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ABSTRACT: In this paper, we have examined Cauchy products of central Delannoy numbers. 

Moreover, using their recurrence relation we have derived some important identities such as the Cassini 

and Catalan's identities which contain these products. 
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INTRODUCTION  

Delannoy Numbers, 𝑑𝑖,𝑗, were defined in the 19th century by H. Delannoy using the following 

equation for 𝑖, 𝑗 ∈ ℤ  

𝑑𝑖,𝑗 = 𝑑𝑖−1,𝑗 + 𝑑𝑖,𝑗−1 + 𝑑𝑖−1,𝑗−1 . 

𝑑0,0 = 1 and for negative values 𝑖 or 𝑗 it is 𝑑𝑖,𝑗 = 0. The number 𝑑𝑖,𝑗 gives geometrically the number of 

lattices that can be drawn from point (0,0) to point (𝑖, 𝑗). For detailed information about these numbers, 

the studies of (Sulanke, 2003; Banderier et al, 2005; Wang et al, 2019; Deveci at al, 2021) can be viewed. 

Diagonal elements 𝑑𝑛,𝑛 are called central Delannoy numbers while 𝑛 ≥ 0.  

Asymmetric Delannoy numbers �̃�𝑚,𝑛 give starting from the origin point to (𝑚, 𝑛 + 1) the number 

paths. Some asymmetric Delannoy numbers can be listed as  

{�̃�0,𝑛}𝑛≥0 =
{1, 2, 4, 8, 16, 32,⋯ }, 

{�̃�1,𝑛}𝑛≥0 =
{1, 3, 8, 20, 48, 112,⋯ }, 

{�̃�2,𝑛}𝑛≥0 =
{1, 4, 13, 38, 104,272,⋯ }. 

The numbers �̃�𝑚,𝑚 = 𝐷(𝑚) are called central Delannoy numbers (Qi, 2019). The generating function 

of these numbers is given by  

 𝐺(𝑥) = ∑ 𝐷(𝑛)𝑥𝑘∞
𝑛=0 = 1 + 3x + 13𝑥2 + 63𝑥3 +⋯ =

1

√1−6𝑥+𝑥2
  .                                      

For 𝑘 ∈ ℕ, these numbers are calculated by the following determinant (Qi et al, 2016). 
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Here the terms 𝑎𝑘 are 

 

𝑎𝑘 =
(−1)𝑘+1

6𝑘
∑ (−1)𝑙62𝑙𝑘
𝑙=1

(2𝑙−3)‼

(2𝑙)‼
( 𝑙
𝑘−𝑙
) .  

When the above calculation is continued, the elements of the sequence 𝐷(𝑘) can be listed and some 

central Delannoy numbers, for 1 ≤ 𝑘 ≤ 11, as follows: 

{ 1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453,… }.                            

Since the Cauchy product of the two sequences such as (𝑎𝑛 ), (𝑏𝑛 ) is defined by a discrete convolution. 

For the central Delannoy numbers,  this product can be also defined as  

𝑐𝑘 = ∑ 𝐷(𝑙)𝐷(𝑘 − 𝑙)𝑘
𝑙=0 .                                                                                              

In (Qi et al, 2016)], the authors have given the following useful identities, including explicit formulas 

that give these numbers with the help of the generating function of central Delannoy numbers 𝐷(𝑘) and 

Cauchy products of these numbers.  

i) For 𝑘 ≥ 0, the Cauchy product of the numbers 𝐷(𝑘) is calculated as  
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∑𝐷(𝑙)𝐷(𝑘 − 𝑙) =
(−1)𝑘

6𝑘
∑(−1)𝑙62𝑙 (

𝑙

𝑘 − 𝑙
)

𝑘

𝑙=0

𝑘

𝑙=0

. 

ii) For 𝑘 ≥ 2, the Cauchy product of central Delannoy numbers provides the following  

property: 

∑𝐷(𝑙)𝐷(𝑘 − 𝑙) − 6∑𝐷(𝑙)𝐷(𝑘 − 𝑙 − 1) +∑𝐷(𝑙)𝐷(𝑘 − 𝑙 − 2) = 0 .
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iii) For 𝑘 ≥ 1, the Cauchy product of central Delannoy numbers can be calculated by the  

following  k order tridiagonal determinant: 
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MATERIAL AND METHODS 

Since each recurrence relation can be expressed as a difference equation, some authors use 

difference equations and recurrence relations interchangeably. The solution method of difference 

equations is used in the solution of recurrence relations. The coefficient of  𝑥𝑛 in the power series of the 

function 𝑔(𝑥) obtained as the generating function for the given repeated relation can be obtained 𝑔(𝑥) 

can be solved algebraically, and 𝑔(𝑥) is expressed as a power series to obtain the term 𝑎𝑛. In other 

words, the recurrence relations can be solved with the help of the corresponding generating function. In 

[Qi(2019)], the matrix 𝑀𝑘(𝑐)  related to central Delannoy numbers is defined and given generating 

function for the numbers 𝐷𝑘(𝑐). In this section, with the properties of the recurrence relations, we give 

some important identities.  For 𝑐 ∈ ℂ  and  𝑘 ∈ ℕ,  this matrix is   
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. 

Then, using the determinant of the matrix 𝑀𝑘(𝑐) we get the following sequence 

{𝐷𝑘(𝑐)}𝑘≥1 = {𝑐, 𝑐
2 − 1, 𝑐3 − 2𝑐, 𝑐4 − 3𝑐2 + 1,⋯ , 𝐷𝑛(𝑐),⋯ }. 

Note that the terms of the above sequence satisfy in the below relation 

𝐷𝑘(𝑐) = 𝑐𝐷𝑘−1(𝑐) − 𝐷𝑘−2(𝑐),   𝑘 ≥ 2.                                                                                    

For the roots of the characteristic equation,  𝛼 + 𝛽 = 𝑐,    𝛼𝛽 = 1 can be written. For 𝑘 ≥ 0, using the 

generating function definition the following equations can be written.  
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 ∑ 𝐷𝑘(𝑐)𝑥
𝑘 = 𝐷0(𝑐)

∞
𝑘=0 + 𝐷1(𝑐)𝑥 + 𝐷2(𝑐)𝑥

2 +⋯, 

 𝑥2∑ 𝐷𝑘(𝑐)𝑥
𝑘 = 𝐷0(𝑐)𝑥

2∞
𝑘=0 + 𝐷1(𝑐)𝑥

3 + 𝐷2(𝑐)𝑥
4 +⋯, 

              −𝑐𝑥 ∑ 𝐷𝑘(𝑐)𝑥
𝑘 = −𝐷0(𝑐)𝑥

∞
𝑘=0 − 𝐷1(𝑐)𝑥

2 − 𝐷2(𝑐)𝑥
3 −⋯. 

If the recurrence relation is used and the necessary operations are performed, the generating function 

can be easily obtained: 

∑ 𝐷𝑘(𝑐) 𝑥
𝑘 =

1

𝑥2−𝑐𝑥+1
 ∞

𝑘=0 . 

In (Qi, 2019),  the authors also gave the following recursive formula for 𝑐 ∈ ℂ  and 𝑘 ≥0 with the help 

of the generating function: 

𝐷𝑘(𝑐) =

{
 

 
𝛼𝑘+1 − 𝛽𝑘+1

 𝛼 − 𝛽
,         𝑐 ≠ ±2

𝑘 + 1,                 𝑐 = 2 

(−1)𝑘(𝑘 + 1),      𝑐 = −2.

 

RESULTS AND DISCUSSION 

Since recursive relations are very advantageous, we used them to find the Cauchy products and 

examine the properties of the sequence we just constructed. 

As known that the Cassini's identity is a special case of Catalan's identity and gives information 

about the nth term of the sequence. In the following theorem, we give Cassini’s identity involving the 

terms of the sequence 𝐷𝑘(𝑐) .  

Theorem 1. For 𝑘 ≥ 1,  the following identity is true.  

𝐷𝑘−1(𝑐)𝐷𝑘+1(𝑐) − 𝐷𝑘(𝑐)
2 = −1.                                                                                                                                                

Proof. While showing the accuracy of this equation, we use the recurrence relation. Since we need to 

examine the proof according to the cases  𝑐, let's first show the accuracy of this equation when 𝑐 ≠ ±2.  

Then, 

𝐷𝑘−1(𝑐)𝐷𝑘+1(𝑐) − 𝐷𝑘(𝑐)
2 = (

2𝛼𝑘+1𝛽𝑘+1−𝛼𝑘𝛽𝑘+2−𝛽𝑘𝛼𝑘+2

(𝛼−𝛽)2
), 

𝐷𝑘−1(𝑐)𝐷𝑘+1(𝑐) − 𝐷𝑘(𝑐)
2  =

−1

(𝛼−𝛽)2
𝛼𝑘𝛽𝑘(𝛼2 − 2𝛼𝛽 + 𝛽2), 

𝐷𝑘−1(𝑐)𝐷𝑘+1(𝑐) − 𝐷𝑘(𝑐)
2 =

−1

(𝛼−𝛽)2
(𝛼𝛽)𝑘(𝛼 − 𝛽)2 = −1. 

is obtained.  Now, let us show the same equation when 𝑐 = 2 . The equations 

𝐷𝑘−1(2) = 𝑘,  𝐷𝑘+1(2) = 𝑘 + 2,     𝐷𝑘(2) = 𝑘 + 1 

if we write down equations, then 

𝐷𝑘−1(2)𝐷𝑘+1(2) − 𝐷𝑘(2)
2 = 𝑘(𝑘 + 2) − (𝑘 + 1)2 = −1 

is obtained. For 𝑐 = −2,  using the following facts  

𝐷𝑘−1(−2) = (−1)𝑘−1𝑘,  𝐷𝑘+1(−2) = (−1)𝑘+1𝑘 + 2, 𝐷𝑘(−2) = (−1)
𝑘𝑘 + 1 

we get 

𝐷𝑘−1(−2)𝐷𝑘+1(−2) − 𝐷𝑘(−2)
2  = (−1)2𝑘(𝑘2 + 2𝑘) − ((−1)2𝑘(𝑘2 + 2𝑘 + 1)) = −1. 

So,  Cassini’s identity ensures the following equality for each value  𝑐. 

𝐷𝑘−1(𝑐)𝐷𝑘+1(𝑐) − 𝐷𝑘(𝑐)
2 = −1. 

For example, 𝑘 = 2, 3  if we examine the last equation respectively, then 

𝐷1(𝑐)𝐷3(𝑐) − 𝐷2(𝑐)
2  = (

𝛼6 − 𝛼2𝛽4 − 𝛽2𝛼4 + 𝛽6 − 𝛼6 + 2𝛼3𝛽3 − 𝛽6

(𝛼 − 𝛽)2
), 

𝐷1(𝑐)𝐷3(𝑐) − 𝐷2(𝑐)
2  =

−(𝛼𝛽)2(𝛼 − 𝛽)2

(𝛼 − 𝛽)2
= −1 

and  
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𝐷2(𝑐)𝐷4(𝑐) − 𝐷3(𝑐)
2 = (

𝛼8 − 𝛼3𝛽5 − 𝛽3𝛼5 + 𝛽8 − 𝛼8 + 2𝛼4𝛽4 − 𝛽8

(𝛼 − 𝛽)2
), 

𝐷2(𝑐)𝐷4(𝑐) − 𝐷3(𝑐)
2 =

−𝛼3𝛽3(𝛽2 − 2𝛼𝛽 + 𝛼2)

(𝛼 − 𝛽)2
= −1 

is obtained. We would like to specifically point out that the following results are obtained with the help 

of Cassini's identity.  For sequences with positive terms, if the inequality 

 𝑡𝑘
2 ≥ 𝑡𝑘−1𝑡𝑘+1  

is satisfied while 𝑘 = 1, 2, 3, … such type sequences are called logarithmic concave sequences. Thus, 

with the help of the Cassini identity, the sequence of Cauchy products of central Delannoy numbers 

becomes logarithmic concave: 

i)  𝐷𝑘
2(𝑐) ≥  𝐷𝑘−1(𝑐)𝐷𝑘+1(𝑐). 

ii) Two consecutive 𝐷𝑘(𝑐) numbers are prime between them:(𝐷𝑘(𝑐) , 𝐷𝑘+1(𝑐)) = 1. 

iii) 𝐷𝑘
2(𝑐) − 𝐷𝑘−1

2(𝑐) − 𝑐𝐷𝑘(𝑐)𝐷𝑘−1(𝑐) = 1. 

In the following corollary, we give the positive powers of the roots of the related equation of  

sequence 𝐷𝑘(𝑐). 

Corollary 1.  For the roots 𝛼 and 𝛽 the following equalities are satisfied. 

i) 𝛼𝑛 = 𝛼𝐷𝑛−1(𝑐) − 𝐷𝑛−2(𝑐)                                                 
ii)  𝛽𝑛 = 𝛽𝐷𝑛−1(𝑐) − 𝐷𝑛−2(𝑐)                                                 

Proof.  i) From the characteristic equation of the numbers 𝐷𝑘(𝑐), we write 𝛼2 = 𝑐𝛼 − 1. If we multiply 

both sides of this equality by 𝛼 and also 

𝐷1(𝑐) = 𝑐, 𝐷2(𝑐) = 𝑐
2 − 1,𝐷3(𝑐) = 𝑐3 − 2𝑐 

using the equations, respectively 

𝛼3 = 𝛼𝐷2(𝑐) − 𝐷1(𝑐)  ve 𝛼4 = 𝛼𝐷3(𝑐) − 𝐷2(𝑐) 

obtained. For 𝑛 = 𝑘, we assume the claim is true: 

 𝛼𝑘 = 𝛼𝐷𝑘−1(𝑐) − 𝐷𝑘−2(𝑐). 

We look for 𝑛 = 𝑘 + 1, then we have  

 𝛼𝑘+1 = 𝛼𝛼𝑘 = 𝛼(𝛼𝐷𝑘−1(𝑐) − 𝐷𝑘−2(𝑐)) = 𝛼𝐷𝑘(𝑐) − 𝐷𝑘−1(𝑐). 

The other claim can be seen similarly. So, the proof ends. 

In the following theorem, we give the Catalan’s identity which is a generalization of Cassini’s 

identity. 

Theorem 2. For 𝑛 ≥ 𝑘,  the following equality is true.  

𝐷𝑛+𝑘(𝑐)𝐷𝑛−𝑘(𝑐) − 𝐷𝑛(𝑐)
2 = {

−𝐷𝑘−1
2(𝑐),          𝑐 ≠ ±2   

   −𝑘2,              𝑐 = 2  𝑣𝑒 𝑐 = −2 
 

Proof. We first show the correctness for 𝑐 ≠ ±2. For this, let's write the following equations using the 

recurrence relation. 

𝐷𝑛+𝑘(𝑐)𝐷𝑛−𝑘(𝑐) − 𝐷𝑛(𝑐)
2 = (

2𝛼𝑛+1𝛽𝑛+1 − 𝛼𝑛+𝑘+1𝛽𝑛−𝑘+1 − 𝛽𝑛+𝑘+1𝛼𝑛−𝑘+1

 (𝛼 − 𝛽)2
). 

We get  

 
𝛼𝑛+1𝛽𝑛+1(2−𝛼𝑘𝛽−𝑘−𝛽𝑘𝛼−𝑘 )

 (𝛼−𝛽)2
. 

If the relationships between roots are used and the necessary simplification is done, then 

1

(𝛼 − 𝛽)2
(
2𝛼𝑘𝛽𝑘 − 𝛼2𝑘 − 𝛽2𝑘

(𝛼𝛽)𝑘
) = −𝐷𝑘−1

2(𝑐). 

For 𝑐 = 2 ,  let's give the proof.  Then, we get 
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𝐷𝑛+𝑘(2)𝐷𝑛−𝑘(2) − 𝐷𝑛
2(2) = (𝑛 + 𝑘 + 1)(𝑛 − 𝑘 + 1) − (𝑛 + 1)2 = −𝑘2. 

Finally, for 𝑐 = −2, the value 𝐷𝑛+𝑘(−2)𝐷𝑛−𝑘(−2) − 𝐷𝑛
2(−2)  is equal to this:   

(−1)2𝑛(𝑛2 − 𝑛𝑘 + 𝑛 + 𝑘𝑛 − 𝑘2 + 𝑘 + 𝑛 − 𝑘 + 1) − ((−1)2𝑛(𝑛2 + 2𝑛 + 1). 

Thus, we get 

𝐷𝑛+𝑘(−2)𝐷𝑛−𝑘(−2) − 𝐷𝑛
2(−2) = −𝑘2. 

We derive the Vajda’s identity provided by the terms of the sequence we are working on in the 

following theorem. 

Theorem 3. For positive numbers 𝑛,𝑚, 𝑘 the following equality is true. 

𝐷𝑛+𝑚(𝑐)𝐷𝑛+𝑘(𝑐) − 𝐷𝑛(𝑐)𝐷𝑛+𝑚+𝑘(𝑐) = {

𝐷𝑚−1(𝑐)𝐷𝑘−1(𝑐),         𝑐 ≠ ±2   
𝑚𝑘,                                𝑐 = 2    

(−1)𝑚+𝑘𝑚𝑘,                  𝑐 = −2    

 

Proof. First, we show that equality is correct, 𝑐 ≠ ±2. If the recurrence relation is used for the first side 

of the equation given in the theorem, then the second side of the equation follows. 

𝐷𝑛+𝑚(𝑐)𝐷𝑛+𝑘(𝑐) − 𝐷𝑛(𝑐)𝐷𝑛+𝑚+𝑘(𝑐) =
𝛼𝑛+1𝛽𝑛+1(𝛽𝑚+𝑘 + 𝛼𝑚+𝑘 − 𝛼𝑚𝛽𝑘 − 𝛼𝑘𝛽𝑚)

( 𝛼 − 𝛽)2
, 

𝐷𝑛+𝑚(𝑐)𝐷𝑛+𝑘(𝑐) − 𝐷𝑛(𝑐)𝐷𝑛+𝑚+𝑘(𝑐) =
𝛼𝑚(𝛼𝑘−𝛽𝑘)−𝛽𝑚(𝛼𝑘−𝛽𝑘)

( 𝛼−𝛽)2
=

(𝛼𝑘−𝛽𝑘)(𝛼𝑚−𝛽𝑚)

( 𝛼−𝛽)2
, 

𝐷𝑛+𝑚(𝑐)𝐷𝑛+𝑘(𝑐) − 𝐷𝑛(𝑐)𝐷𝑛+𝑚+𝑘(𝑐) = 𝐷𝑚−1(𝑐)𝐷𝑘−1(𝑐). 

We show the correctness for 𝑐 = 2: 

 𝐷𝑛+𝑚(2)𝐷𝑛+𝑘(2) − 𝐷𝑛(2)𝐷𝑛+𝑚+𝑘(2) is equal to this 

(𝑛 + 𝑚 + 1)(𝑛 + 𝑘 + 1) − (𝑛 + 1)(𝑛 +𝑚 + 𝑘 + 1) = 𝑚𝑘. 

And so, from this fact we get  

𝐷𝑛+𝑚(2)𝐷𝑛+𝑘(2) − 𝐷𝑛(2)𝐷𝑛+𝑚+𝑘(2) = 𝑚𝑘. 

Finally, 𝑐 = −2,  let's show that the claim is true. 

𝐷𝑛+𝑚(−2)𝐷𝑛+𝑘(−2) − 𝐷𝑛(−2)𝐷𝑛+𝑚+𝑘(−2)  is 

(−1)𝑛+𝑚(𝑛 + 𝑚 + 1)(−1)𝑛+𝑘(𝑛 + 𝑘 + 1) − (−1)𝑛(𝑛 + 1)(−1)𝑛+𝑚+𝑘(𝑛 + 𝑚 + 𝑘) 

= (−1)2𝑛+𝑚+𝑘(𝑚𝑘) = (−1)𝑚+𝑘(𝑚𝑘) = (−1)𝑚+𝑘𝑚𝑘. 

Thus, the proof is completed. 

Teorem 4 (D’Ocagne’s identity).  For 𝑛 ≥ −1 and 𝑚 ≥ −1, we have  

𝐷𝑚(𝑐)𝐷𝑛+1(𝑐) − 𝐷𝑛(𝑐)𝐷𝑚+1(𝑐) =

{
 

 
𝛼𝑚𝛽𝑛 − 𝛼𝑛𝛽𝑚

𝛼 − 𝛽
,         𝑐 ≠ ±2   

𝑚 − 𝑛,                          𝑐 = 2    
(−1)𝑚+𝑛+1𝑚− 𝑛,       𝑐 = −2    

 

Proof. First, let's show the truth of the equation for the case 𝑐 ≠ ±2. 

𝐷𝑚(𝑐)𝐷𝑛+1(𝑐) − 𝐷𝑛(𝑐)𝐷𝑚+1(𝑐) equal to the following value: 

 𝐷𝑚(𝑐)𝐷𝑛+1(𝑐) − 𝐷𝑛(𝑐)𝐷𝑚+1(𝑐)   =
𝛼𝑛+1𝛽𝑚+1(𝛽 − 𝛼) − 𝛼𝑚+1𝛽𝑛+1(𝛽 − 𝛼)

( 𝛼 − 𝛽)𝟐
, 

𝐷𝑚(𝑐)𝐷𝑛+1(𝑐) − 𝐷𝑛(𝑐)𝐷𝑚+1(𝑐)  =
−(𝛼 − 𝛽)(𝛼𝑛𝛼𝛽𝑚𝛽 − 𝛼𝑚𝛼𝛽𝑛𝛽)

( 𝛼 − 𝛽)𝟐
, 

𝐷𝑚(𝑐)𝐷𝑛+1(𝑐) − 𝐷𝑛(𝑐)𝐷𝑚+1(𝑐)  =
𝛼𝑚𝛽𝑛 − 𝛼𝑛𝛽𝑚

𝛼 − 𝛽
 

which is the desired result. When  𝑐 = 2 we have  

Dm(2)Dn+1(2) − Dn(2)Dm+1(2) = (m + 1)(n + 2) − (n + 1)(m + 2), 

Dm(2)Dn+1(2) − Dn(2)Dm+1(2) = m− n                                 

And let us take  𝑐 = −2. The formula 𝐷𝑚(−2)𝐷𝑛+1(−2) − 𝐷𝑛(−2)𝐷𝑚+1(−2) is   
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(−1)𝑚(𝑚 + 1)(−1)𝑛+1(𝑛 + 2) − (−1)𝑛(𝑛 + 1)(−1)𝑚+1(𝑚 + 2). 

Thus, we have 

 𝐷𝑚(−2)𝐷𝑛+1(−2) − 𝐷𝑛(−2)𝐷𝑚+1(−2)  = (−1)
𝑚+𝑛+1(𝑚 − 𝑛). 

Thus, the proof is completed. 

The formula for integer sequences was given by E. Gelin and proved by E. Cesaro in 1880. In the 

following theorem, we have given the Gelin-Cesaro formula for the elements of the sequence {𝐷𝑘(𝑐)}, 

which are defined and studied for the first time. 

Teorem 5 (Gelin-Cesaro identity). For  𝑛 ≥ 2,  we have 

 𝐷𝑛−2(𝑐)𝐷𝑛−1(𝑐)𝐷𝑛+1(𝑐)𝐷𝑛+2(𝑐) − 𝐷𝑛
4(𝑐) is 

{
𝑐2 − (1 − 𝑐2)𝐷𝑛

2(𝑐);      𝑐 ≠ ±2   

  −5𝑛2 − 10𝑛 − 1;     𝑐 = 2 , 𝑐 = −2 
 

Proof. Let us first examine cases c ≠2 and c ≠ - 2 to show the accuracy of the equation. If we use the 

Catalan identity for this purpose, then we write 

𝐷𝑛−1(𝑐)𝐷𝑛+1(𝑐) − 𝐷𝑛(𝑐)
2 = −𝐷0(𝑐)

2 

𝐷𝑛−2(𝑐)𝐷𝑛+2(𝑐) − 𝐷𝑛(𝑐)
2 = −𝐷1(𝑐)

2 

We write these equations in the following equation 

 𝐷𝑛−2(𝑐)𝐷𝑛−1(𝑐)𝐷𝑛+1(𝑐)𝐷𝑛+2(𝑐) − 𝐷𝑛
4(𝑐)   

then, we have 

(𝐷𝑛(𝑐)
2−𝐷1(𝑐)

2)(𝐷𝑛(𝑐)
2 − 𝐷0(𝑐)

2) − 𝐷𝑛
4(𝑐) 

 = 𝐷𝑛
4(𝑐) − 𝐷𝑛

2(𝑐)𝐷0
2(𝑐)−𝐷1

2(𝑐)𝐷𝑛
2(𝑐) + 𝐷1

2(𝑐)𝐷0
2(𝑐) − 𝐷𝑛

4(𝑐). 

Here, the values  𝐷0(𝑐) = 1,  𝐷1(𝑐) = 𝑐  are written the following equation is obtained. 

−𝐷𝑛
2(𝑐)𝐷0

2(𝑐)−𝐷1
2(𝑐)𝐷𝑛

2(𝑐) + 𝐷1
2(𝑐)𝐷0

2(𝑐)  = −𝐷𝑛
2(𝑐) − 𝑐2𝐷𝑛

2(𝑐) + 𝑐2. 

If necessary arrangements are made 

𝐷𝑛−2(𝑐)𝐷𝑛−1(𝑐)𝐷𝑛+1(𝑐)𝐷𝑛+2(𝑐) − 𝐷𝑛
4(𝑐) = 𝑐2 − (1 + 𝑐2)𝐷𝑛

2(𝑐) 

is obtained which is the desired result. If we write 𝑐 = 2, then we get   

𝐷𝑛−2(2)𝐷𝑛−1(2)𝐷𝑛+1(2)𝐷𝑛+2(2) − 𝐷𝑛
4(2) = (𝑛 − 1)𝑛(𝑛 + 2)(𝑛 + 3) − (𝑛 + 1)4 

𝐷𝑛−2(2)𝐷𝑛−1(2)𝐷𝑛+1(2)𝐷𝑛+2(2) − 𝐷𝑛
4(2) = −5𝑛2 − 2𝑛 − 1                   

which is the desired result.  If we write 𝑐 = −2 , then we get    

𝐷𝑛−2(−2)𝐷𝑛−1(−2)𝐷𝑛+1(−2)𝐷𝑛+2(−2) − 𝐷𝑛
4(−2) 

= (−1)𝑛−2(𝑛 − 1)(−1)𝑛−1(−1)𝑛+1(𝑛 + 2)(−1)𝑛+2(𝑛 + 3) − ((−1)𝑛(𝑛 + 1))4, 

= (𝑛4 + 4𝑛3 + 𝑛2 − 6𝑛) − (𝑛4 + 4𝑛3 + 6𝑛2 + 4𝑛 + 1) = −5𝑛2 − 2𝑛 − 1. 

Thus, the proof is completed.  

We have given the Honsberger’s identity provided by the terms of the sequence we are working 

on in the following theorem. 

Theorem 6.   For 𝑘 ≥ 1,  𝑛 ≥ 0 the value   𝐷𝑘−1(𝑐)𝐷𝑛(𝑐) + 𝐷𝑘(𝑐)𝐷𝑛+1(𝑐) is 

 

{
 
 

 
 
𝛼𝑛+1(𝛼𝑘 + 𝛼𝑘+2 − 2𝛽𝑘) + 𝛽𝑛+1(𝛽𝑘 + 𝛽𝑘+2 − 2𝛼𝑘)

( 𝛼 − 𝛽)2
;     𝑐 ≠ ±2

𝑘(2𝑛 + 3) + (𝑛 + 2);          𝑐 = 2 

(−1)𝑘+𝑛+1𝑘(2𝑛 + 3) + (𝑛 + 2);      𝑐 = −2 

 

Proof. For 𝑐 ≠ ±2, the following equation can be written for the right side of the claim. 
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𝐷𝑘−1(𝑐)𝐷𝑛(𝑐) + 𝐷𝑘(𝑐)𝐷𝑛+1(𝑐)  = (
𝛼𝑘+𝑛+1 + 𝛽𝑘+𝑛+1 + 𝛼𝑘+𝑛+3 + 𝛽𝑘+𝑛+3 − 2𝛼𝑘𝛽𝑛+1 − 2𝛽𝑘𝛼𝑛+1

( 𝛼 − 𝛽)2
), 

𝐷𝑘−1(𝑐)𝐷𝑛(𝑐) + 𝐷𝑘(𝑐)𝐷𝑛+1(𝑐)  =
𝛼𝑛+1(𝛼𝑘+𝛼𝑘+2−2𝛽𝑘)+𝛽𝑛+1(𝛽𝑘+𝛽𝑘+2−2𝛼𝑘)

( 𝛼−𝛽)2
. 

And for 𝑐 = 2, we write  

𝐷𝑘−1(2)𝐷𝑛(2) + 𝐷𝑘(2)𝐷𝑛+1(2) = 𝑘(𝑛 + 1) + (𝑘 + 1)(𝑛 + 2) =  𝑘(2𝑛 + 3) + (𝑛 + 2) 

For 𝑐 = −2 ,  𝐷𝑘−1(−2)𝐷𝑛(−2) + 𝐷𝑘(−2)𝐷𝑛+1(−2) is follows:  

𝐷𝑘−1(−2)𝐷𝑛(−2) + 𝐷𝑘(−2)𝐷𝑛+1(−2) = (−1)
𝑘−1𝑘(−1)𝑛(𝑛 + 1) + (−1)𝑘(𝑘 + 1)(−1)𝑛+1(𝑛 + 2) 

𝐷𝑘−1(−2)𝐷𝑛(−2) + 𝐷𝑘(−2)𝐷𝑛+1(−2) = (−1)
𝑘+𝑛(−𝑘𝑛 − 𝑘 − 𝑘𝑛 − 2𝑘 − 𝑛 − 2). 

Thus, we get 

𝐷𝑘−1(−2)𝐷𝑛(−2) + 𝐷𝑘(−2)𝐷𝑛+1(−2)  = (−1)
𝑘+𝑛+1𝑘(2𝑛 + 3) + (𝑛 + 2). 

 Thus, the proof is completed. 

Theorem 7. For  𝑘 ≥ 1, 𝑐 = ±2 , the following equality is satisfied. 

𝐷𝑘+1(𝑐) + 𝐷𝑘−1(𝑐) = 𝑐𝐷𝑘(𝑐). 

Proof.  If we write,     

𝛼𝑘+2 − 𝛽𝑘+2 = (𝛼 + 𝛽)(𝛼𝑘+1 − 𝛽𝑘+1) + 𝛽𝑘 − 𝛼𝑘 

and write this equality in the formula, then we obtain  

𝐷𝑘+1(𝑐) + 𝐷𝑘−1(𝑐) = (
(𝛼 + 𝛽)(𝛼𝑘+1 − 𝛽𝑘+1) + 𝛽𝑘 − 𝛼𝑘

𝛼 − 𝛽
) + (

𝛼𝑘 − 𝛽𝑘

 𝛼 − 𝛽
), 

𝐷𝑘+1(𝑐) + 𝐷𝑘−1(𝑐)  =
(𝛼 + 𝛽)(𝛼𝑘+1 − 𝛽𝑘+1)

𝛼 − 𝛽
+ (

𝛽𝑘 − 𝛼𝑘

𝛼 − 𝛽
) + (

𝛼𝑘 − 𝛽𝑘

 𝛼 − 𝛽
), 

𝐷𝑘+1(𝑐) + 𝐷𝑘−1(𝑐) =
(𝛼+𝛽)(𝛼𝑘+1−𝛽𝑘+1)

𝛼−𝛽
, 

𝐷𝑘+1(𝑐) + 𝐷𝑘−1(𝑐) = 𝑐𝐷𝑘(𝑐). 

Thus, the proof is completed. 

Theorem 8. For  𝑘 ≥ 𝑛,  the following equality is satisfied. 

𝐷𝑘+𝑛(𝑐) + 𝐷𝑘−𝑛(𝑐) = 𝑐(𝐷𝑘−1+𝑛(𝑐) + 𝐷𝑘−1−𝑛(𝑐)) − (𝐷𝑘−2+𝑛(𝑐) + 𝐷𝑘−2−𝑛(𝑐)). 

Proof.  If we write the following facts  

𝛼𝑘+𝑛+1 − 𝛽𝑘+𝑛+1 = (𝛼 + 𝛽)(𝛼𝑘+𝑛 − 𝛽𝑘+𝑛) + 𝛽𝑘+𝑛−1−𝛼𝑘+𝑛−1. 

and  

𝛼𝑘−𝑛+1 − 𝛽𝑘−𝑛+1 = ( 𝛼 + 𝛽)(𝛼𝑘−𝑛 − 𝛽𝑘−𝑛) + 𝛽𝑘−𝑛−1−𝛼𝑘−𝑛−1 

in the formula   𝐷𝑘+𝑛(𝑐) + 𝐷𝑘−𝑛(𝑐) = (
𝛼𝑘+𝑛+1−𝛽𝑘+𝑛+1

 𝛼−𝛽
) + (

𝛼𝑘−𝑛+1−𝛽𝑘−𝑛+1

 𝛼−𝛽
),  

then we get  

(𝛼 + 𝛽)(𝛼𝑘+𝑛 − 𝛽𝑘+𝑛) + 𝛽𝑘+𝑛−1−𝛼𝑘+𝑛−1

 𝛼 − 𝛽
+
( 𝛼 + 𝛽)(𝛼𝑘−𝑛 − 𝛽𝑘−𝑛) + 𝛽𝑘−𝑛−1−𝛼𝑘−𝑛−1

𝛼 − 𝛽
. 

And if we make the necessary simplifications, then we have  

(𝛼 + 𝛽)
𝛼𝑘+𝑛−𝛽𝑘+𝑛

 𝛼−𝛽
−
𝛼𝑘+𝑛−1−𝛽𝑘+𝑛−1

 𝛼−𝛽
+ ( 𝛼 + 𝛽)

𝛼𝑘−𝑛−𝛽𝑘−𝑛

𝛼−𝛽
−
𝛼𝑘−𝑛−1−𝛽𝑘−𝑛−1

𝛼−𝛽
. 

From here, we get 

𝐷𝑘+𝑛(𝑐) + 𝐷𝑘−𝑛(𝑐) = 𝑐(𝐷𝑘+𝑛−1(𝑐) + 𝐷𝑘−𝑛−1(𝑐)) − 𝐷𝑘+𝑛−2(𝑐) − 𝐷𝑘−𝑛−2(𝑐) 

which the proof is completed. 
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CONCLUSION 

In this study, using the studies on the central Delannoy numbers 𝐷(𝑘) in the literature, we have 

examined the sequence formed by the Cauchy products of these numbers and some basic properties of 

this sequence. We have also derived some important identities, such as Cassini’s, Catalan’s, d'Ocagne’s 

identities that contain elements of this sequence. Further different properties of the Central Delannoy 

numbers and their Cauchy products can be derived using this work in subsequent studies. 
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