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Abstract: It is useful to derive new classes of distributions having a simple closed form instead of classes having no
closed form to get better flexibility in deriving mathematical properties, generating random numbers and applying
real data sets. In this paper, a new closed form class of generalized distributions, so-called the modified
Libby-Novick (MLN) class, is derived from the implicit form of Libby-Novick beta class. Two important classes of
distributions are nested by the MLN class. Some generalized mathematical properties are derived and the MLN
class parameters estimation using maximum likelihood estimation (MLE) method is obtained. A simulation study
using bootstrapping approach is applied to investigate the estimators behavior of the MLN-Weibull (MLN-W)
distribution. A real data set is used to illustrate the potentiality of the MLN-W

Keywords: the new form Libby-Novick distribution, moments, order statistics, maximum likelihood estimation.

1. Introduction
Eugene et al. [1] presented for the first time the beta class which has the following CDF and PDF,
respectively,

G(y;W)

P(y;a,,B,W):B;) I t‘“(l—t)ﬂ_ldt;0<t<1;a,,3>0;—oo<y<oo,
0

(@

and

1
B (. 5)

where G(y;W) is the CDF of the baseline distribution, W is the parameter vector of the baseline

p(y;a, W)= glyW)G(yw){1-G(yw)}" ",

distribution. Wahed [2] presented a general method for constructing an extended class of generalized

distributions by using the following CDF

https://dergipark.org.tr/tr/pub/jsas Doi : 10.52693/jsas.936902
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G(y:w)
Foy;TW)= | g@T)dt;0<t<1 (1)
0

where G (Y;W )is the CDF of the baseline distribution and g (t;T )is the PDF of the generator
distribution, T is the parameter vector of the generator distribution and W is the parameter vector of
the baseline distribution. Based on [2] many classes of generalized distributions are derived as the
Kumaraswamy (KW) class, [3] and [4], the Kummer beta class [5], the McDonald class, [6] and [7],
the Kumaraswamy- Kumaraswamy (KW-KW) class, [8] and [9], the Libby-Novick beta class, [10] and
[11], which have the following CDF and PDF

a G(yw) a-1(1 _ b-1
F(y;a,b,cW )= ¢ -t

—dt; 0<t <L a,b,c >0,
LNB B(a’b) 0 {1—(1—0)1'}

and

f (yiabow )- 9O )G (W ) {16 (xw )
fe B (a,b){1-(1-¢)G (x W )}
The main goal of this study is to derive a new explicit form class of distributions depending on the
new form Libby-Novick distribution, Ali Ahmed [12], as a simple generator.
The rest of this paper is organized as follows: In section 2, the proposed class is derived. In section 3,
some mathematical properties are given. In section 4, the Hazard function is obtained. In section 5, the
Rényi entropy is given. In section 6, order statistics are obtained. In Section 7, the MLE method is
performed. In Section 8, a simulation study using bootstrapping approach is used. Finally, in Section 9,

an application is used practically.

2. The New MLN Class of Generalized Distributions

Ali Ahmed [12] presented, for the first time, the new form Libby-Novick (NLN) distribution where he
derived the NLN distribution using a transformation into the Libby- Novick beta distribution, the
NLN distribution is much simpler to use than Libby-Novick beta distribution, in simulation studies or
in mathematical properties, because of his simple closed form of both its quantile function and
cumulative distribution function.

The NLN distribution has the following CDF and PDF, respectively,

oty

[1-(1-c)t<] /

G(t;a,B.c)=1- o<t<La,p,.c>0, )

and
apetet(l-te)”

9(tia,pre)= Gy ]

®3)

substituting (3) into (1) gives
G(y;w) tafl (1_ta)ﬁ71

! [1-(-c)te]™

F(y;a,8.cW)=apc dt, (4)

setting X =t“gives
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G%(y;w) _x B-1
F(y;a,B.cW)=pc ! [1_((11_C;X]/’*1

using the following method of integration, Prudnikov et al. [13],
j(1+5z)ﬁl i (85 +1)’ B (6r+1)°
Y1+ e sp(¢s+) -pL(¢s+)’ sp(¢r+ gL (cr+r)

then,

dx,

0,6 €R; B,z >0,

B G (yiw)
F(y;a,,B,c,W)ﬁc{ S C) ) } ,

pc pe(ex—x+1)

hence,
(e yw)
afy g’
[1-(1-c)G“(yW )]
differentiating (4) gives, directly, the PDF of the MLN class, as follows,
a- a A
aBeg(yw)G e (yw)(1-G“(yw))
1-(-c)e” (yw)”
setting ¢=1 gives the KW class and setting c=1, f=1 gives the exponentiated (EX) class. Many special

distributions can be derived by the MLN class as the MLN-Weibull (MLN-W) distribution, some
shapes of the density function for the MLN-W distribution are illustrated in figure 1.

F(y;a,fcW)=1- —0<y <o a,f,c>0, (5)

f(y;a,BcW)=

, (6)

2.1. An Expansion for the CDF and PDF

Using the binomial expansion for (4) gives

yW) ta—l

dt,

then,

tai+afl

dt,

Ry iafo W) ~apey (L (ﬁ 1J ! o]

substituting X =t “into last equation yields

F(y;a’ﬁ’c’w)=ﬂcg(—1)i (ﬁ_lea(TW) e

. Al dx,
' o [1-(1-c)x |

using the following method of integration, Gradshteyn and Ryzhik [14],

[ u’ e 1 y)
e AL+, — AU ), 7
l[le]v p B (v 1+ ) )

where U :G"’(y;W ), u=1+1 v=pL+1 A=c-1,gives
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F(y e Be W )= pe3 (1) (ﬁiﬂw

i=0

2|:1[(,B+1),i +1,i +2,(1—C)Ga(y;w)]’

using the hypergeometric expansion for the last equation yields

i=0

where ()J is the ascended factorial, then,

pe (1)

i,j=0

F(y;a,B.cW)

i (ﬂ_—lj(ﬂ”),- (1c)'G ™ (yw)
i j!

hence,

F (y v, p.c W ):.iom - G @ (el (y;W );
m.;=/fc (_1)i (ﬁi_lj (ﬂ+l)JJ El_C)J .

It can be seen that ¢, in the last equation, is a positive integer but one can generalizes the last equation

after setting « a positive real, as follows, since

a (iHl)+aj

F(y;a,ﬂ,C,W):iiomi,j[l—(l—G(y;W ))] )

using the binomial expansion twice for the last equation gives

Fyviapem )= Sm Saee ) (o))
then,
F(y;a,ﬂ,C,W)Zliom J:ZO(_ )k( (i +]l-<)+ajj§Gp(y’W )(_1)p(p}
hence,
F(y,a,,B,c,W):iQpG”(y,W),
2 2 N i +D)+aj ®
g zm (e )

differentiating (8) yields
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f(yia, BCW)=3pQ, g(yW )G " (yw),
p=1
shifting the index p backward yields
f(y;a,B,cW)=>(pP+D)Q,, g(yW )G’ (yw),
p=0

hence,

f(y;a,ﬂ,C,W)zi Q,g(yWw)G(yw), 9)

where,

Q; =(p +1) Qp+1'

2.2. The Condition for the PDF Expansion

since,
>Q; [ a(yw )G (yw )dy =1
p=0 —0
then,
0 . Gp+1(y,W)
Q )
Z { (p+1) |,
hence,
0 Q;
=1 (10)
; p+1

3. Some Properties of the MLN Class of Distributions

In this section some properties of the MLN class of distributions will be obtained as follows:

3.1. The r-th Moment
The random variable Y having the PDF of the MLN class of distributions has the following r-th

moment, Johnson et al.[15],
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Figure 1: The MLN-W density functions

= [yt (v)dy,

substituting (9) into last equation yields

E(y"a.B.cW =ZQ;Iyr9 y W )GP (y W )dy, (12)
p=0 —0
then,
E(yr;a:ﬂ’C1W)ZZQ;Tr,p,O'
p=0

where 7 is the probability weighted moment (PWM), Greenwood et al.[16].
One easily can find that, setting =0 and using (11) gives

E(y%a,f.cW )=iQ;‘Tg(y;W )GP(y W )dy,

then,

E(y%a,fcW)=>0Q, 1

p=0

o]

substituting (10) into last equation yields
E(y%a,f.cW )=1
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Using the Parent Quantile Function

Setting G (y w ) =u, Yy =q (U )and substituting into (11) gives

(y aﬁcW :iQ;jq uPdu,

then,

0
*

E(y'a, W )=2Q,7,,,.

p=0

3.2. The PWM

The random variable Y having the CDF and PDF of the MLN class of distributions has the following
PWM, Greenwood et al. [16],

—Iyrf y)dy,

substituting (8) and (9) into last equation gives

ILOQ G*(yw )}{ngG”(yW )T y'g(yW )dy,

—00

since,

TLZ.O:Q;)GD (yw MngG"(Y:W )}yrg (yW )dy,
where

Co=Q:Cp = ml Opi(ps—m+p)Qpcm im =1
hence,

Tr,s,o=§dp7y'g(y;w )G (y:W )dy, (12)
where
d, =§Q; Cop

then,
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Using the Parent Quantile Function

Setting G (y w ) =u, Yy =q (U )and substituting into (12) yields

w 1
Trso :dej.qr (u)u’du,
0

then,

3.3. The Moment Generating Function

The random variable Y having the PDF of the MLN class of distributions has the following
generating function (MGF)

My(t):E(e‘y):jve (y)dy,

y

using the exponential expansion for last equation gives

E(e‘y):E(

1M
~
-

%/

then,

Using the Parent Quantile Function

Substituting (9) into (13) gives
E(e¥;a,BcW ):Ie‘yiQ;g(y;W )G (y W )dy,
—o p=0

then,

0

E(e¥;a,B.cW )=i ;Ietyg(y;w )G® (y W )dy,

p=0 —o0

setting G (y W ) =u, Yy =q (U )and substituting into last equation yields

E(e¥;a,B.CW ):iQ;jetq(“)updu.
p=0 0

3.4. The Mean Deviation

moment

(13)

The random variable Y having the PDF of the MLN class of distributions has the following mean

deviation about the mean and about the median, respectively,
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S.(y)=Jly =4 (y)dy and S,(y)=[ly -M|f (y)dy,

easily, it can be given by, Ahmed [17], Ali Ahmed [12]
S,(y)=2uF(u)-2t(u) and S,(y)=u—-2t(M),

z

where T (Z ) = J. yf (y )dy is the linear incomplete moment.

Substituting (9) into T(.) gives

z n

T (zia, B, W )= [y D Qg (yW )G (yW )dy,

—0 p=0

then,

z

T (z:a, W )=2Q; [yg(yw )G’ (yw)dy.

p=0 —o0

Using the Parent Quantile Function

Setting G (y W ) =u, y =q (U )and substituting into last equation yields

x  G(2)

T(z;a,8cW)=3"Q, [ q(u)udu.
p=0 0
4. The Hazard Function of the MLN Class of Distributions

The random variable Y having the CDF of the MLN class of distributions has the following survival

function, Meeker and Escobar [18],

S(y)=1-F(y),
substituting (5) into last equation gives
__[eyw)]

[l—(l—C)G “(yWw )}
Simply, the Hazard function, Meeker and Escobar [18], can be given by

S(y;a,B.cW) i —o<Yy <o a, ,¢>0. (14)

ﬂ )

substituting (6) and (14) into last equation yields

o o a-1
H (yia, BieW )= apfcg(yw)G(yw) _
[1-G“(yw)][1-(1-c)G (yW ) |
some shapes of the Hazard function, for example, for the MLN-W distribution are illustrated in figure
2.
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Figure 2: The MLN-W Hazard functions

One can see, in figure 2, three types of Hazard functions curves of the MLN-W distribution are
described as follows: A decreasing then constant Hazard curve, an increasing then constant Hazard

curve and an increasing then decreasing then constant Hazard curve.

5. The Rényi Entropy of the MLN Class of Distributions

The random variable Y having the PDF of the MLN class of distributions has the following Rényi
entropy, Meeker and Escobar [18],

1 T P
e (P)ZE'Ogu[f (¥)] dy}
substituting (9) into last equation gives
then,

hence,

where,
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6. Order Statistics of the MLN Class of Distributions
A density function f (yw ) of the u-th order statistics for u = 1,2,..., v from iid random variables

Y1,Y>,..., Yo following any MLN generalized distribution, Arnold et al.[19], is given by

- PO ey Ry,

f (y””)_ B(uv-u+1)

using binomial expansion for last equation gives

f <yw>”z”Mf (Y )F*™(y,).

AUy —u+1)

substituting (8) and (9) into last equation gives

f (Yo, B,CW )= Vi(_l)w (V UJ{ZQ 9 &l )}

=AUy —u+l

fsasr o]

then,

f (Yosa B.cW )= iM[ZQ g(y.W)G" (y, W )M;chp(yu;W )}.

where,
C,=Qu™ ¢, = Z[p u+w —1)-m+pJQ,c, ,im =1,
MQ, v
hence,
w(V —U
L),
f(yuv’aﬂcw) Zﬁ(uv U+lZd g yu’ (yu’ )
where,

moreover,
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f (Yo, B.6W )=DDb g(y,W)G"(y,W), (15)

where,

b, —Z - (V _U]ZQ C,.

=AUy —u+1)

The r-th moment of order statistics of the MLN class of distributions is given by
r _ r
E (yu.\/ )_ I yu f (yuy )dyu !
Yu

substituting (15) into last equation yields

0 0

E(yhia. W )=2"b, [y, g(y,W)G"(y, W )dy,,

p=0 —00
so that,

o0

E(yo a.BCW )=b,7,,,.

p=0

7. Estimation for the MLN Class Parameters Using MLE Method
Let Y1,Y>,...,Yn be iid random variables following any MLN generalized distribution (y;A) then the

likelihood function for the vector of parameter A = (a, p.cW ) , Garthwait et al.[20], is obtained by

Hyie peW )z(“ﬂc)nﬁg (v )ﬁG“'l(yi:W TG« (v, w))"”

i=1

p-1

xH[l 1-c)G yW)J ,

the log likelihood function is given by

oy ;a,B.c\W )=n[Ioga+|ogﬂ+|ogc]+znllogg (y, W )+(a—1)_znllogG (y,w)

+(ﬂ—1)izn;log(1—G”‘(yi W ))+(_ﬂ_1)i§"l;|og[1_(1_c)ea(yi w)]

the score functions for the parameters a, , c and W are given by

+(1+/3)z_;(1 C?I.GZ]_(y(I;) )'(OngV\fB; W)
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or(y;a, B.C W)

:ﬂ+ilog(l—G“(yi W ))—glog [1—(1—C)G“(yi W )]

op B i3

or(y;a,fcW) n S G(y; W)
ac c % 1)i_l[l—(l—c)G”‘(yi;W )]

and

((y;a,BCW) 1 8g(yi;W)+ Y 1)S 1 G(y;w)
ow Holyiw)  ow, ( 1)iZG(yi;W) ow

L aG (Y W )0G(yi:W_)
A2 W) o
y
y

0 (1-c)aG“H(y; W)
) e (W) ow

8. A Simulation Study

This study aims to obtain MLEs of the MLN-W distribution parameters via random numbers to study
the sample behavior of MLEs by the bootstrapping resample approach.

Obtaining parameters estimates algorithm is detailed in the following steps:

i. Generating a random sample Y1,Y>,....,Ys having sizes n=(5,15,30,50,100,300) using the MLN-W
distribution.

ii. Selecting different parameters set values as: set (1): (a=0.1, p=0.2, 6=0.3, A=4, ¢=3), set (2): (a=0.1, =0.2,
6=0.3, A=6, c=3) and set (3): (a=0.1, f=0.2, 6=0.5, A=4, c=3).

iii. Solving the MLN-W distribution normal equations by iteration to estimate distribution parameters.
iv. Replacing set (1), set (2) and set (3) with its estimators and repeating step (3) to calculate: Biases,
MLEs, RMSE (the root of mean squared error) and the Pearson type of parameters estimators of the
MLN-W distribution, Pearson (1895).

v. Repeating step (1) to step (4), 10000 times.

Random numbers samples are generated via Mathcad package v15 using the conjugate gradient
iteration method. All outcomes are indicated in the appendix.

Clearly, from study results included in the appendix, Biases and RMSEs decrease as sample size

increases. In all times, f and A sampling distributions follow the Pearson type IV distribution, &,

A

¢ and 0@ sampling distributions differ according to sample size. As A increases, for fixed values of

a, ﬁ , ¢ and @, the biases and MSEs of ,B and 6@ decrease.. Also, one can see that when
sample size increases, the estimators can be consistent.

9. Application

A real data set is used, practically, to investigate the flexibility of the new model using MLE method via the
Mathematica package version 10, some distributions are used as: the MLN-W distribution, the gamma distribution,
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the Gumbel (Max) distribution, the Singh-Maddala distribution, Kumar [21], the Kumaraswamy-Weibull (KW-W)
distribution, Cordeiro et al. [22], the exponentiated-Weibull (EX-W) distribution, Nassar et al. [23], and the
Weibull (W) distribution. The lifetime (Hours) of classic lamps for 60 devices as follows, given from the UK
National Physical Laboratory at http://www.npl.co.uk/

3.337, 0.988, 6.058, 0.347, 0.924, 2.484, 3.149, 0.478, 5.000, 5.273, 5.600, 0.348, 7.208, 3.087, 2.405, 2.123,
1.023, 2.154, 4.535, 1.164, 1.330, 0.494, 0.164, 4.766, 5.396, 3.338, 4.663, 3.124, 7.406, 4.494, 3.136, 8.305,
0.483, 3.623, 0.060, 1.761, 3.862, 2.451, 2.714, 4.937, 3.343, 2.225, 0.608, 5.151, 1.950, 5.504, 0.244, 3.860,
4.431, 0.434, 0.083, 2.456, 1.886, 1.396, 2.823, 0.430, 0.573, 4.499, 0.260, 0.634.

Some measures for goodness of fit and likelihood ratio tests are obtained and included in table (1) and

table (2), respectively, the figure (3) shows PDFs for some distributions having skewness and kurtosis
values similar to the MLN-W distribution (the gamma distribution, the Gumbel (Max) distribution, the
Singh-Maddala distribution) and the figure (4) shows the empirical CDF compared to CDFs for some
distributions (the gamma distribution, the Gumbel (Max) distribution, the Singh-Maddala distribution)
and the figure (5) illustrates probability density functions for special cases from the MLN-W
distribution (the KW-W distribution, the EX-W distribution and the W distribution).

0.20+F —
015 | — MLN=W
— Gamma
010+ Gumbel(Max)

—— Singh=Maddala

0.05 F

0.00
0 2 - 6 8 10
Figure 3: Probability density functions for some distributions having skewness and kurtosis values
similar to the MLN-W distribution
Table 1: The MLE of the parameter(s) and the associated AIC and BIC values.

g
& MLE_parameters % § E
. = o
z § g KS  P-value = ) AIC BIC CAIC
é' [ B c A 0 @ ® g

MLN_W 3.103 2.012 0.110 0.503 3.101 1489 6.331 0.119 0.327 -119.502  249.003 259.475 250.114

(0.142) (0.107) (0.012) (0.121) (0.725)
Singh-Maddla 3.3 1.2088 5.1 1.505 4.159 0.174 0.044 -124.692  255.383 261.666 255.812

(0.154) (0.147) (1.812)

Gamma 1.8772  1.8662 1.459 5196 0.190 0.021 -127.138 258275 262.464 258.486


http://www.npl.co.uk/
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(0.201)  (0.153)

Gumbel
2.3438  1.628 1.140 6.400 0.194 0.018 -129.571  263.142 267.331 263.352
(Max)

0.226)  (0.173)

In table (1): MLEs of distributions parameters, test statistic of Kolmogorov-Smirnov (KS), the
corresponding RMSE (given in parentheses), AIC (Akaike Information Criterion), BIC (Bayesian
information criterion) and CAIC (the consistent Akaike Information Criterion), Merovcia and Puka
[24], are computed for all distributions having skewness and kurtosis values similar to the MLN-W
distribution as the gamma distribution, the Gumbel (Max) distribution and the Singh-Maddala
distribution. The null hypothesis is the data follow the MLN-W distribution and it can be accepted at
significance level a=0.05 where the MLN-W distribution has the smallest KS, AIC, CAIC, BIC , SEs
and the largest p-value, so that, the MLN-W distribution can be the best fitted distribution to the data

between other distributions.

~— CDF[Empirical]
CDF[Gumbel (Max)]
~— CDF[Gamma Distribution]
— CDF[Singh Maddala Distribution]
~ CDF[MLN= W]

Figure 4: The empirical CDF compared to CDFs for some distributions

030}
025}
™
020 ] — MLN=-W
. : — KW=W
EX-W

010f ~ | NRTY,
0.05F
0.00 &_

0 2 4 6 g 10

Figure 5: Probability density functions for special cases from the MLN-W distribution
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Table 2: The log-likelihood function, the likelihood ratio tests statistic and p-values.

A df
Parameters g
(log (The degrees(
Distribution p-value
likelihood) likelihood of
o B c (C] A
ratio freedom)
test statistic)
KW-W 2.985 0.151 - 1.298 1.632 -137.534 36.064 1 1.909x10-
(0.149)  (0.118) (0.134)  (0.709)
EX-W 2.774 - - 1.099 0.506 -143.153 47.302 2 5.352x1011
(0.152) (0.221)  (0.947)
w - - — 1898 0341 133532 28.06 3 3.528x10%

0.129) (0.737)

*Note that the log likelihood of the MLN-W distribution = -119.502

In table 2, upon the likelihood ratio test, the null hypothesis is the data follow the nested model and it
can be rejected at the level of significance a = 0.05, so the MLN-W distribution can fit the data better
than all nested distributions at significance level a=0.05, where the KW-W distribution, the EX-W
distribution and the W distribution are nested by MLN-W distribution.

10. Conclusion

The modified Libby-Novick class of generalized distributions has several advantages as: it does not
have any special function having implicit form, has flexible mathematical properties, simple quantile
function and generalizes two important classes of distributions (the KW class and the EX class). The
maximum likelihood estimation method is used easily to estimate the MLN class parameters, the
MLN-W distribution works practically well when it be compared with other distributions. The author
encourages researchers to do more researches and applications on the MLN class of generalized

distributions.
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Appendix

Set(1):(a=0.1, p=0.2, 6 =0.3, A=4, c=3)

Total Pearson
Sample Mean of . ) Total Pearson
Sige Parameters Estimators Biases  Bias RMSE RMSE Syster.n. Type
Coefficients
10 a=0.1 0.053 -0.047 2127 0.065 5443 -0.538 I
=0.2 0.304 0.104 0.235 0.501 v
0=0.3 0.341 0.041 0.091 -0.012 I
A= 4.935 0.935 4.577 0.81 v
c= 1.093 -1.907 2.934 0.346 v
20 a=0.1 0.067 -0.033 2.034 0.056 4309 0.295 v
p=0.2 0.282 0.082 0.083 0.238 v
0=0.3 0.331 0.031 0.049 0.134 v
A=4 4.862 0.862 3.138 0.302 v
c= 1.160 -1.84 2.952 0.391 v
30 a=0.1 0.075 -0.025 1.505 0.056 3.862 -0.314 I
(=0.2 0.247 0.047 0.037 0.097 v
0=0.3 0.33 0.03 0.042 -0.131 I
A= 4.730 0.730 2.482 0.78 v
c= 1.685 -1.315 2.957 0.407 v
50 a=0.1 0.086 -0.014 1.088  0.058 3.599 0.332 v
[=0.2 0.235 0.035 0.027 0.085 v
0=0.3 0.321 0.021 0.035 0.578 v
A= 4511 0.511 2.038 0.324 v
c= 2.04 -0.96 2.965 0.527 v
100 a=0.1 0.094 -0.006 0.339  0.045 2.318  0.005 v
[=0.2 0.210 0.010 0.072 0.004 v
0=0.3 0.305 0.005 0.035 -0.076 I
A=4 4.269 0.269 1.165 0.155 v
c= 2.794 -0.206 2.002 -0.0004 I
300 a=0.1 0.096 -0.004  0.025 0.025 1.133  0.003 v
[=0.2 0.202 0.002 0.037 0.001 v
0=0.3 0.300 0.000 0.014 -0.047 I
A= 4.013 0.013 0.561 0.148 v

=3 2.979 -0.021 0.984 0.269 v
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Set(2):(a=0.1, p=0.2, 6 =0.3, A=6, c=3)

Sample Mean of . Tc.)tal Total Pearson Pearson
) Parameters ) Biases Bias RMSE System
Size Estimators RMSE . Type
Coefficients

10 a=0.1 0.056 -0.044 2407 0.127 8.031  -0.903 I
[=0.2 0.300 0.100 0.195 0.588 v
0=0.3 0.331 0.031 0.083 -0.105 I
A=6 7.591 1.591 7.122 0.943 v
=3 1.197 -1.803 3.704 0.881 v

20 o=0.1 0.074 -0.026 1.998 0.055 6.219 0.271 v
=0.2 0.281 0.081 0.076 0.62 v
0=0.3 0.321 0.021 0.041 -0.064 I
A=6 7.319 1.319 4.828 0.56 v
c= 1.501 -1.499 3.92 1.035 VI

30 a=0.1 0.084 -0.016 1463  0.057 4927 0.278 v
[=0.2 0.236 0.036 0.031 0.101 v
0=0.3 0.320 0.020 0.040 -0.345 I
A=6 7.002 1.002 3.939 0.238 v
c= 1.934 -1.066 2.959 0.428 v

50 o=0.1 0.093 -0.007 0.794  0.057 4421 0311 v
[=0.2 0.231 0.031 0.026 0.094 v
0=0.3 0.314 0.014 0.032 0.128 v

=6 6.467 0.467 3.286 0.246 v

=3 2.358 -0.642 2.958 0.409 v

100 o=0.1 0.097 -0.003 0.474  0.057 3.745  -0.909 I
[=0.2 0.205 0.005 0.021 0.408 v
0=0.3 0.301 0.001 0.028 0.269 v

=6 6.273 0.273 2.598 0.47 v

c=3 2.612 -0.388 2.697 -0.486 I

300 a=0.1 0.099 -0.001 0.061 0.037 1.392  0.105 v
[=0.2 0.201 0.001 0.018 0.643 v
0=0.3 0.300 0.000 0.010 -0.57 I
A=6 6.053 0.053 0.618 0.671 v
c=3 2.968 -0.032 1.247 0.347 v

Set(3):(a=0.1, 3=0.2, ©6 =0.5, A=4, c=3)

Sample Mean of ) Tc.)tal Total Pearson Pearson

) Parameters ) Biases  Bias RMSE System
Size Estimators RMSE . Type
Coefficients

10 a=0.1 0.058 -0.042 1.968  0.056 5.754  0.386 v

[=0.2 0.391 0.191 0.319 0.79 v
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20

30

50

100

300

0=0.5

=
a=0.1
[=0.2
0=0.5
A=4
=3
a=0.1
[=0.2
0 =0.5
A=

=
a=0.1
[=0.2
0=0.5
A=4
=
a=0.1
[=0.2
0=0.5

=
a=0.1
(=0.2
0=05
A=4

C=

0.575
4.846
1.235
0.078
0.369
0.565
4.743
1.658
0.085
0.316
0.543
4.576
2.041
0.093
0.283
0.528
4.334
2.536
0.096
0.247
0.513
4.119
2.874
0.097
0.205
0.504
4.071
2.976

0.075
0.846
-1.765
-0.022
0.169
0.065
0.743
-1.342
-0.015
0.116
0.043
0.576
-0.959
-0.007
0.083
0.028
0.334
-0.464
-0.004
0.047
0.013
0.119
-0.126
-0.003
0.005
0.004
0.071
-0.024

1.544

1.125

0.578

0.180

0.075

0.263
4.86

3.052
0.055
0.085
0.083
3.423
2.955
0.056
0.038
0.069
2.712
2.966
0.057
0.032
0.062
2.108
2.967
0.061
0.031
0.059
1.872
2.959
0.037
0.048
0.024
0.618
1.247

4.524

4.02

3.641

3.502

1.393

0.372
0.407
-0.562
0.302
0.24
-0.172
0.617
0.399
0.244
0.875
0.905
0.715
0.518
0.319
0.105
-2.276
0.618
-0.579
-0.399
0.149
4.216
0.346
0.709
0.105
0.643
-0.57
0.671
0.347

v
v

v
v

v
v
v
v
v
v
v
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