[
β1

(
y

β1

)α1]k−i

α2

( 1 − y

1 − β2

)α2−1
dy.

By expanding the term with power i by binomial theorem, we obtain I2 as

I2 =
i∑

j=0

(
i

j

)
(−1)jβ

(1−α1)(j+k−i)
1 (1 − β2)(1−α2)

× α2
[
B(β1; α1(k + j − i) + 1, α2) − B(β2; α1(k + j − i) + 1, α2)

]
.

And for the third integral

I3 =
∫ 1

β1
[1 − FX(y)]i[FX(y)]k−idFY (y)

=
∫ 1

β1

[(
1 − β1

)( 1 − y

1 − β1

)α1]i[
1 −

(
1 − β1

)( 1 − y

1 − β1

)α1]k−i

α2

( 1 − y

1 − β2

)α2−1
dy.
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by change of variable u =
(
1 − β1

)( 1−y
1−β1

)α1

, we obtain I3 as

I3 = ρ
(1 − β1)ρ(α1−1)

(1 − β2)(α2−1) B(1 − β1; i + ρ, k − i + 1).

Combining the integral expressions above in Equation (2.1), we get Rs,k as

Rs,k =
k∑

i=s

(
k

i

)
ρ

[
β

ρ(α1−1)
1

β
(α2−1)
2

B(β1δα1 ; k − i + ρ, i + 1)

+ (1 − β2)(1−α2)
(

α1

i∑
j=0

(
i

j

)
(−1)jβ

(1−α1)(j+k−i)
1

[
B(β1; α1(k + j − i) + 1, α2)

− B(β2; α1(k + j − i) + 1, α2)
]

+ (1 − β1)ρ(α1−1)B(1 − β1; i + ρ, k − i + 1)
)]

.

(2.2)

The the likelihood function of the observed samples X1, X2, · · · , Xn and Y1, Y2, · · · , Ym

are given as

L(α1, α2, β1, β2|x,y) = αn
1 αm

2

{∏r
i=1 x(i)

∏n
i=r+1(1 − x(i))

βr
1(1 − β1)n−r

}α1−1

×
{∏r′

i=1 y(i)
∏m

i=r′+1(1 − y(i))
βr′

2 (1 − β2)m−r′

}α2−1
.

where x(r) ≤ β1 < x(r+1) and y(r′) ≤ β2 < y(r′+1) with x(0) ≡ 0, y(0) ≡ 0, x(n+1) ≡ 1 and
y(m+1) ≡ 1.
The maximum likelihood estimates (MLEs) of the parameters based on a sample of size
n from the STSP (α, β) distribution are obtained by [26], and they are given by

β̂ = X(r̂) and α̂ = − n

log M(r̂)
.

where r̂ = arg max{r∈1,2,··· ,n}M(r) and

M(r) =
r−1∏
i=1

X(i)
X(r)

n∏
i=r+1

1 − X(i)
1 − X(r)

.

Hence, the MLE of Rs,k is obtained from Equation (2.2) by using the invariance property
of MLEs. That is, MLE of Rs,k can be obtained by replacing the parameters in Equation
(2.2) with their estimates. Also, bootstrap methods can be used to find approximate
confidence intervals since neither exact nor approximate sampling distribution R̂s,k is not
available.

2.1. Bootstrap confidence intervals for Rs,k

In this subsection, we propose parametric and nonparametric bootstrap methods for
obtaining an approximate confidence interval for Rs,k. Çetinkaya and Genç [7] mentioned
that the STSP distribution does not belong to a regular family of distributions since the
support of the distribution depends on its threshold parameter β. Therefore, asymptotic
variance of parameters cannot be determined by using the standard theory of the Fisher
information matrix. Thus, bootstrap percentile method (boot-p) will be used in place of
bootstrap-t confidence interval that require a regular family in its construction. We pro-
pose to use the following algorithm to generate parametric and non-parametric bootstrap
samples, as suggested by [9].
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• Step 1: Generate random samples x1, x2, · · · , xn and y1, y2, · · · , ym from
STSP (α1, β1) and STSP (α2, β2), respectively.
For obtaining a non-parametric bootstrap sample

• Step 2: By sampling with replacement, generate bootstrap samples x∗
1, x∗

2, · · · , x∗
n

and y∗
1, y∗

2, · · · , y∗
m by using the random samples x1, x2, · · · , xn and y1, y2, · · · , ym.

For obtaining a parametric bootstrap sample
• Step 2: After computing the MLEs of all parameters α̂1,α̂2,β̂1 and β̂2, generate in-

dependent bootstrap samples x∗
1, x∗

2, · · · , x∗
n and y∗

1, y∗
2, · · · , y∗

m from STSP (α̂1, β̂1)
and STSP (α̂2, β̂2), respectively. Then, compute the MLEs of all parameters based
on the bootstrap samples, denoted by α̂∗

1,α̂∗
2,β̂∗

1 and β̂∗
2 .

• Step 3: Compute the bootstrap estimate of Rs,k by replacing the parameters in
Equation (2.2) with their bootstrap estimates and denote by R̂∗

s,k.
• Step 4: Repeat Step 2 B times and obtain a set of bootstrap estimates of Rs,k,

say R̂∗
(s,k)i : i = 1, 2, · · · , B.

By using the bootstrap samples which are obtained above, compute (R̂∗(α/2)
s,k , R̂

∗(1−α/2)
s,k )

where R̂
∗(γ)
s,k is the γ-percentile of R̂∗

(s,k)i : i = 1, 2, · · · , B, that is a number such that

1
B

B∑
i=1

I(R̂∗
(s,k)i ≤ R̂

∗(γ)
s,k ), 0 < γ < 1.

and I(.) is the indicator function.

3. Bayes estimation of Rs,k

In this section, the Bayes estimate of Rs,k, denoted by RB
s,k, is obtained by the following

the findings of [7]. They noted that the form of the pdf of the STSP distribution given
in Equation 1.1 is not compatible with developing classical Bayesian models. A similar
problem was handled for the triangular distribution by [11], also. Hence, we used the
hierarchical model proposed by [7] to obtain RB

s,k. For this purpose, we first consider all the
parameters α1, α2, β1 and β2 are unknown random parameters. Then, we need to obtain
posterior densities of the parameters, denoted by π(α1, α2, β1, β2|x,y), by considering the
independent prior distributions for parameters, denoted by π(α1), π(α2), π(β1) and π(β2).
Then, based on the given assumptions, we have the likelihood function as

L(x,y|α1, α2, β1, β2) = αn
1 αm

2

{∏r
i=1 x(i)

∏n
i=r+1(1 − x(i))

βr
1(1 − β1)n−r

}α1−1

×
{∏r′

i=1 y(i)
∏m

i=r′+1(1 − y(i))
βr′

2 (1 − β2)m−r′

}α2−1
.

Following, the joint density of the data and the parameters, α1, α2, β1 and β2, becomes
π(α1, α2, β1, β2, x, y) = L(x,y|α1, α2, β1, β2)π(α1)π(α2)π(β1)π(β2)

Then, the joint posterior density of the parameters is obtained as

π(α1, α2, β1, β2|x,y) = π(α1, α2, β1, β2, data)∫ 1
0
∫ 1

0
∫∞

0
∫∞

0 L(x,y, α1, α2, β1, β2)dα1dα2dβ1dβ2
.

Thus, under squared error loss function, the Bayes estimate of Rs,k, say R̂B
s,k is defined as

R̂B
s,k =

∫ 1

0

∫ 1

0

∫ ∞

0

∫ ∞

0
Rs,k π(α1, α2, β1, β2|x,y)dα1dα2dβ1dβ2. (3.1)

The squared error loss function (SELF) is the most commonly used loss function because
it is symmetrical and it provides equal distance to the losses through overestimation and
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underestimation. The performances of the Bayes estimations under the different loss
functions are handled by [6] and it is observed that there are no significant differences
between them. Therefore, we propose to use SELF as a symmetrical loss function.

Unfortunately, it is not possible to obtain an explicit expression for this posterior mean
of Rs,k. Çetinkaya and Genç [7] mentioned that the form of the STSP distribution given
in Equation (1.1) is not compatible for developing Bayesian models. Since the support of
the distribution depends on the reflection parameter, posterior distributions of α and β
cannot be obtained. This fact was previously pointed out for the triangular distribution
which is special form of the STSP distribution (α = 2 case) by [11]. To overcome this
adversity and obtain a Bayesian inference for the STSP distribution, Çetinkaya and Genç
[7] proposed a hierarchical model construction. This model provides conditional distribu-
tions of parameters to build a MCMC algorithm using a Gibbs sampler as given in the
following.

Theorem 3.1 ([7]). Let V be a random variable with parameter α > 1. Suppose that V
has the pdf

fV (v; α) = α
[
1 − (1 − v)1/(α−1)], 0 < v < 1.

Further, let the conditional distribution of X given V = v be the uniform distribution
represented by

U
[
β(1 − v)1/(α−1), 1 − (1 − β)(1 − v)1/(α−1)].

Then the marginal distribution of X has the STSP distribution with pdf given in Equa-
tion (1.1). Thus, this hierarchical model will simplify the computational procedures for
Bayesian calculations. In order to implement a Gibbs sampler, Çetinkaya and Genç [7]
obtained the conditional distributions of α, β and v as in the following

f(v|α, β, x) ∝ f(v|α)f(x|α, β, v)

∝ I

(
max

{
1 −

(
x

β

)α−1
, 1 −

(1 − x

1 − β

)α−1}
< v < 1

)
,

(3.2)

f(β|α, v, x) ∝ π(β)f(x|β, v, α)

∝ π(β)I
(

1 − 1 − x

(1 − v)1/(α−1) < β <
x

(1 − v)1/(α−1)

)
,

f(α|v, β, x) ∝ π(α)f(v|α)f(x|β, v, α)

∝ απ(α)I
(

1 < α < min
{ ln(1 − v)

ln(x<

β )
+ 1,

ln(1 − v)
ln(1−x>

1−β )
+ 1

})
,

where I(.) denotes indicator function, x< denotes observations below β and x> observa-
tions above β, π(α) and π(β) denotes prior distributions for the parameters.
In the following, similarly to Gibbs sampler algorithm which is given by [7], we give an
algorithm for simulation from the STSP distributions with α1 > 1 and α2 > 1 .

Step 1: Choose n, m, chain size M and initial α
(0)
1 and β

(0)
1 values for α1 and β1, similarly

for α2 and β2.
Step 2: Set t = 1.
Step 3: Generate {x1, x2, · · · , xn} from the STSP (α(t−1)

1 , β
(t−1)
1 ) distribution and

{y1, y2, · · · , ym} from the STSP (α(t−1)
2 , β

(t−1)
2 ) distribution.

Step 4: Given α
(t−1)
1 and β

(t−1)
1 and {x1, x2, · · · , xn} generate {v1, v2, · · · , vn} using Equa-

tion(3.2), similarly generate {v
′
1, v

′
2, · · · , v

′
m} given α

(t−1)
2 and β

(t−1)
2 and {y1, y2, · · · , ym}.

Step 5: Considering uniform prior on [0, 1] for β1, given α
(t−1)
1 , {x1, x2, · · · , xn} and



594 Ç. Çetinkaya, A.İ. Genç

{v1, v2, · · · , vn}, generate β
(t)
1 using

I

(
max

{
1 − 1 − xi

(1 − vi)1/(α(t−1)−1)
, 0
}

< β1 < min
{

xi

(1 − vi)1/(α(t−1)−1)
, 1
})

.

Similarly, generate for β
(t)
2 .

Step 6: Considering uniform prior on [1, c] for α1 and choosing c = 100 generate α
(t)
1

from the pdf
[
(n + 1)/(bn+1 − 1)]αn using inverse transformation method, where

b = min
{

1 + ln(1 − vi)

ln( x<
i

β(t) )
, 1 + ln(1 − vi)

ln( 1−x>
i

1−β(t) )
, c

}

Similarly, generate for α
(t)
2 .

Step 7: Using Equation (2.2), compute R
B(t)
s,k at (α(t)

1 , β
(t)
1 , α

(t)
2 , β

(t)
2 ).

Step 8: Set t = t + 1.
Step 9: Repeat steps 2 − 8, M times and obtain a posterior sample (RB(t)

s,k : t =
1, 2, · · · , M).

Finally, the posterior mean under mean sqaured error, say R̂B
s,k,can be obtained as follows;

R̂B
s,k = 1

M

M∑
t=1

R
B(t)
s,k

Using the method proposed by [5], we construct the 100(1 − γ)% highest posterior density
(HPD) credible interval as (

R̂B
s,k[ γ

2 M ], R̂B
s,k[(1− γ

2 )M ]

)
where [γ

2 M ] and [(1− γ
2 )M ] are the smallest integers less than or equal to γ

2 M and (1− γ
2 )M ,

respectively.
On Step 5 and Step 6, we used uniform priors which is useful in non-informative cases.

Alternatively, a beta prior for β and truncated gamma for α may also choose as informa-
tive priors. Following, by using these conjugate priors, we obtained truncated beta and
truncated gamma posterior distributions for parameters, respectively. However, truncated
gamma prior does not give any numerical results for large samples size n. Çetinkaya and
Genç [7] implied that this difficulty may be due to the special function existing in the cdf of
the gamma distribution. Additionally, generating random variable from beta distribution
in truncated cases is highly sensitive on near the borders. For these reasons, we used only
non-informative priors as given in the algorithm above.

4. Simulation studies
In this section, we present some numerical results to compare the performances of the

MLEs and Bayes estimates of the Rs,k with their bootstrap and HPD credible intervals,
respectively. The stress and the strength populations are generated as (3, 2, 0.7, 0.4) and
(2, 2, 0.85, 0.15) for (α1, α2, β1, β2) with different sample sizes (n, m) = (5, 10), (10, 20),
(20, 30), (50, 50) and (100, 100). The true values of reliability in multicomponent stress-
strength with the given combinations for (s, k) = (1, 3) are 0.865535 and 0.933949; and
for (s, k) = (2, 4) are 0.793819 and 0.876481. We generate 2000 samples for each sample
size combinations in two cases. We compute the MLEs and Bayes estimates with their
mean squared errors (MSE). We run the Gibbs sampler to generate a Markov chain with
3500 observations using the algorithm given in Section 3. The first 500 values is discarded
as burn-in and we take every third variate as an independent and identically distributed
observation in thinning procedure. Adjusted for autocorrelation in the chain by burning-in
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and thinning the chain, a sample of 1000 resulted which is used to calculate the posterior
estimates. Then, the simulation is performed by Markov Chain Monte Carlo (MCMC)
which is run for 2000 replicates. For the MLEs, we also obtain 95% confidence intervals
based on parametric and nonparametric boot-p methods which are given in Section 2.1.
We report the average bootstrap confidence intervals, confidence lengths based on 2000
replications. We used 200 bootstrap intervals for each replication. On the other hand, we
obtained the 95% HPD credible intervals for the Bayes estimates. We use R program [25]
to perform these simulation studies. The corresponding R codes are presented for readers
in the Appendix. Then, all the results of this simulation scenarios appear in Table 4 and
Table 5.

We observe that both MLEs and Bayes estimates approach the actual values of Rs,k

for large sample sizes and their MSE’s decrease as the sample size increases, as expected.
The MLEs overestimates and Bayes estimate underestimates the actual values. According
to MSE values, for the large values of Rs,k, MLEs give smaller MSE for large samples
and Bayes estimates for the small and moderate sample sizes. On the other hand, for the
smaller values of Rs,k, Bayes estimates give smallest MSE values in all sample sizes. The
HPD credible intervals are better in large samples than bootstrap confidence intervals.
In the case of small and moderate sample sizes, nonparametric boot-p gives the shortest
confidence intervals. Unexpectedly, HPD credible intervals do not perform better than
boot-p confidence intervals unlike the claims in the literature. The main reason of this
may be using a hierarchical model construction by using a latent or auxiliary variable.
Unlike the known inference studies, the original form of the pdf cannot be used in this
method. Difference due to using a latent or auxiliary variable may lead these results.

4.1. Real data example
In this subsection, the considered estimation methods are illustrated with two real data

sets. The original data are from [20], frosted flakes data, and represent the sugar con-
centration for 25 g samples of a cereal as measured by two methods; high performance
liquid chromatography (Data Set I) and a quick method using the infra-analyzer 400 (Data
Set II). Whereas liquid chromatography is a slow accurate lab method, infra-analyzer 400
method provides quick measurements. In such a case, experimenters may consider that
at least s out of k infra-analyzer 400 method measurements exceed measurements based
on the liquid chromatography. Such a reliability problem concern about the probability
of that the quick measurement method do not cause less measurement than accurate and
slow method. Thus, let X denote the strength random variable which given in Data Set
II and Y denote the stress random variable which given in Data Set I. The corresponding
sample sizes are n = m = 100 for both. We applied min-max scaling method (x−a

b−a ) on
data sets. For both data sets, a denotes the floor integer of the range and b denotes ceiling
integer of the range. We choose a = 31, b = 44 for the Data Set I and a = 30, b = 46 for
the Data Set II, respectively. Thus, the points in the data sets all lie in the interval (0, 1)
and we present the transformed data sets in Table 1 and Table 2 for convenience.
We fit the STSP distributions to these datasets and use both MLE and Bayes estimation

procedure. The MLEs are α̂1 = 2.493, β̂1 = 0.563, α̂2 = 2.257 and β̂2 = 0.554. Cor-
responding Kolmogorov-Simirnov goodness of fit test statistics and associated p-values
are obtained as 0.09 and 0.8127 for X, 0.08 and 0.9062 for Y . The Bayes estimates are
α̂1 = 2.487, β̂1 = 0.552, α̂2 = 2.262 and β̂2 = 0.532. Corresponding Kolmogorov-Simirnov
goodness of fit test statistics and associated p-values are obtained as 0.1 and 0.6994 for
X, 0.08 and 0.9062 for Y . Thus, we cannot reject the null hypotheses that these data sets
come from the STSP distributions. Also, the Q-Q plots (Figs. 3 and 4 ), hazard plots
(Figs. 5 and 6) and histograms with density curves (Figs. 7 and 8) support these obser-
vations. Consequently, the STSP models fit reasonably well to the transformed data sets.
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Table 1. Transformed measurements using high performance liquid chromatography,
(m = 100).

0.4077 0.1692 0.6154 0.4846 0.7462 0.5692 0.3692 0.3846 0.5308
0.6923 0.9615 0.4308 0.2077 0.7308 0.5923 0.4000 0.8154 0.5231
0.6077 0.3846 0.7769 0.6923 0.3462 0.2538 0.1538 0.4538 0.4077
0.3154 0.5923 0.2308 0.8692 0.8000 0.5538 0.5615 0.4923 0.5000
0.2923 0.5462 0.7692 0.3385 0.3077 0.5308 0.6231 0.1769 0.7231
0.1923 0.3692 0.4308 0.5615 0.1615 0.4923 0.6846 0.5692 0.3923
0.3154 0.4923 0.5538 0.6154 0.0462 0.3923 0.4308 0.4154 0.6846
0.6231 0.2846 0.4846 0.6231 0.6000 0.5923 0.4231 0.4846 0.6846
0.6462 0.4154 0.2923 0.7769 0.2154 0.8000 0.6231 0.5615 0.5154
0.7615 0.4231 0.7308 0.6692 0.7385 0.6077 0.6385 0.4692 0.3538
0.8923 0.7308 0.5769 0.4231 0.3000 0.2000 0.6000 0.2308 0.5692
0.4462

Table 2. Transformed measurements based on the infra-analyzer 400, (n = 100).

0.3188 0.3687 0.6313 0.3438 0.4937 0.5938 0.5312 0.4937 0.7000
0.5187 0.7687 0.5625 0.0500 0.4562 0.5938 0.6437 0.7500 0.4312
0.5812 0.3500 0.6812 0.4750 0.3438 0.3438 0.1500 0.3813 0.3813
0.5312 0.6250 0.3375 0.6812 0.5875 0.5375 0.6000 0.5750 0.4000
0.5063 0.6000 0.6750 0.4625 0.4750 0.3750 0.4500 0.1875 0.7437
0.5063 0.4625 0.6313 0.6688 0.3375 0.7125 0.6375 0.5688 0.2938
0.4188 0.3937 0.5500 0.8125 0.2437 0.3500 0.3000 0.3625 0.7125
0.4312 0.2313 0.3813 0.6375 0.6187 0.4125 0.3625 0.5375 0.4688
0.6187 0.3438 0.3062 0.6688 0.0813 0.5938 0.4937 0.5438 0.3813
0.7938 0.6812 0.6250 0.7000 0.7188 0.7500 0.7875 0.6750 0.6375
0.9813 0.7000 0.5625 0.3813 0.493 0.2437 0.5750 0.2313 0.8000
0.6625

Thus, the MLEs and Bayes estimates of Rs,k for different choices of (s, k) are obtained
with corresponding bootstrap and HPD confidence intervals and reported in Table 3. We
calculate the % 95 bootstrap confidence intervals for Rsk based on 5000 replications for
each of which 500 bootstrap intervals. Also, we perform the simulation algorithm given
in Section 3 with the iteration number B = 100, 000. We see that the parametric boot-
strap method gives the shortest average length result. On the contrary, nonparametric
bootstrap method gives the longest average length result.

Table 3. MLEs and Bayes estimates of Rs,k based on the given real data, the average
95% bootstrap intervals and highest posterior density credible intervals (HPD CI) with
their lengths for different choices of (s, k).

(s, k) (1, 3) (2, 4)
R̂s,k 0.747901 0.605892
R̂B

s,k 0.753345 0.613226
Parametric BCI 0.667421, 0.816491 0.506669, 0.699124

(0.149070) (0.192455)
Non-Parametric BCI 0.657196, 0.835423 0.489451, 0.730182.

(0.178227) (0.240731)
Bayesian HPD CI 0.671665, 0.827000 0.511690, 0.711954

(0.155335) (0.200264)
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Figure 3. Q-Q plot of Data Set II. Figure 4. Q-Q plot of Data Set I.

Figure 5. Hazard plot of Data Set II. Figure 6. Hazard plot of Data Set I

Figure 7. Data Set II and
superimposed fit.

Figure 8. Data Set I and su-
perimposed fit

5. Conclusions
In this paper, we have studied the multicomponent stress-strength reliability estimation

based on the STSP distribution when both stress and strength random variables follow
the same distribution. We considered the s-out-of-k:G system and we have compared
the reliability estimations of such a system based on the MLE and Bayesian estimation
procedures with respect to their mean squared errors and approximate confidence intervals.
We compared the confidence intervals using boot-p confidence intervals of the MLEs and
the highest posterior density credible intervals for the Bayes estimates. The simulation
results show that the HPD credible intervals are better in large samples than bootstrap
confidence intervals. In the case of small and moderate sample sizes, nonparametric boot-p
gives the shortest confidence intervals. The MLE method overestimate and Bayes method
underestimate the actual values. According to MSE values, for the large values of Rs,k,
MLEs give smaller MSE for large samples and Bayes estimates for the small and moderate
sample sizes. On the other hand, for the smaller values of Rs,k, Bayes estimates give the
smallest MSE values in all sample sizes.
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Appendix
The following R [25] codes can be used for calculations.

l ibrary ( z ip fR ) # Required R Package

a1 < 3 ; b1 < 0 . 7 ; a2 < 2 ; b2 < 0 .4 # I n i t i a l parameter va l u e s
n < 20 ;m< 30 ; s < 1 ; k < 3 # Sample S i z e s and System Type
h < 250 ;B< 200 ;M< 3500 ; th inn ing < seq (503 ,M, 3 ) # I t e r a t i o n Numbers

r sk < function ( a1 , a2 , b1 , b2 , s , k ){ # Function o f R_{s , k}
q1 < a2/a1 ; q2 < b2/b1 ; t1 < 0
for ( i in s : k ){
t2 < 0
for ( j in 0 : i ){
t2 [ j +1] < choose ( i , j )∗ ( ( 1 ) ^ j )∗ ( b1 ^ ( ( 1 a1 )∗ ( j+k i ) ) ) ∗
(pbeta ( b1 , a1∗ ( k+j i )+1 , a2 )∗beta ( a1∗ ( k+j i )+1 , a2 ) pbeta ( b2 , a1∗ ( k+j i )+1 , a2 )∗
beta ( a1∗ ( k+j i )+1 , a2 ) )
}
t1 [ i ] < choose (k , i )∗q1∗ ( ( ( ( b1^( q1∗ ( a1 1 ) ) ) / ( b2^(a2 1 ) ) ) ∗
pbeta ( b1∗ ( q2^a1 ) , k i+q1 , i +1)∗beta (k i+q1 , i +1))+((1 b2 ) ^ ( 1 a2 ) ) ∗
( a1∗sum( t2 ) + ( ( 1 b1 )^ ( ( a1 1 ) ∗q1 ) ) ∗pbeta ( 1 b1 , i+q1 , k i +1)∗beta ( i+q1 , k i +1)))
}
sum( t1 [ s : k ] )
}

r0 < r sk ( a1 , a2 , b1 , b2 , s , k )

fnk < function ( xb ){ # MLE’ s
zz < sort ( xb ) ; s < length ( zz ) ; t < 0 ; k < matrix (0 , 1 , s )
for ( r in 1 : s ){
t1 < zz/zz [ r ] ; t2 < ( 1 zz )/ ( 1 zz [ r ] ) ; t1 [ r : s ] < t2 [ r : s ] ; t < t1 ; k [ r ] < prod ( t )
}
r2 < which .max( k ) ;M_r < k [ r2 ] ; a l f a < ( s )/log (M_r ) ; beta < zz [ r2 ]
c ( a l f a , beta )
}

rnd < function ( as , b , s s ){ # Function f o r genera t ing random data
d < 0 ; u < runif ( s s )
for ( i in 1 : s s ) {
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i f (u [ i ]<b) {
d [ i ] < ( ( u [ i ] ) ^ ( 1 /as ) ) ∗ (b ^ ( 1 1 /as ) )
} else {
d [ i ] < 1 ( ( 1 u [ i ] ) ^ ( 1 /as ) ) ∗ ( ( 1 b ) ^ ( 1 1 /as ) )
}
}
d
}

xm< matrix (0 , h , n ) ;ym< matrix (0 , h ,m)

for ( j in 1 : h){
xm[ j , ] < rnd ( a1 , b1 , n)
ym[ j , ] < rnd ( a2 , b2 ,m)
}

par1 < matrix (0 , h , 2 ) ; par2 < matrix (0 , h , 2 )

for ( j in 1 : h){
par1 [ j , ] < fnk (xm[ j , ] )
par2 [ j , ] < fnk (ym[ j , ] )
}

r l b < matrix (0 , h , 1 )

for ( j in 1 : h){ # MLE of R
i f ( par2 [ j ,2] < par1 [ j , 2 ] ) {
r l b [ j ] < r sk ( par1 [ j , 1 ] , par2 [ j , 1 ] , par1 [ j , 2 ] , par2 [ j , 2 ] , s , k )
} else {
r l b [ j ] < 2
}
}

#########PARAMETRIC BOOTSTRAP ########################
prm1 < matrix (0 , ncol=2,nrow=h ) ; prm2 < matrix (0 , ncol=2,nrow=h)
r e lboo t1 < 0 ; npar < 0

for ( i in 1 : h){
prm1 [ i , ] < fnk (xm[ i , ] ) ; prm2 [ i , ] < fnk (ym[ i , ] )
j < 1
while ( j<B+1){
xx < rnd (prm1 [ i , ] [ 1 ] , prm1 [ i , ] [ 2 ] , n )
yy < rnd (prm2 [ i , ] [ 1 ] , prm2 [ i , ] [ 2 ] ,m)
xin < fnk ( xx ) ; y in < fnk ( yy )
i f ( yin [2] < xin [ 2 ] ) {
r e l boo t1 [ j ] < r sk ( xin [ 1 ] , y in [ 1 ] , x in [ 2 ] , y in [ 2 ] , s , k )
j=j+1
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} else {
j=j
}
}
npar [ i ] <mean( r e l boo t1 ) ; print ( i )
}

CI_par < as . numeric ( quantile ( npar , c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )
Length_par < d i f f ( CI_par )

#########NON PARAMETRIC BOOTSTRAP###################
r e l boo t2 < 0 ; npar2 < 0

for ( i in 1 : h){
j < 1
while ( j<B+1){
xx < sample (xm[ i , ] , n , replace=T)
yy < sample (ym[ i , ] ,m, replace=T)
xin < fnk ( xx ) ; y in < fnk ( yy )
i f ( yin [2] < xin [ 2 ] ) {
r e l boo t2 [ j ] < r sk ( xin [ 1 ] , y in [ 1 ] , x in [ 2 ] , y in [ 2 ] , s , k )
j=j+1
} else {
j=j
}
}
npar2 [ i ] <mean( r e l boo t2 )
print ( i )
}

CI_npar < as . numeric ( quantile ( npar2 , c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) ) ; Length_npar < d i f f ( CI_npar )

#########BAYESIAN ESTIMATIONS###################
r e lbay < 0 ; r l b_b < matrix (0 , h , 1000 )

for ( j j in 1 : h){
t < 2
a l f a 1 < c ( a1 , rep (0 ,M 1 ) ) ; beta1 < c ( b1 , rep (0 ,M 1 ) )
a l f a 2 < c ( a2 , rep (0 ,M 1 ) ) ; beta2 < c ( b2 , rep (0 ,M 1 ) )
x < sort (xm[ j j , ] ) ; y < sort (ym[ j j , ] )

while ( t<M+1){
v1 < 0
for ( j in 1 : n){
xs < x [ j ]
v1 [ j ] < runif (1 ,max( 1 ( xs/beta1 [ t 1 ] ) ^ ( a l f a 1 [ t 1 ] 1 ) ,
1 ( ( 1 xs )/ ( 1 beta1 [ t 1 ] ) ) ^ ( a l f a 1 [ t 1 ] 1 ) ) , 1 )
}
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v2 < 0
for (u in 1 :m){
ys < y [ u ]
v2 [ u ] < runif (1 ,max( 1 ( ys/beta2 [ t 1 ] ) ^ ( a l f a 2 [ t 1 ] 1 ) ,
1 ( ( 1 ys )/ ( 1 beta2 [ t 1 ] ) ) ^ ( a l f a 2 [ t 1 ] 1 ) ) , 1 )
}

repeat {
k0 < runif (1 ,max ( 1 ( 1 x )/ ( ( 1 v1 )^(1/ ( a l f a 1 [ t 1 ] 1 ) ) ) , 0 ) ,
min( x/ ( ( 1 v1 )^(1/ ( a l f a 1 [ t 1 ] 1 ) ) ) , 1 ) )
i f ( ( k0>min( x ) )&( k0<max( x ) ) ) {
break
}
}
beta1 [ t ] < k0
repeat {
l 0 < runif (1 ,max ( 1 ( 1 y )/ ( ( 1 v2 )^(1/ ( a l f a 2 [ t 1 ] 1 ) ) ) , 0 ) ,
min( y/ ( ( 1 v2 )^(1/ ( a l f a 2 [ t 1 ] 1 ) ) ) , 1 ) )
i f ( ( l0>min( y ) )&( l0<max( y ) ) ) {
break
}
}
beta2 [ t ] < l 0

c < 100
qsa <max(which(x<beta1 [ t ] ) )
be1 < min(1+ log ( 1 v1 [ 1 : qsa ] ) /log ( x [ 1 : qsa ] /beta1 [ t ] ) ,
1+log ( 1 v1 [ ( qsa +1):n ] ) /log ( ( 1 x [ ( qsa +1):n ] ) / ( 1 beta1 [ t ] ) ) , c )
a l f a 1 [ t ] < ( runif (1 ) ∗ ( ( be1 ^(n+1)) 1)+1)^(1/ (n+1))
qsb <max(which(y<beta2 [ t ] ) )
be2 < min(1+ log ( 1 v2 [ 1 : qsb ] ) /log ( y [ 1 : qsb ] /beta2 [ t ] ) ,
1+log ( 1 v2 [ ( qsb +1):m] ) /log ( ( 1 y [ ( qsb +1):m] ) / ( 1 beta2 [ t ] ) ) , c )
a l f a 2 [ t ] < ( runif (1 ) ∗ ( ( be2 ^(m+1)) 1)+1)^(1/ (m+1))

i f ( beta2 [ t ]<beta1 [ t ] ) {
r e lbay [ t ] < r sk ( a l f a 1 [ t ] , a l f a 2 [ t ] , beta1 [ t ] , beta2 [ t ] , s , k )
t=t+1
} else {
t=t
}
}
r l b_b [ j j , ] < r e lbay [ th inn ing ]
print ( j j )
}

Rbys < 0 ; for ( j in 1 : h){ Rbys [ j ] <mean( r l b_b [ j , ] ) }
HPD< matrix (0 , h , 2 ) ; for ( i in 1 : h){HPD[ i , ] < quantile ( r l b_b [ i , ] , c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) }
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CI_hpd < c (mean(HPD[ , 1 ] ) ,mean(HPD[ , 2 ] ) ) ; Length_hpd < d i f f ( CI_hpd)

######PRINT RESULTS######################
mean( r l b ) ;mean( Rbys )
mean( ( r lb r0 ) ^ 2 ) ;mean( ( Rbys r0 )^2)
CI_par ; CI_npar ; CI_hpd
Length_par ; Length_npar ; Length_hpd


