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 In recent years, parallel to the developments in satellite technology, obtaining and processing 
remote sensing images has become quite common. While airports are the first points to be 
targeted by enemy forces in times of war, they are very critical points in times of peace due to 
their significance for transportation, trade, and economy networks. The runways are the most 
distinctive feature of airports. There are many studies on detecting the runways in remote 
sensing images (RSIs). However, existing methods for detecting the runway objects that have 
an excessive width in high-resolution (4137 x 4552 pixels and above) RSIs may be insufficient. 
In this study, a Divide and Conquer Object Detection (DACOD) method is proposed for the 
runway objects that have an excessive width in high-resolution RSIs. In the proposed method, 
images are divided into images of 1024 x 1024 pixels, and the runway objects in these images 
are detected as oriented. Then, the detection results are merged by using the angles and the 
final runway detection results are obtained. The experimental results demonstrate that the 
proposed model yields good results (%81.5 mAP). This is an 11% mAP increase when 
compared to the best results in The State of The Art (SOTA) object detection models using the 
same dataset. 

 
 
 
 

1. INTRODUCTION  
 

Obtaining and using optical remote sensing images 
(RSIs) has become quite common as a result of the 
increase in the number of satellites sent to space with the 
development of technology and the development of the 
remote viewing equipment used in satellites. Today, RSIs 
are used in many areas from agricultural activities to 
urban planning, and from disaster management to 
military applications (Cheng and Han, 2016). 

Airports have both strategic and economic 
importance. Besides being the first target of the enemy 
forces in times of war and peace, they are critical places 
in terms of their locations as crossroads of 
transportation, trade, and economic networks. Runways 
are the most distinctive feature of airports. Each airport 
has at least one runway. Based on this fact, the most 
salient elements used in airport detection in RSIs are 
runways. 

There are many studies on detecting the runways in 
RSIs. We can divide these studies into 2 groups according 
to the methods they use. The first group consists of 

studies based on the determination of long and wide lines 
parallel to each other, which are the determining 
geometric features of the runways (Wu et aI., 2014; 
Zhang et al., 2020; Li et al., 2014; Lv et al., 2018; Akbar et 
al., 2019). The other group consists of the object 
detection studies based on the classification process 
made according to the textural differences of the objects 
that make up RSIs (Tao et al., 2010; Aytekin et al., 2013; 
Zongur et al., 2009; Tang et al., 2015).  For this reason, in 
the aforementioned studies, the images are divided into 
small pieces of varying sizes from 32 x 32 pixels to 512 x 
512 pixels and runway detection is made within these 
pieces. 

Deep learning, a sub-branch of machine learning, has 
gained popularity in recent years with the development 
of parallel programming capabilities of graphics cards 
and the emergence of datasets containing large amounts 
of data (Bengio et aI., 2016). Convolutional neural 
networks (CNN), which are the best known of the deep 
learning techniques, have been favored especially after 
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the great success of the AlexNet (Krizhevsky et al., 2012) 
model in the International Large Scale Visual Recognition 
Challenge (ILSVRC) competition held in 2012.  So, there 
emerged many studies that detect objects in optical RSIs 
using CNN (Yu et al., 2020; Wu et aI., 2020; Song et al., 
2021; Ju et al., 2019; Wang et al., 2019). The RSIs used in 
these studies usually have a high resolution such as 4000 
x 4000 pixels. Because the convolution process is an 
expensive operation and there are many convolution 
processes in the early layers of CNNs, large images are 
divided into small pieces (usually 1024 x 1024) to avoid 
the computational burden. For this reason, the data sets 
used in these studies (such as DOTA (Xia et aI., 2018) and 
HRSC2016 (Liu et aI., 2017) were created to contain 
small object classes such as aircraft, ships, cars, buses, 
etc. that can remain in 1024 x 1024 parts.  

Today, there is not any data set and object detection 
model within the scope of detecting runway objects in 
high-resolution and large-size (80 MB and above) RSIs 
using CNN in the object detection area. In this study; the 
data set, containing high-resolution RSIs of various 
airports, is created by using Google Earth and Bing Maps, 
and then a model that detects the runway objects that 
have excessive width in this data set is presented. The 
specific features of the data set used are given in Table 1. 

When Table 1 is examined; while the average image 
size of the data set used is 4137 x 4552 pixels, the average 
size of the runway objects contained in the images is 
3221 x 87 pixels. Such large images create memory 
insufficiency and computational burden. Accordingly, the 
largest image sizes that current graphics cards can 
process at once are calculated using State of The Art 
(SOTA) object detection models and are detailed in Table 
2. The graphics cards used in the tests are respectively 8 
GB Nvidia GTX1080 and 16 GB Nvidia Tesla V100, and the 
backbone of SOTA object detection models is ResNet50 
(He et al., 2016). 

As can be seen in Table 2, the maximum image size 
that the GTX 1080 graphics card with 8 GB memory can 
process at one time is 2300 x 2300 pixels, while the 
maximum image size that the V100 graphics card with 16 
GB memory can process at one time is 3600 x 3600 pixels. 
An Out of Memory error is obtained when an operation is 
attempted with a larger image for both graphics cards. 
The data set used in the study includes 376 images larger 
than 2300 x 2300 pixels and 318 images larger than 3600 
x 3600 pixels. For this reason, it is inevitable to obtain an 
Out of Memory error in any train operation to be 
performed without any image pre-processing. 

So, in this study, in order to avoid memory 
insufficiency (Out of Memory error) and computational 
burden, the images are first divided into 1024 x 1024 
pixels pieces. Then, runway detection is made in these 
images with a method that detects objects as oriented. In 
the last stage; the runway detections in more than one 
1024 x 1024 image piece are determined as a single 
runway by using the rotation angles according to the 
origin (Figure 1). Contributions and main objectives of 
proposed model are as follows; 

 

• An object detection model is introduced that merges 
multiple object detection results based on rotation 
angles, 

• Using proposed model to avoid the computational 
burden and overcome memory problems, it is 
possible to detect runway objects that have excessive 
width by dividing them into small pieces in high-
resolution remote sensing images, 

• It is the first study in this field that detects the runway 
objects that an excessive width in high-resolution 
RSIs using CNN. 
 

In the second section of this study, the proposed 
model is explained in detail. The third section contains 
the results of the experiments performed according to 
the different threshold and angle combinations of the 
proposed model. Also in this section, to demonstrate the 
effectiveness of the proposed model, there is a 
comparison of the proposed model with SOTA object 
detection models. The fourth and last part is the 
conclusion of this study. 

 

Table 1. Data set specific features 

Specific Features 

Total Image Count 398 images 

Minimum Image Size  
(width x height) 

448 x 576 pixels 

Maximum Image Size  
(width x height) 

15904 x 11328 pixels 

Average Image Size  
(width x height) 

4137 x 4552 pixels 

Maximum Runway Object Width  8216 pixels 

Minimum Runway Object Height 64 pixels 

Grater Runway Width Count* 60 images 

Average Runway Object Size 
(width x height) 

3221 x 87 pixels 

* Number of runway objects with a width greater than the width of 

the image it contains 

Table 2. Relationship between input image size and graphic cards 

SOTA Model 
Maximum Input Size Flops (GFlops) 

 

Params (Millions) 
 

     GTX1080 Tesla V100 GTX1080 Tesla V100 GTX1080 Tesla V100 

Faster RCNN  2250 x 2250 3600 x 3600    971.35    2455.3     41.12      41.12 

Mask RCNN  2200 x 2200 3600 x 3600    973.08    2501.61     43.75       43.75 

Cascade RCNN  2200 x 2200 3500 x 3500    954.58    2351.96     68.93       68.93 

RetinaNet  2300 x 2300 3600 x 3600    1058.36    2588.09      36.1        36.1 

SSD512  2000 x 2000 3100 x 3100     1435.6     3219.51      36.04        36.04 
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2. METHOD  

 
The proposed model consists of two main 

components. These are; the Oriented Object Detection 
module using the RoI Transformer structure proposed in 
the study Ding (Ding et al., 2019), and the Angular-based 
Merge module, which angular merges the runway object 
detections predicted by the oriented object detection 
module. In this section, the mentioned modules are 
explained in detail. 

 
2.1. Oriented Object Detection Module  

 
In the detection of objects in RSI, making use of the 

structural properties of the objects directly affects the 
success. So, this module includes a backbone consisting 
of a Feature Pyramid Network (Tsung-Yi et aI., 2017) and 
a ResNet50, also includes a RoI Transformer-based 
Oriented Detection Head. This module is designed 
according to training with labels suitable for oriented 
bounding box structure instead of standard horizontal 
bounding box structure. As a result of this training 
process, generating oriented bounding box predictions. 
Thus, detection results suitable for angular calculation 
can be transferred to the next module, Angular-based 
Merge. 

 

2.2. Angular-based Merge Module 
 

It is the module where the object detections coming 
from the detection module are merged according to the 
rotation angles and a single and complete runway 
detection is obtained. This module consists of 2 parts. 
These are the detection pool and merge module. 

The detection results produced by the oriented object 
detection module are first collected in the detection pool. 
Object detections in the detection pool are delivered to 
the Merge module sequentially. The pool is not emptied 
until all of the images to be used while detecting the 
runway object are processed by the merge module. At the 
end of the final runway detection result generated by the 
merge module, the pool is automatically emptied. In 
order not to occupy more space in the GPU memory, only 
oriented detection results are kept in the Detection Pool. 

 

 
 
The Merge module processes the detection results in 

the detection pool sequentially. The algorithm of this 
module is given in Algorithm 1. This algorithm consists 
of 3 stages.   

 
1) Detection results in the detection pool may contain 

more than one bounding box. With the help of the 
non-maximum suppression technique, these 
bounding boxes are reduced to a single bounding 
box. The threshold value (Nt) in this process is set 
as 0.9, as will be mentioned in the experiments 
section. Obtained detection results are put into a 
new list (DL), 

 

2) In this stage, oriented angle values of all detection 
results in DL are calculated at first. Then these 
detection results are grouped according to the angle 
values. In the second stage, all operations are 
performed over bounding boxes containing object 
detection. In the angle calculation process specified 
by (1) in Algorithm 1, the binary coordinate values 
(x, y) that form the bounding box are numbered 
starting from 0 clockwise (Figure 2),  

 

 
 
 
Then, in accordance with equation 1, the angle value 

is calculated using the binary coordinate values of the 
corner points 0 and 3 of the bounding box. If the 
bounding box whose angle is calculated is the first, the 
binary coordinate value of the bounding box and the 
oriented angle value are added into a new group list (GL) 
and then the next bounding box is processed. The angle 
value of the next bounding box is calculated and 
compared with the angle value of the first elements of the 
existing group lists. The process referred to as 
comparison is to take the absolute value of the difference 
between the angles of both bounding boxes. If the result 
of the operation is less than 10º (in the experiments 
section, why this value is selected is explained), these two 
bounding boxes are assumed to belong to the same 
runway object, and the processed bounding box is added 
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as a new element to the relevant group list. If the angle 
value of the bounding box subjected to the calculation is 
not related to any GL (the difference is greater than 10º), 
this bounding box is considered to belong to a new 
runway object. Therefore, a new GL is created and the 
binary coordinate values and the oriented angle value of 
this bounding box are added as the first element to this 
new list. The comparison is done until all elements of the 
DL are finished. 

 

∅ =  𝑡𝑎𝑛−1 (
𝑦4 −  𝑦1

𝑥4 −  𝑥1

) 

 
 
 

In Equation 1, while (x1, y1) binary coordinate value 
refers to the corner numbered 0, (x4, y4) binary 
coordinate values represent the corner numbered 3 
clockwise. 

 
3) At this stage, a single runway object is obtained by 

combining the bounding box values in each GL. 
Additionally, since the dimensions of the runway 
objects in the images that make up the data set used 
within the scope of the study are larger than 1024, the 
number of elements of the GL to be merged should be 
at least 2. In the merge process specified with (2) in 
Algorithm 1; the binary coordinate values of the 
corner points 0 and 3 of the first bounding box of GL 
are added to a list. Then, the binary coordinate value 
of corner points 1 and 2 of the last element of the GL 
list is also added to this list, resulting in a complete 
bounding box. The process is completed by assigning 
0.9 value selected as the threshold to the score value 
field of this bounding box. Bounding boxes obtained 
as a result of the merge process no (2) are added to 
the final result list (R). R is considered as the 
prediction result of proposed model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Bounding box numbering process. (a) Angle 
value less than 90º. (b) Angle value equal to 90º. 

 
 

 
 
 
 

 
3. EXPERIMENTS, RESULTS AND DISCUSSION 
 
3.1. Data Set and Evaluation Metric 
 

Today, there are many datasets consist of remote 
sensing images such as DOTA and HRSC2016. However, 
none of these datasets contain a runway object. In this 
study, the data set we used is created by the Presidency 
of Defense Industries of The Republic of Turkey. This 
dataset includes high-resolution RSIs of various airports 
obtained from Google Earth and Bing Maps. We divide 
these images into small blocks with a size of 1024 × 1024 
pixels, and there is a 200-pixels overlap between the 
adjacent small blocks. Of the 6012 images obtained after 
dividing, 4208 of them are used as trains and the 
remaining 1804 images are used for the test. Stochastic 
gradient descent (SGD) is chosen as the optimizer of the 
proposed model. The training of proposed model is 
completed after 24 epochs. The learning rate is initially 
chosen as 0.0025, it is reduced by 10% on the 16th and 
22nd epochs. To evaluate the performance of proposed 
model, we used mean average precision (mAP) as a 

(1) 



International Journal of Engineering and Geosciences– 2022; 7(2); 154-160 

 

  158  

 

benchmark that reflects the overall performance of 
object detection algorithms. The mAP is defined as, 

 

mAP = ∫ 𝑃(𝑅)𝑑𝑅
1

0
 

where P indicates the precision rate; R suggests the recall 
rate.  

 
3.2. Experiments with Different Configurations 

 
Experiments with different configurations are carried 

out to measure the performance of the proposed model. 
The configurations we use are the nms threshold value, 
which has an important place in the success of the model 
we propose, and the angular difference value we use 
when comparing bounding boxes. Experimental results 
are given in Table 3. 

 
 

Table 3. Performance comparison on threshold value 
and angular difference value 

NMS 
Threshold 
Value 

Angle Difference Value 

≤ 5º ≤ 10º ≤ 15º ≤ 20º ≤ 25º 

0.5 0.722* 0.728 0.743 0.732 0.717 

0.6 0.743 0.750 0.754 0.738 0.730 

0.7 0.771 0.768 0.773 0.746 0.739 

0.8 0.787 0.801 0.798 0.761 0.752 

0.9 0.794 0.815 0.803 0.802 0.782 

* All values are mAP 
 

When Table 1 is examined; it is seen that the best 
result is obtained with the 0.9 threshold value and 
configuration where the angular difference is less than 
10º (0.815 mAP). The reason for this can be explained as 
follows, 

 

• The long side of the runway objects in the images 
is often long enough to correspond to more than one 
1024x1024 image piece. Moreover, their width is not as 
small as those of objects such as planes, cars, and ships 
that are frequently found in RSIs. So, they are very easy 
to detect. For this reason, keeping the threshold value 
high directly increases the success as it eliminates false 
detections. 

 

• In addition to the main runways, there are 
smaller auxiliary runways at the airports. Since the 
auxiliary runways and main runways are very close to 
each other, when the angular difference value increases, 
the proposed model identifies the auxiliary runways as 
the main runway. According to the results of the 
experiments, the highest success is obtained when the 
angular difference is less than 10º. 
 
 
 
 

3.3. Proposed Model Compared with SOTA Object 
Detection Models 

 
To objectively evaluate the performance of the 

proposed model; SOTA object detection models are 
trained on the data set used in this study. According to 
the test results made after the training processes, the 
object detection performance comparison of the SOTA 
object detection models (Ren et al., 2014; He et al., 2017; 
Zhaowei et al., 2019; Lin et al., 2017; Wei et al., 2016).   
and the proposed model is given in Table 4. All images in 
the data set are downscaled to 1024 x 1024 in order not 
to get an Out of Memory error. The training of all models 
is completed after 24 epochs. The learning rate is initially 
chosen as 0.0025, it is reduced by 10% on the 16th and 
22nd epochs. 

When Table 4 is examined, it is seen that the proposed 
model shows the best performance by far. The proposed 
model performs 11% better than the RoI Transformer 
model it uses as an object detection module. This is 
because; while the downscale preprocessing process 
reduces the accuracy value, the proposed model can 
detect the objects with the help of the Angular-based 
Merge module without the downscale preprocessing.  

As can be seen from the object detection 
performances; the downscale preprocessing process 
causes the SOTA models (especially RetinaNet) to 
perform poorly. However, downscale preprocessing is 
also a must to get rid of the Out of Memory error, which 
is explained in detail in Table 2. Although the inference 
time of the proposed model is slow, it is at a level that can 
be ignored according to the object detection performance 
it achieves (It even has a good speed compared to 
SSD512, RetinaNet, and Mask RCNN models). So, 
considering the data set used within the scope of the 
study, it is understood that the proposed model has a 
reasonable speed. Object detection results on the test 
images of the proposed model can be seen in                     
Figure 3. 

 
Table 4. Object detection performance comparison of 
the proposed model and SOTA models. 

Model 
Inference 

Time(FPS) 
mAP 

Faster RCNN 4.6 0.539 

Mask RCNN 1.5 0.500 

Cascade RCNN 3.9 0.623 

RetinaNet 1.6 0.103 

SSD512 1.3 0.520 

RoITransformer 4.2 0.703 

Proposed Model 1.7 0.815 

 
 
 

 
 
 

(2) 
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4. CONCLUSION  

 
In this study, a simple and effective object detection 

method is proposed to detect runway objects that have 
an excessive width in high-resolution remote sensing 
images. The proposed model aims to detect runway 
objects in high-resolution images based on the divide and 
conquer philosophy. To avoid the computational burden 
and overcome memory problems (especially Out of 
Memory error), in the proposed method, remote sensing 
images are first divided into 1024x1024 small images. 
Then, runway objects are detected as oriented, and 
obtained detection results are merged taking into 
account the angular differences. So, the predicted output 
of the model is obtained. Experiments show that the 
proposed model achieves 81.5% mAP results. Also, SOTA 
object detection models are trained on the data set used 
within the scope of the study, and the object detection 
performances are compared with the proposed model. 
According to the comparison results, the proposed model 
achieves an 11% mAP increase compared to the best-
performing SOTA model. In the next study, 
improvements will be made to enable the proposed 
model to perform instance segmentation with object 
detection jointly. 
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