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Abstract. In this paper, we investigate the spherical images of null curves
and null helixes in Minkowski 3-space. We provide the spherical indicatrices

of null curves in Minkowski 3-space with their causal characteristics. We also

show the conditions of spherical indicatrices of null curves to be a curve lying
on pseudo-sphere in Minkowski 3-space. In addition, we give the properties of

spherical indicatrices of null curves satisfying generalized helices and lying on

pseudo-sphere in Minkowski 3-space.

1. Introduction

Since the second mid of 20th-century mathematicians and physicist have actively
studied about differential geometry of Riemannian manifold and its applications. It
is because theories in differential geometry connect mathematics with real problems,
especially physics. Many topics in classical differential geometry of Riemannian
space are then extended into those of Lorentz-Minkowski space since its impor-
tant use in physics especially related to general relativity theory. Some literatures
providing an explanation about differential geometry in Riemannian space can be
seen in [2, 12, 13] while the theory of differential geometry in the semi-Riemannian
manifold can be seen in [5].

One theory of differential geometry in Riemannian space that can be extended
to Lorentz-Minkowski space is the spherical indicatrix of curves. The idea has been
existed for a long time ago to the tie of Gauss. The idea is essentially simple. if
there is some group of the set of lines in space in some organized relationship with
another, one might construct and examine the relevant spherical indicatrix [14].
The theory of spherical indicatrix of curves in Riemannian space can be found in
[1, 15, 17]while in the case of Lorentz-Minkowski space can be seen in [16].

In Lorentz-Minkowski space, a curve can locally be timelike, spacelike or null
depending on the casual character of the tangent vector along the curves. Some
studies about the theory of curves in Minkowski space and its applications have been
studied by [3, 4, 6]. In Lorentzian geometry, the properties of spacelike curves and
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timelike curves can be studied by approaches similar to those in Riemann geometry.
However, it does not work for null curves or it can be said that the theory of null
curves has many results which have no Riemannian analogues. It is because, in the
case of the null curves, the arc length vanishes so that it is impossible to normalize
the tangent vector in the usual way as in spacelike and timelike curve cases.

In the mathematical study of relativity theory, it is known that a lightlike particle
is a future-pointing null geodesic in spacetime which is a connected and time-
oriented 3-dimensional Lorentzian manifold [5]. The study of null curves also plays
an important role in the physical theories that the classical relativistic string is a
surface or world-sheet in Minkowski space which satisfies the Lorentzian analogue
of the minimal surface equations [10]. In another finding, Nersian and Ramos [11]
show that there exists a geometrical particle model based entirely on the geometry
of null curves in Minkowski 4-dimensional spacetime.

Since its important roles both in mathematics and physics, many mathematicians
and physicist are interested in studying the theory of null curves. For instance,
Duggal and Jin [8] write a comprehensive book related to the theory of null from
its introduction, properties until its applications. Inoguchi and Lee also explained
the theory of null curves comprehensively in another article [3].

In this paper, we study the spherical indicatrices of null curves parametrized by
distinguished parameter in Minkowski 3-space. In this work, we assume that the
null curve is a space curve such that its curvature and torsion are not vanish. After
the preliminary section, we give the Frenet frames of the spherical indicatrices of
a null curve in term of the Frenet frame of the null curve. We also provide the
curvatures and torsions of the spherical indicatrices. We also then show the condi-
tions of spherical indicatrices of null curves to be a curve lying on pseudo-sphere in
Minkowski 3-space. In addition, we give the properties of spherical indicatrices of
null curves satisfying generalized helices and lying on pseudo-sphere in Minkowski
3-space.

2. Preliminaries

Minkowski space E3
1 is the real vector space R3 equipped with the standard

indefinite Lorentzian metric g defined by

(2.1) g(x, y) = −x1y1 + x2y2 + x3y3

for any vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1. The cross product in

Minkowski 3-space is defined by

(2.2) x× y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y3).

In Minkowski 3-space, v is timelike if g(v, v) < 0, spacelike if g(v, v) > 0 or v = 0,
or null (lightlike) if g(v, v) = 0 and v 6= 0. The norm of a vector in E3

1 is defined

by ||v|| =
√
|g(v, v)|.

Let α : I → E3
1 be a curve in Minkowski 3-space. Locally, α can be timelike,

spacelike or null if its tangent vectors along the curve are timelike, spacelike or null,

respectively. For non null curves, the arc length s is defined by s =
∫ t

0

√
|g(α′, α′)|dt.

If g(α′, α) = ±1, the non null curves are called curves parametrized by arc length.
For a null curve, since g(α′, α′) = 0 then the pseudo-arc length s is defined by

s =
∫ t

0
g(α′′, α′′)

1
4 dt and if g(α′′, α′′) = 1 the the null curve is parametrized by

pseudo-arc length.
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Let {T,N,B} is the Frenet frame of α in E3
1. T,N and B are called tangent

vector, principal normal vector and binormal vector of α, respectively.
If α is a non null curve with non null normals parametrized by arch length, then

the Frenet equations of α are given by [21]

T ′ = κN, N ′ = −ε0ε1κT + τB, B′ = −ε1ε2τN(2.3)

where

g(T, T ) = ε0 = ±1, g(N,N) = ε1 = ±1, g(B,B) = ε2 = ±1,

g(T,N) = g(T,B) = g(N,B) = 0.

The vector products of Frenet vectors of α in Minkowski 3-space are given by

(2.4) T ×N = B, N ×B = −ε1T, B × T = −ε0N.

If α is a pseudo null curve, that is α is a spacelike curve with a null principal
normal N , then the Frenet equations of α are given by [20]

(2.5) T ′ = κN, N ′ = τN, B′ = −κT − τB

where

g(T, T ) = g(N,B) = 1, g(N,N) = g(B,B) = g(T,N) = g(T,B) = 0

and

(2.6) T ×N = N, N ×B = T, T ×B = −B.

Here, κ can only two values:, κ = 0 if α is a straight line and κ = 0, otherwise.
If α is a null curve parametrized by distingushed parameter, then the Frenet

equations of α are given by [18]

(2.7) T ′ = κN, N ′ = τT − κB, B′ = −τN

where

g(T, T ) = g(B,B) = 0, g(T,B) = g(N,B) = 0, g(N,N) = g(T,B) = 1

and

(2.8) T ×B = N, T ×N = −T, N ×B = −B.

Here, κ and τ are called the curvature and the torsion if α is a timelike curve or a
spacelike curve with non null Frener frame. In case α is a pseudo null curve or a
null curve then τ is called pseudo torsion.

Let C : I → E3
1 be a null curve paremetrized by pseudo arc length s. A curve

α : I → E3
1 generated by the unit tangent vector along a curve C(s), i.e., α(s) =

T (s) on the sphere of radius 1 about the origin is called tangent indicatrix of C(s).
Similarly, α(s) = N(s) and α(s) = B(s) are called the principal indicatrix and
binormal indicatrix of C(s)

3. Spherical Indicatrices of Null Curves

In this section, we provide the causal characteristics of spherical indicatrices of
null curves in Minkowski 3-space. In this section we assume that the null curve is
not a straight line so that the null curve has non null curvature anywhere.
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3.1. Tangent indicatrix.

Theorem 3.1. Let α(s) = T (s) be a tangent indicatrix of a null curve parametrized
by distinguished parameter s. Then α is a spacelike curve.

Proof. From equation (2.7), we have α′(s) = κ(s)N(s). Therefore, g(α′, α′) =
κ2(s) > 0. It implies that α is a spacelike curve. �

Theorem 3.2. Let α(s) = T (s) be a tangent indicatrix of null curves parametrized
by distinguished parameter s. If the null curve is not a plane curve, then α(s) is a
spacelike curve with non null Frenet frame satisfying

(3.1)

 T̄N̄
B̄

 =

 0 1 0
τ√
|2κτ |

0 −κ√
|2κτ |

τ√
|2κτ |

0 κ√
|2κτ |


TN
B

 .
Proof. Let s̄ be arc length of the α(s). Then, since α is spacelike curve with non
null Frenet frame, then by taking derivative of α with respect to the pseudo arc
length s using equations (2.5) and (2.7), we have

(3.2)
dα

ds̄

ds̄

ds
= κN ⇒ T̄ · ds̄

ds
= κN.

Taking the norm of equation (3.2), we have ds̄
ds = ±κ. Take ds̄

ds = κ so that

(3.3) T̄ = N.

Differentiating equation (3.3), yields

(3.4)
dT̄

ds̄

ds̄

ds
= τT − κB ⇒ κ̄N̄κ = τT − κB.

Since the null curve is not a straight line and not a plane curve then κ 6= 0 and
τ 6= 0, by taking the norm of equation (3.4), we have

(3.5) κ̄κ =
√
| − 2κτ | =

√
|2κτ |.

Therefore, from equation (3.4), we find

(3.6) N̄ =
τT − κB√
|2κτ |

.

Consequently, N̄ is timelike or spacelike if κτ > 0 or κτ < 0, respectively. Therefore,
from equations (2.6) and (2.8), we have

B̄ = · T̄ × N̄

= ·N ×

(
τT − κB√
|2κτ |

)

=
τT + κB√
|2κτ |

.

Hence, the proof is completed. �

Theorem 3.3. Let α(s) = T (s) be a tangent indicatrix of a null curve parametrized
by distinguished parameter s. If α(s) = T (s) has non null Frenet frame then the
curvature and torsion of α(s) are respectively given by

(3.7) κ̄ =

√
|2κτ |
κ

and τ̄ = −κ
′τ − κτ ′

2κ2τ
.
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Proof. It is clear from equation (3.5) that

κ̄ =

√
|2κτ |
κ

.

Taking derivative of B̄ in equation (3.1) with respect to the pseudo arc length s
yields

dB̄

ds̄

ds̄

ds
=
τ ′T + κτN + κ′B − κτN

| − 2κτ | 12
− (−2κ′τ − 2κτ ′)(τT + κB)

2| − 2κτ | 32
dB̄

ds̄
κ =

(−2κτ)(τ ′T + κ′B) + (κ′τ + κτ ′)(τT + κB)

| − 2κτ | 32
dB̄

ds̄
=
τ(κ′τ − κτ ′)T − κ(κ′τ − κτ ′)B

κ| − 2κτ | 32

=
(κ′τ − κτ ′)(τT − κB)

κ| − 2κτ | 32
.

By applying equations (2.5) and (2.7), we get

τ̄ = · g
(
dB̄

ds̄
, N̄

)
= · g

(
(κ′τ − κτ ′)(τT − κB)

κ| − 2κτ | 32
,
τT − κB
| − 2κτ | 12

)
=

(κ′τ − κτ ′)(−2κτ)

κ| − 2κτ |2

=− κ′τ − κτ ′

2κ2τ
.

�

3.2. Principal Normal Indicatrix.

Theorem 3.4. Let α(s) = N(s) be a principal normal indicatrix of a null curve
parametrized by pseudo arc length s. Then if α(s) is not a plane curve then it is a
spacelike or a timelike curve and if α(s) is a plane curve then it is a null curve.

Proof. From equation (2.7), we have α′(s) = −τ(s)T (s) + κ(s)B(s). Therefore,
g(α′(s), α′(s)) = 2κ(s)τ(s). As a consequence, if α(s) is not a plane curve, then
it is a spacelike or a timelike curve if κ and τ have different sign or same sign,
respectively. If α(s) is a plane curve then τ(s) = 0 which implies α(s) is a null
curve. �

Theorem 3.5. Let α(s) = N(s) be a principal normal indicatrix of a non plane
null curve parametrized by pseudo arc length s. Then the Frenet frame of α(s) is
given by

(3.8)

 T̄N̄
B̄

 =


τ√
|λ|

0 −κ√
|λ|

τµ√
µ2λ+λ4

−λ2√
µ2λ+λ4

κµ√
µ2λ+λ4

τλ√
µ2+λ2

µ√
µ2+λ2

κλ√
µ2+λ2


TN
B


where λ = 2κτ and µ = κ′τ − κτ ′.
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Proof. Let s̄ be the arc length of the curve α(s). Taking derivative of α with respect
to the pseudo arc length s, we have

(3.9)
dα

ds̄

ds̄

ds
= τT − κB ⇒ T̄

ds̄

ds
= τT − κB.

Taking the inner product of equation (3.9), we get

(3.10)
ds̄

ds
=
√
| − 2κτ |.

Therefore,

(3.11) T̄ =
τT − κB√
| − 2κτ |

.

Differentiating equation (3.11) and using equation (3.10), we have

dT̄

ds̄

ds̄

ds
=
τ ′T + κτN − κ′B + κτN

| − 2κτ | 12
− (−2κ′τ − 2κτ ′)(τT − κB)

2| − 2κτ | 32

κ̄N̄ =
(−2κτ)(τ ′T + 2κτN − κ′B) + (κ′τ + κτ ′)(τT − κB)

| − 2κτ |2

=
(−2κττ ′ + κ′τ2 + κττ ′)T − 4κ2τ2N + (2κκ′τ − κ′κτ − κ2τ ′)B

| − 2κτ |2

=
τ(κ′τ − κτ ′)T − 4κ2τ2N + κ(κ′τ − κτ ′)B

| − 2κτ |2

=
(κ′τ − κτ ′)(τT + κB)− 4κ2τ2N

4κ2τ2
.

Taking the norm of the equation above yields

(3.12) κ̄ =
|2κτ(κ′τ − κτ ′)2 + 16κ4τ4| 12

4κ2τ2
.

Therefore,

(3.13) N̄ =
(κ′τ − κτ ′)(τT + κB)− 4κ2τ2N

|2κτ(κ′τ − κτ ′)2 + 16κ4τ4| 12
.

As a consequence,

B̄ =T̄ × N̄

=

(
τT − κB√
| − 2κτ |

)
×
(

(κ′τ − κτ ′)(τT + κB)− 4κ2τ2N

4κ2τ2

)
=
κτ(κ′τ − κτ ′)(T ×B)− 4κ2τ3(T ×N)− κτ(κ′τ − κτ ′)(B × T ) + 4κ3τ2(B ×N)

2κτ |(κ′τ − κτ ′)2 + 8κ3τ3)| 12

=
2κτ(κ′τ − κτ ′)N + 4κ2τ2(τT + κB)

2κτ |(κ′τ − κτ ′)2 + 8κ3τ3)| 12

=
(κ′τ − κτ ′)N + 2κτ(τT + κB)

|(κ′τ − κτ ′)2 + 8κ3τ3)| 12
.

Setting λ = 2κτ and µ = κ′τ − κτ ′ completes the proof. �
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Theorem 3.6. Let α(s) = N(s) be a principal normal indicatrix of a null curve
parametrized by distinguished parameter s. If the null curve is not a plane curve,
then the curvature and torsion of α are given by

(3.14) κ̄ =
|λµ2 + λ4| 12

λ2

and

τ̄ =
−(µ2 + λ3)(λ2κ′τ + λ2κτ ′ + 2κτλλ′) + (2µµ′ + 3λ2λ′)κτλ2

(λµ2 + λ4)
3
2 (µ+ λ)

1
2

+
(µ2λ3)µ2µ′ − µ3(2µµ′ + 3λ2λ′)

2(λµ2 + λ4)
3
2 (µ+ λ)

1
2

.

(3.15)

Proof. From equation (3.11), we have

κ̄ =
|2κτ(κτ ′ − κ′τ)2 + 16κ4τ4| 12

4κ2τ2
=
|λµ2 + λ4| 12

λ2
.

Taking derivative of B̄ in equation (3.8) with respect to the pseudo arc length s,
we have

dB̄

dd̄

ds̄

ds
=

2(µ2 + λ3)(τ ′λ+ τλ′ + µτ)− (2µµ′ + 3λ2λ′)τλ

2(µ2 + λ3)
3
2

T

+
2(µ2 + λ3)µ′ − (2µµ′ + 3λλ′)µ

2(µ2 + λ3)
3
2

N

2(µ2 + λ3)(κ′λ+ κλ′ − κµ)− (2µµ′ + 3λ2λ′)κλ

2(µ2 + λ3)
3
2

B

dB̄

ds
=

2(µ2 + λ3)(τ ′λ+ τλ′ + µτ)− (2µµ′ + 3λ2λ′)τλ

2λ
1
2 (µ2 + λ3)

3
2

T

+
2(µ2 + λ3)µ′ − (2µµ′ + 3λλ′)µ

2λ
1
2 (µ2 + λ3)

3
2

N

2(µ2 + λ3)(κ′λ+ κλ′ − κµ)− (2µµ′ + 3λ2λ′)κλ

2λ
1
2 (µ2 + λ3)

3
2

B.

Therefore,

τ̄ =− g
(
dB̄

ds̄
, N̄

)
=
−(µ2 + λ3)(λ2κ′τ + λ2κτ ′ + 2κτλλ′) + (2µµ′ + 3λ2λ′)κτλ2

(λµ2 + λ4)
3
2 (µ+ λ)

1
2

+
(µ2λ3)µ2µ′ − µ3(2µµ′ + 3λ2λ′)

2(λµ2 + λ4)
3
2 (µ+ λ)

1
2

.

�

3.3. Binormal Indicatrix.

Theorem 3.7. Let α(s) = B(s) be a binormal indicatrix of a null curve parametrized
by distinguished parameter s. Then α is a spacelike or a null curve.
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Proof. From equation (2.7), we have α′(s) = −τ(s)N(s). Therefore, g(α′, α′) =
τ2(s) > 0. It implies that α is a spacelike curve if the null curve is not a plane
curve and α is a null curve is the null curve is a plane curve. �

Theorem 3.8. Let α(s) = B(s) be a binormal indicatrix of a non plane null curves
parametrized by distinguished parameter s. If α is a spacelike curve with non null
Frenet frames, then the Frenet frame of α(s) is given by

(3.16)

 T̄N̄
B̄

 =

 0 −1 0
−τ√
|2κτ |

0 κ√
|2κτ |

−τ√
|2κτ |

0 −κ√
|2κτ |


TN
B


where ε = 1 or ε = −1 when α is a spacelike curve or timelike principal normal,
respectively.

Proof. Let s̄ be arc length of the α(s). Then, since α is a spacelike curve with non
null Frenet frame, then by taking derivative of α with respect to the pseudo arc
length s using equations (2.5) and (2.7), we have

(3.17)
dα

ds̄

ds̄

ds
= −τN ⇒ T̄ · ds̄

ds
= −τN.

Taking the norm of equation (3.17), we have ds̄
ds = ±τ . Take ds̄

ds = τ so that

(3.18) T̄ = −N.
Differentiating equation (3.18), yields

(3.19)
dT̄

ds̄

ds̄

ds
= −τT + κB ⇒ κ̄N̄τ = −τT + κB.

Since α is not a straight line and not a plane curve then κ 6= 0 and τ 6= 0, by taking
the norm of equation (3.19), we have

(3.20) κ̄τ =
√
| − 2κτ | =

√
|2κτ |.

Therefore, from equation (3.19), we find

(3.21) N̄ =
−τT + κB√
|2κτ |

.

Consequently, N̄ is timelike or spacelike if κτ > 0 or κτ < 0, respectively. Therefore,
from equations (2.6) and (2.8), we have

B̄ = · T̄ × N̄

= ·N ×

(
−τT + κB√
|2κτ |

)

=
−τT − κB√
|2κτ |

.

Hence, the proof is completed. �

Theorem 3.9. Let α(s) = B(s) be a tangent indicatrix of a null curve parametrized
by distinguished parameter s. If α(s) = B(s) is not a plane curve then the curvature
and torsion of α(s) are respectively given by

(3.22) κ̄ =

√
|2κτ |
τ

and τ̄ =
κ′τ − κτ ′

2κ2τ
.
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Proof. It is clear from equation (3.20) that

κ̄ =

√
|2κτ |
τ

.

Taking derivative of B̄ in equation (3.1) with respect to the pseudo arc length s
yields

dB̄

ds̄

ds̄

ds
=
−τ ′T − κτN − κ′B + κτN

| − 2κτ | 12
− (−2κ′τ − 2κτ ′)(−τT − κB)

2| − 2κτ | 32
dB̄

ds̄
κ =

(−2κτ)(−τ ′T − κ′B) + (κ′τ + κτ ′)(−τT − κB)

| − 2κτ | 32
dB̄

ds̄
=
τ(κτ ′ − κ′τ)T − κ(κτ ′ − κ′τ)B

κ| − 2κτ | 32

=
(κτ ′ − κ′τ)(τT − κB)

κ| − 2κτ | 32
.

By applying equations (2.5) and (2.7), we get

τ̄ = · g
(
dB̄

ds̄
, N̄

)
= · g

(
(κτ ′ − κ′τ)(τT − κB)

κ| − 2κτ | 32
,
τT − κB
| − 2κτ | 12

)
=

(κτ ′ − κ′τ)(−2κτ)

κ| − 2κτ |2

=
κ′τ − κτ ′

2κ2τ
.

�

4. Spherical Image of Spherical Indicatrices

In this section, we provide the properties of spherical indicatrices of null curves
on pseudo sphere in Minkowski 3-space. In this section we assume the null curve
is neither a plane curve nor a straight line.

Definition 4.1. [5] Pseudo sphere in semi-Riemannian space of center c and radius
r is defined by

(4.1) S2
1 = {α ∈ E3

1 : g(α− c, α− c) = r2}.

Theorem 4.2. Let α(s) = T (s) be a unit speed tangent indicatrix of a null curve.
If α lies on the pseudo sphere of center c and radius r, then

(4.2) α− c = ρN̄ + σB̄,

where ρ = − 1
κ̄ and σ = κ̄′τ̄

κ̄2 .

Proof. Let α(s) = T (s) is a unit speed curve lying on a pseudo sphere S2
1 of center

c and radius r. Therefore, it satisfies g(α − c, α − c) = r2. Differentiating this
equation yields

(4.3) g(T̄ , α− c) = 0.
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Taking the derivative of equation (4.3)

(4.4) g(T̄ , T̄ ) + κ̄g(α− c, N̄) = 0⇒ g(α− c, N̄) = − 1

κ̄
.

Differentiating equation (4.4) and using the fact that α − c is perpendicular to T̄ ,
we have

g(T̄ , N̄) + g(α− c,−ε0ε1κ̄T̄ + τ̄ B̄) =
κ̄′

κ̄2

τ̄ g(α− c, B̄) =
κ̄′

κ̄2

g(α− c, B̄) =
κ̄′τ̄

κ̄2
.(4.5)

On the other hand, since α− c is perpendicular to T̄ , then we can express

α− c = ρN̄ + σB̄

where ρ = g(α − c, N̄) and σ = g(α − c,B). Consequently, by equation (4.4) and
(4.5), we find equation (4.2). Hence the proof is completed �

Corollary 4.1. Let α(s) = T (s) be unit tangent indicatrix of a space null curve. If
α lies on the pseudo sphere, then the center c and the radius r f the curve α are
respectively given by

(4.6) c = α+
1

κ̄
N̄ − κ̄′τ̄

κ̄2
B̄ and r =

1

κ̄2

√
|κ̄2 + ε0(κ̄′τ̄)2|.

Theorem 4.3. Let α(s) = T (s) be unit speed tangent indicatrix of a space null
curve. If α lies on pseudo sphere of center c, radius r and positive curvature, then
α has curvature κ̄ ≥ 1

r .

Proof. Let α lies on the pseudo sphere of center c and radius r. Then, we have
g(α− c, α− c) = r2. From equation (4.4) we have

κ̄ =
1

g(α− c, N̄
.

By Schwarz inequality, ||g(α − c, N̄ || ≤ ||α − c||||N̄ || = a, we have κ̄ ≥ 1
r and the

proof is completed. �

Remark 4.4. The theorem 4.2 and 4.3 is similar in case α is the principal normal
indicatrix or binormal indicatrix of a space null curve.

Definition 4.5. [7] A null curve α : I → E3
1 is called generalized helix is there

exist a non-zero vector v in E3
1 such that g(α′, v) = constant.

Theorem 4.6. [7] A non-geodesic null Frenet curve is a null generalized helix if
and only if its slope τ

κ is constant.

Theorem 4.7. Let C : I → E3
1 be a null generalized helix in E3

1. Then the tangent
indicatrix α(s) = T (s) of the generalized null helix C lies on the osculating plane

of radius r = 1
2

√
2κ
τ and center c = T̄ + rN̄ .
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Proof. Let C : I → E3
1 be a null generalized helix, then τ

κ = constant. From
equation (3.7), we have

κ̄ =

√
|2κτ |
κ

= constant

and

τ̄ = −κ
′τ − κτ ′

2κ2τ
= −

[
d

ds

( τ
κ

)′] 1

2τ
= 0.

Therefore, α(s) = T (s) is a circle in E3
1 which lies on the plane spanned by {T̄ , N̄}

or osculating plane. From equation (4.6), the radius and the center of α are given
by

r =
1

κ̄
=

1

2

√
2κ

τ

and

c = α+
1

κ̄
N̄ = α+ rN̄ .

�

Remark 4.8. The theorem 4.7 is similar in case α is the principal normal indicatrix
or binormal of indicatrix lying on pseudo sphere.

Example 4.9. Define a null curve C : I → E3
1 parametrized by distinguished

parameter s defined by

α(s) = (s, cos s, sin s).

With simple calculation, we have

T = (1,− sin s, cos s), N = (0,− cos s,− sin s), B =

(
−1

2
,− sin s

2
,

cos s

2

)
and

κ = 1 and τ = −1

2
.

Since τ
κ = − 1

2 = constant, the curve C is a helix in E3
1.

1. Tangent indicatrix
The curve α(s) = T (s) = (1,− sin s, cos s) is the tangent indicatrix of C. By using
equations (3.1) and (3.7) we get

T̄ = (0,− cos s,− sin s), N̄ = (0, sin s,− cos s), B̄ = (−1, 0, 0)

and

κ̄ = 1, τ̄ = 0.

It can be seen that α is a spacelike helix with spacelike principal normal vector.
Furthermore, by theorem 4.7, α lies on S2

1 with radius 1 and centered in (1, 0, 0).
2. Principal normal indicatrix
The curve α(s) = N(s) = (0,− cos s,− sin s) is the principal normal of C. By using
equations (3.8), (3.14) and (3.15) we get

T̄ = (0, sin s,− cos s), N̄ = (0, cos s,− sin s), B̄ = (−1, 0, 0)
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and

κ̄ = 1, τ̄ = 0.

It can be seen that α is a spacelike helix with spacelike principal normal vector.
Furthermore, by theorem 4.7, α lies on S2

1 of radius 1 and centered in (1, 0, 0).
3. Binormal indicatrix
The curve α(s) = B(s) =

(
− 1

2 ,−
sin s

2 , cos s
2

)
is the binormal indicatrix of C. By

using equations (3.16) and (3.22) we get

T̄ = (0, cos s, sin s), N̄ = (0,− sin s, cos s), B̄ = (1, 0, 0)

and

κ̄ = 1, τ̄ = 0.

It can be seen that α is a spacelike helix with spacelike principal normal vector.
Furthermore, by theorem 4.7, α lies on S2

1 with radius 1 and centered in (1, 0, 0).

5. Conclusion

Spherical indicatrices of a space null curve in Minkowski 3-space are spacelike
curves with non null Frenet frame. Sphaerical indicatrices lying on the pseudo
sphere of a space null curve with positive curvature has a curvature κ̄ ≥ 1

r where r
is the radius of the pseudo sphere.
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