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Abstract

A rectifying curve in Euclidean n-space En is defined as an arc-length parametrized curve
γ in En such that its position vector always lies in its rectifying space (i.e., the orthogonal
complement of its principal normal vector field) in En. In this paper, in analogy to this, we
introduce the notion of an f -rectifying curve in En as a curve γ in En parametrized by its
arc-length s such that its f -position vector field γ f , defined by γ f (s) =

∫
f (s)dγ , always lies

in its rectifying space in En, where f is a nowhere vanishing real-valued integrable function
in parameter s. The main purpose is to characterize and classify such curves in En.

1. Introduction

Let E3 denote the Euclidean 3-space (i.e., the three-dimensional real vector space R3 endowed with the standard inner product 〈· , ·〉). Let
γ : I −→ E3 be a unit-speed curve (i.e., a curve in E3 parametrized by arc length function s) of class at least C 3 (i.e., possessing continuous
derivatives at least up to third order). Needless to mention, I denotes a non-trivial interval in R, i.e., a connected set in R containing at
least two points. We consider the Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ} for the curve γ which is defined as follows: Tγ = γ ′ is the unit
tangent vector field along γ; Nγ is the unit principal normal vector field along γ obtained by normalizing the acceleration vector field T ′γ ;
Bγ = Tγ ×Nγ is the unit binormal vector field along γ and it is the unique vector field along γ orthogonal to both Tγ and Nγ so that the
dynamic Frenet frame {Tγ ,Nγ ,Bγ} is positive definite along γ having the same orientation as that of E3; κγ is the curvature and τγ is the
torsion of γ . If γ is of class at least C 5, then its curvature κγ and torsion τγ are at least twice differentiable. Moreover, γ reduces to a tortuous
curve in E3 if it has nowhere vanishing curvature κγ and torsion τγ (cf. [1] or [2]).

At each point γ(s) on γ , the planes spanned by {Tγ (s),Nγ (s)}, {Tγ (s),Bγ (s)} and {Nγ (s),Bγ (s)} are respectively called the osculating plane,
rectifying plane and normal plane of γ ( [1, 2]). It is well known from elementary Differential Geometry that a space curve γ lies in a plane
in E3 if its position vector field always lies in its osculating planes, and it lies on a sphere in E3 if its position vector field always lies in
its normal planes. In this point of view, it is natural to inquire the geometric question: Does there exist a space curve γ : I −→ E3 whose
position vector field always lies in its rectifying planes? The existence of such space curves was introduced by B.Y. Chen in his paper [3] and
named as rectifying curves. Thus, the position vector field of a rectifying curve γ : I −→ E3 parametrized by arc length function s satisfies
the equation

γ(s) = λ (s)Tγ (s)+µ(s)Bγ (s)

for some smooth functions λ ,µ : I −→ R. In [3], B.Y. Chen explored some characterizations of rectifying curves in E3 in terms of distance
functions, tangential, normal and binormal components of their position vector field and also in terms of ratios of their curvature and torsion.
Also, he attempted for a classification of such curves in E3 based on a sort of dilation applied on unit-speed curves on the unit sphere S2(1).

In [4], B.Y. Chen and F. Dillen observed that rectifying curves can be viewed as centrodes and extremal curves in E3. Moreover, they
found a relation between rectifying curves and centrodes which performs a significant role in defining the curves of constant procession
in Differential Geometry as well as in Kinematics or, in general, Mechanics. Thereafter, several characterizations of rectifying curves in
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Euclidean spaces were evolved in [5–8]. Meanwhile, the notion of rectifying curves were extended to several ambient spaces, e.g., 3D sphere
S3(r) [9], 3D hyperbolic space H3(−r) [10], Minkowski 3-space E3

1 [11, 12], Minkowski space-time E4
1 [13–15]. Furthermore, a new kind

of curves were studied in E3 which generalizes rectifying curves and helices [16]. Also, some characterizations and classification of non-null
and null f -rectifying curves (which are a sort of generalization of rectifying curves) were investigated in Minkowski 3-space E3

1 [17, 18],
Minkowski space-time E4

1 [19] and Euclidean 4-space [20].

In section 2, we give requisite preliminaries and then, in section 3, we introduce the notion of f -rectifying curves in En. Thereafter, section 4
is devoted to investigate some simple geometric characterizations of f -rectifying curves in En. Afterwards, section 5 is dedicated to classify
f -rectifying curves in terms of their f -position vectors in En. Finally, we conclude our study in section 6. This is how the paper is organised.

2. Preliminaries

The Euclidean n-space En is the n-dimensional real vector space Rn equipped with the standard inner product 〈· , ·〉 defined by

〈x,y〉 :=
n

∑
i=1

xiyi

for all tangent vectors x = (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn) to Rn. As usual, the norm or length of a tangent vector x = (x1,x2, . . . ,xn) to
Rn is denoted and defined by

‖x‖ :=
√
〈x,x〉=

√
n

∑
i=1

x2
i .

Let γ : J −→ En be an arbitrary differentiable curve parametrized by t and γ ′ denotes its velocity vector field in En. Also, we assume that γ

is regular, i.e., its velocity vector field γ ′ is nowhere vanishing. If we change the parameter t by arc-length function s : J −→ I based at t0
given by

s(t) =
∫ t

t0

∥∥γ
′(u)
∥∥ du

such that ‖γ ′(s)‖=
√
〈γ ′(s),γ ′(s)〉= 1, i.e., 〈γ ′(s),γ ′(s)〉= 1, then γ : I −→ En is referred to as an arc-length parametrized or a unit-speed

curve in En. We may consider that γ is of class at least C 4. Now, let Tγ , Nγ denote respectively the unit tangent vector field and the
unit principal normal vector field of γ and for each i ∈ {1,2, . . . ,n− 2}, let Bγ i denote the unit i-th binormal vector field of γ so that
{Tγ ,Nγ ,Bγ 1,Bγ 2, . . . ,Bγ n−2} forms the positive definite dynamic Frenet frame along γ having the same orientation as that of En. Also, for
each i ∈ {1,2, . . . ,n−1}, let κγ i denote the i-th curvature of γ . Then the Frenet-Serret formulae for the curve γ are given by ( [21, 22])

T ′γ
N′γ
Bγ
′
1

Bγ
′
2

...
Bγ
′
n−2


=



0 κγ 1 0 0 · · · 0 0
−κγ 1 0 κγ 2 0 · · · 0 0

0 −κγ 2 0 κγ 3 · · · 0 0
0 0 −κγ 3 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · κγ n−1 0





Tγ

Nγ

Bγ 1
Bγ 2

...
Bγ n−2


. (2.1)

From the above formulae, it follows that κγ n−1 6≡ 0 if and only if the curve γ lies wholly in En. This is equivalent to saying that κγ n−1 ≡ 0 if
and only if the curve γ lies wholly in a hypersurface in En (cf. [21, 22]). We recall that the hypersurface in En defined by

Sn−1(1) := {x ∈ En : 〈x,x〉= 1}

is called the unit sphere with centre at the origin in En. We also recall that the rectifying space of the curve γ in En is the orthogonal
complement Nγ

⊥ of its principal normal vector field Nγ in En defined by

Nγ
⊥ :=

{
x ∈ En : 〈x,Nγ 〉= 0

}
.

3. Notion of f -rectifying curves in En

Let γ : I −→ En be a unit-speed curve (parametrized by arc length s) with Frenet apparatus {Tγ ,Nγ ,Bγ 1,Bγ 2, . . . ,Bγ n−2,κγ 1,κγ 2, . . . ,κγ n−1}.
As found in [8], γ is a rectifying curve in En if and only if its position vector field always lies in its rectifying space, i.e., if and only if its
position vector field satisfies

γ(s) = λ (s)Tγ (s)+
n−2

∑
i=1

µi(s)Bγ i(s)

for some differentiable functions λ ,µ1,µ2, . . . ,µn−2 : I −→ R. Now, let f : I −→ R be a nowhere vanishing integrable function. Then the
f -position vector field of γ is denoted by γ f and is defined by

γ f (s) =
∫

f (s) dγ.

Here, the integral sign is used in this sense that on differentiation of previous equation, one finds

γ
′
f (s) = f (s)Tγ (s)

so that γ f is an integral curve of the vector field f Tγ along γ in En. Using this concept of f -position vector field of a curve in En, we define
an f -rectifying curve in En as follows:
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Definition 3.1. Let γ : I −→ En be a unit-speed curve with Frenet apparatus {Tγ ,Nγ ,Bγ 1,Bγ 2, . . . ,Bγ n−2,κγ 1,κγ 2, . . . ,κγ n−1} and f : I −→
R be a nowhere vanishing integrable function in arc-length parameter s of γ with at least (n−2)-times differentiable primitive function
F. Then γ is referred to as an f -rectifying curve in En if its f -position vector field γ f always lies in its rectifying space in En, i.e., if its
f -position vector field γ f satisfies the equation

γ f (s) = λ (s)Tγ (s)+
n−2

∑
i=1

µi(s)Bγ i(s) (3.1)

for some differentiable functions λ ,µ1,µ2, . . . ,µn−2 : I −→ R.

Remark 3.2. In particular, if the function f is a non-zero constant on I, then, up to isometries (rigid motions) of En, an f -rectifying curve
γ : I −→ En is congruent to a rectifying curve in En and the study coincides with the same incorporated in [8].

4. Some geometric characterizations of f -rectifying curves in En

In this section, we present some geometrical characterizations of unit-speed f -rectifying curves in En in terms of the norm functions,
tangential components, normal components, binormal components of their f -position vector field.

Theorem 4.1. Let γ : I −→ En be a unit-speed curve (parametrized by arc length s) having nowhere vanishing n− 1 curvatures
κγ 1,κγ 2, . . . ,κγ n−1 and let f : I −→ R be a nowhere vanishing integrable function with at least (n− 2)-times differentiable primitive
function F. If γ is a f -rectifying curve in En, then the following statements are true:

1. The norm function ρ = ‖γ f ‖ is given by ρ(s) =
√

F2(s)+ c2, where c is a non-zero constant.
2. The tangential component

〈
γ f ,Tγ

〉
of γ f is given by

〈
γ f (s),Tγ (s)

〉
= F(s).

3. The normal component γ
Nγ

f of γ f has a constant length and the norm function ρ is non-constant.
4. The first binormal component

〈
γ f ,Bγ 1

〉
and the second binormal component

〈
γ f ,Bγ 2

〉
of γ f are respectively given by

〈
γ f (s),Bγ 1(s)

〉
=

κγ 1(s)
κγ 2(s)

F(s),
〈
γ f (s),Bγ 2(s)

〉
=

1
κγ 3(s)

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)

and for each i ∈ {2,3, . . . ,n−3}, the (i+1)-th binormal component
〈

γ f ,Bγ i+1

〉
of γ f is given by〈

γ f (s),Bγ i+1(s)
〉
=

1
κγ i+2(s)

[
κγ i+1(s)

〈
γ f (s),Bγ i−1(s)

〉
+
〈
γ f (s),Bγ i(s)

〉]
.

Conversely, if γ : I −→ En is a unit-speed curve having nowhere vanishing n−1 curvatures κγ 1,κγ 2, . . . ,κγ n−1, and f : I −→R is a nowhere
vanishing integrable function with at least (n−2)-times differentiable primitive function F such that any one of the statements (1), (2), (3)
or (4) is true, then γ is an f -rectifying curve in En.

Proof. First, for some nowhere vanishing integrable function f : I −→ R with at least (n−2)-times differentiable primitive function F , let
γ : I −→ En be an f -rectifying curve in En having nowhere vanishing n−1 curvatures κγ 1,κγ 2, . . . ,κγ n−1. Then for some differentiable
functions λ ,µ1,µ2, . . . ,µn−2 : I −→ R, the f -position vector field γ f of γ satisfies

γ f (s) = λ (s)Tγ (s)+
n−2

∑
i=1

µi(s)Bγ i(s). (4.1)

Differentiating (4.1) and then applying the Frenet-Serret formulae (2.1), we obtain

f (s)Tγ (s) = λ
′(s)Tγ (s)+

(
λ (s)κγ 1(s)−µ1(s)κγ 2(s)

)
Nγ (s)+

(
µ
′
1(s)−µ2(s)κγ 3(s)

)
Bγ 1(s)

+
n−3

∑
i=2

(
µi−1(s)κγ i+1(s)+µ

′
i (s)−µi+1(s)κγ i+2(s)

)
Bγ i(s)+

(
µn−3(s)κγ n−1(s)+µ

′
n−2(s)

)
Bγ n−2(s)

which gives the following set of relations

λ
′(s) = f (s),

λ (s)κγ 1(s)−µ1(s)κγ 2(s) = 0,

µ
′
1(s)−µ2(s)κγ 3(s) = 0,

µi−1(s)κγ i+1(s)+µ
′
i (s)−µi+1(s)κγ i+2(s) = 0 for i ∈ {2,3, . . . ,n−3},

µn−3(s)κγ n−1(s)+µ
′
n−2(s) = 0.

(4.2)

From the first n−1 relations of (4.2), we find

λ (s) = F(s),

µ1(s) =
κγ 1(s)
κγ 2(s)

F(s),

µ2(s) =
1

κγ 3(s)
d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)
,

µi+1(s) =
1

κγ i+2(s)

[
µi−1(s)κγ i+1(s)+µ

′
i (s)
]

for i ∈ {2,3, . . . ,n−3}.

(4.3)
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On the other hand, from the last n−2 relations of (4.2), we get

µ1(s)
(
µ
′
1(s)−µ2(s)κγ 3(s)

)
+

n−3

∑
i=2

µi(s)
(

µi−1(s)κγ i+1(s)+µ
′
i (s)−µi+1(s)κγ i+2(s)

)
+µn−2(s)

(
µ
′
n−2(s)+µn−3(s)κγ n−1(s)

)
= 0

which reduces to

n−2

∑
i=1

µi(s)µ ′i (s) = 0. (4.4)

Integrating (4.4), we obtain

n−2

∑
i=1

µ
2
i (s) = c2, (4.5)

where c is an arbitrary non-zero constant. Using (4.1), (4.3) and (4.5), the norm function ρ = ‖γ f ‖ is given by

ρ
2(s) =

∥∥γ f (s)
∥∥2

=
〈
γ f (s),γ f (s)

〉
= F2(s)+

n−2

∑
i=1

µ
2
i (s) = F2(s)+ c2.

This proves the statement (1). Again, using (4.1) and (4.3), the tangential component
〈
γ f ,Tγ

〉
of γ f is given by〈

γ f (s),Tγ (s)
〉
= λ (s) = F(s).

This proves the statement (2). Now, for each s ∈ I, γ f (s) can be decomposed as

α f (s) = ν(s)Tγ (s)+α
Nγ

f (s)

for some differentiable function ν : I −→ R, where γ
Nγ

f denotes the normal component of γ f . Thus, in view of (4.1), γ
Nγ

f is given by

γ
Nγ

f (s) =
n−2

∑
i=1

µi(s)Bγ i(s).

Therefore, we have

∥∥∥γ
Nγ

f (s)
∥∥∥=√〈γ

Nγ

f (s),γNγ

f (s)
〉
=

√√√√n−2

∑
i=1

µ2
i (s). (4.6)

Now, by using (4.5) in (4.6), we find ‖γNγ

f (s)‖= c. This proves the statement (3). Finally, using (4.1) and (4.3), the first binormal component〈
γ f ,Bγ 1

〉
of γ f is given by

〈
γ f (s),Bγ 1(s)

〉
= µ1(s) =

κγ 1(s)
κγ 2(s)

F(s),

the second binormal component
〈
γ f ,Bγ 2

〉
of γ f is given by

〈
γ f (s),Bγ 2(s)

〉
= µ2(s) =

1
κγ 3(s)

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)

and for each i ∈ {2,3, . . . ,n−3}, the (i+1)-th binormal component
〈

γ f ,Bγ i+1

〉
of γ f is given by〈

γ f (s),Bγ i+1(s)
〉
= µi+1(s) =

1
κγ i+2(s)

[
κγ i+1(s)

〈
γ f (s),Bγ i−1(s)

〉
+
〈
γ f (s),Bγ i(s)

〉]
.

Thus the statement (4) is proved.

Conversely, let γ : I −→ En be a unit-speed curve having nowhere vanishing n− 1 curvatures κγ 1,κγ 2, . . . ,κγ n−1, and f : I −→ R be a
nowhere vanishing integrable function with at least (n− 2)-times differentiable primitive function F such that the statement (1) or the
statement (2) is true. Then, in either case, we must have〈

γ f (s),Tγ (s)
〉
= F(s). (4.7)

Differentiating (4.7) and then using the Frenet-Serret formulae (2.1), we finally obtain〈
γ f (s),Nγ (s)

〉
= 0.

This implies that γ f lies in the rectifying space of γ and hence γ is an f -rectifying curve in En.

Next, we assume that the statement (3) is true. Then ‖γNγ

f ‖= a constant = c, say. Again, the normal component γ
Nγ

f is given by

γ f (s) = F(s)Tγ (s)+ γ
Nγ

f (s)
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and hence we have 〈
γ f (s),γ f (s)

〉
=
〈
γ f (s),Tγ (s)

〉2
+ c2. (4.8)

Differentiating (4.8) and then applying the Frenet-Serret formulae (2.1), we obtain〈
γ f (s),Nγ (s)

〉
= 0.

This proves that γ f lies in the rectifying space of γ and hence γ is an f -rectifying curve in En.

Finally, we assume that the statement (4) is true. Then the first binormal component and the second binormal component of γ f are respectively
given by

〈
γ f (s),Bγ 1(s)

〉
=

κγ 1(s)
κγ 2(s)

F(s), (4.9)

〈
γ f (s),Bγ 2(s)

〉
=

1
κγ 3(s)

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)
. (4.10)

Differentiating (4.9) and by using the Frenet-Serret formulae (2.1), we obtain

−κγ 2(s)
〈
γ f (s),Nγ (s)

〉
+κγ 3(s)

〈
γ f (s),Bγ 2(s)

〉
=

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)
. (4.11)

Combining (4.10) and (4.11), we find 〈
γ f (s),Nγ (s)

〉
= 0.

Consequently, γ f lies in the rectifying space of γ and hence γ is an f -rectifying curve in En.

5. Classification of f -rectifying curves in En

In many papers (e.g., [3], [7], [8], [11] etc.), several interesting results were found primarily attempting towards the classification of rectifying
curves which are mostly based on their parametrizations. In this section, we attempt for the same in En and this classification is totally based
on the parametrizations of their f -position vector field.

Theorem 5.1. Let γ : I −→ En be a unit-speed curve (parametrized by arc-length s) having nowhere vanishing n− 1 curvatures
κγ 1,κγ 2, . . . ,κγ n−1 and let f : I −→ R be a nowhere vanishing integrable function with at least (n− 2)-times differentiable primitive
function F. Then γ is an f -rectifying curve in En if and only if, up to a parametrization, its f -position vector field γ f is given by

γ f (t) = c sec
(

t + arctan
(

F(s0)

c

))
β (t),

where c is a positive constant, s0 ∈ I and β : J −→ Sn−1(1) is a unit-speed curve having t : I −→ J as arc length function based at s0.

Proof. First, for some nowhere vanishing integrable function f : I −→ R with at least (n−2)-times differentiable primitive function F ,
let γ : I −→ En be an f -rectifying curve having nowhere vanishing n−1 curvatures κγ 1,κγ 2, . . . ,κγ n−1. Then by Theorem 4.1, the norm
function ρ = ‖γ f ‖is given by

ρ(s) =
√

F2(s)+ c2, (5.1)

where we may choose c as a positive constant. Now, we define a curve β : I −→ En by

β (s) :=
1

ρ(s)
γ f (s). (5.2)

Then we find

〈β (s),β (s)〉= 1. (5.3)

Therefore, β is a curve in the unit-sphere Sn−1(1). Differentiating (5.3), we get〈
β (s),β ′(s)

〉
= 0. (5.4)

Now, from (5.1) and (5.2), we obtain

γ f (s) = β (s)
√

F2(s)+ c2. (5.5)

Again, differentiating (5.5), we obtain

f (s)Tγ (s) = β
′(s)
√

F2(s)+ c2 +
β (s) f (s)F(s)√

F2(s)+ c2
. (5.6)
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Using (5.3), (5.4) and (5.6), we obtain 〈
β
′(s),β ′(s)

〉
=

c2 f 2(s)(
F2(s)+ c2

)2 . (5.7)

Therefore, we get ∥∥β
′(s)
∥∥=√〈β ′(s),β ′(s)〉= c f (s)

F2(s)+ c2 . (5.8)

Now, for some s0 ∈ I, let t : I −→ J be arc-length parameter of β given by

t =
∫ s

s0

∥∥y′(u)
∥∥du. (5.9)

Then we have

t =
∫ s

s0

c f (u)
F2(u)+ c2 du

=⇒ t = arctan
(

F(s)
c

)
− arctan

(
F(s0)

c

)
=⇒ s = F−1

(
c tan

(
t + arctan

(
F(s0)

c

)))
. (5.10)

Substituting (5.10) in (5.5), we obtain the f -position vector field of γ as follows:

γ f (t) = c sec
(

t + arctan
(

F(s0)

c

))
β (t).

Conversely, let γ be a unit-speed curve in En such that, up to a parametrization, its f -position vector field γ f is defined by

γ f (t) := c sec
(

t + arctan
(

F(s0)

c

))
β (t), (5.11)

where c is a positive constant and β : J −→ Sn−1(1) is a unit-speed curve having t : I −→ J as arc length function based at s0. Differentiating
(5.11), we obtain

γ f
′(t) = c sec

(
t + arctan

(
F(s0)

c

))[
tan
(

t + arctan
(

F(s0)

c

))
β (t)+1

]
β
′(t). (5.12)

Since β is a unit-speed curve in the unit-sphere Sn−1(1), we have 〈β ′(t),β ′(t)〉= 1, 〈β (t),β (t)〉= 1 and consequently 〈β (t),β ′(t)〉= 0.
Therefore, from (5.11) and (5.12), we have〈

γ f (t),γ f (t)
〉

= c2 sec2
(

t + arctan
(

F(s0)

c

))
, (5.13)

〈
γ f (t),γ f

′(t)
〉

= c2 sec2
(

t + arctan
(

F(s0)

c

))
tan
(

t + arctan
(

F(s0)

c

))
, (5.14)

〈
γ f
′(t),γ f

′(t)
〉

= c2 sec4
(

t + arctan
(

F(s0)

c

))
. (5.15)

Now, if we put

t = arctan
(

F(s)
c

)
− arctan

(
F(s0)

c

)
,

then s becomes arc length parameter of γ and equations (5.13), (5.14), (5.15) reduce to〈
γ f (s),γ f (s)

〉
= c2 sec2

(
F(s)

c

)
, (5.16)

〈
γ f (s),γ f

′(s)
〉

= c2 sec2
(

F(s)
c

)
tan
(

F(s)
c

)
, (5.17)

〈
γ f
′(s),γ f

′(s)
〉

= c2 sec4
(

F(s)
c

)
. (5.18)

Again, the normal component γ
Nγ

f of γ f is given by〈
γ

Nγ

f (s),γNγ

f (s)
〉
=
〈
γ f (s),γ f (s)

〉
−
〈
γ f (s),γ f

′(s)
〉2〈

γ f
′(s),γ f

′(s)
〉 .

Then substituting (5.16), (5.17)) and (5.18) in the previous equation, we obtain〈
γ

Nγ

f (s),γNγ

f (s)
〉
=
∥∥∥γ

Nγ

f (s)
∥∥∥2

= c2.

This implies that the normal component γ
Nγ

f of γ f has a constant length. Also, the norm function ρ = ‖γ f ‖ is given by

ρ(s) =
√〈

γ f (s),γ f (s)
〉
= c sec

(
F(s)

c

)
and it is non-constant. Therefore, by applying the Theorem 4.1, we conclude that γ is an f -rectifying curve in En.
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6. Conclusion

It goes without saying that f -rectifying curves in Euclidean spaces are a sort of generalizations of rectifying curves therein. In this paper,
we presented a study on f -rectifying curves in Euclidean n-space En. Predominantly, we explored two main theorems demonstrating
some necessary and sufficient conditions for a regular curve to be an f -rectifying curve in En. The first theorem portrays some geometric
characterizations of f -rectifying curves in En in connection with norm functions, tangential, normal and n−2 binormal components of their
f -position vector field. Whereas the second theorem classifies such curves based on parametrization of their f -position vector field. Moreover,
it yields an important characterization: namely, the f -position vector field of an f -rectifying curve in En is a dilation of a unit-speed curve in
the unit (n−1)-sphere Sn−1(1) with dilation factor c sec

(
t + arctan

(
F(s0)

c

))
for some constants c > 0 and s0. Extensions of such study to

other ambient spaces may be considered as problems of interest.
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