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Abstract 

In this paper, we introduce two linear convex combination estimators by using known 

estimators such as ordinary least squares, ridge and Liu estimators and examine the predictive 

performance of these estimators. Furthermore, a numerical example is examined to compare these 

estimators under the prediction mean squared error criterion. 

Keywords: Biased estimation; Ridge estimator; Linear convex combination; Liu estimator; 

Prediction mean square error. 

Lineer Konveks Kombinasyon Tahmin Ediciler ve Karşılaştırmalar 

Öz  

Bu makalede, en küçük kareler, ridge ve Liu tahmin ediciler gibi bilinen tahmin edicilerle 

öngörü performansını karşılaştırmak için iki lineer konveks kombinasyon tahmin edicisi 
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tanımlanmıştır. Ayrıca, öngörü hata kareleri ortalaması kriterine göre bu tahmin edicilerin 

karşılaştırılmaları bir sayısal örnek ile incelenmiştir. 

Anahtar Kelimeler: Yanlı tahmin; Ridge tahmin edici; Lineer konveks kombinasyon; Liu 

tahmin edici; Öngörü hata kareleri ortalaması. 

1. Introduction 

Consider the following multiple linear regression model: 

𝑦 = 𝑋𝛽 + 𝜀,                                                                            (1) 

where 𝑦 is an 𝑛𝑥1 vector of responses, 𝑋 is an 𝑛𝑥𝑝 full column rank matrix of explanatory 

variables, 𝛽 is a 𝑝𝑥1 vector of unknown parameters, and 𝜀 is an 𝑛𝑥1 vector of random errors with 

𝑖𝑖𝑑(0, 𝜎1).  

The ordinary least squares (OLS) estimator is given by 

𝛽 = (𝑋 ′𝑋)34𝑋 ′𝑦.                                                                           (2) 

In the presence of multicollinearity, the OLS estimator is unstable and gives unreliable 

information. As biased alternatives, ridge, Liu, and two-parameter estimators can be handled in 

this context. 

Hoerl and Kennard [1] proposed the ordinary ridge regression (ORR) estimator which is 

given by 

𝛽(𝑘) = (𝑋 ′𝑋 + 𝑘𝛪)34𝑋 ′𝑦,       𝑘 ≥ 0 ,                                                              (3) 

where 𝑘 is the biasing parameter. The ORR estimator was commonly used in applied researches. 

For example; Askin [2] suggested several approaches for extending estimation results to 

forecasting with multicollinearity, Montgomery and Friedman [3] examined several biased 

estimation methods for forecasting and prediction with multicollinearity. 

Liu [4] defined the following alternative biased estimator dealing with multicollinearity 

𝛽(𝑑) = (𝑋 ′𝑋 + 𝛪)34(𝑋 ′𝑦 + 𝑑𝛽)	
											= (𝑋 ′𝑋 + 𝛪)34(𝑋 ′𝑋 + 𝑑𝛪)𝛽, 0 < 𝑑 < 1,                                                               (4) 

where 𝑑 is the biasing parameter. 𝛽(𝑑) is called the Liu estimator by Akdeniz and Kaçıranlar [5]. 

Liu estimator has an advantage over the ORR estimator because it is a linear function of 𝑑 and it 

has smaller mean square error (MSE) than the OLS estimator. Sakallıoğlu et al. [6] compared the 

performance of Liu estimator with the ORR and the iterative estimators using the matrix MSE 
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(MMSE) criterion. In the literature, Liu and Liu-type estimators were widely used in linear 

models. 

Furthermore, Özkale and Kaçıranlar [7] introduced a new two-parameter estimator (TPE) 

by grafting the contraction estimator into the modified ridge estimator proposed by Swindel [8]. 

This estimator is given by 

𝛽(𝑘, 𝑑) = (𝑋 ′𝑋 + 𝑘𝛪)34 𝑋 ′𝑦 + 𝑘𝑑𝛽 ,  𝑘 ≥ 0, 0 < 𝑑 < 1.                            (5) 

𝛽(𝑘, 𝑑) is a two-parameter variation of the Liu estimator. Özkale [9] has also noted that 𝛽(𝑘, 𝑑) 

can also be demonstrated as 

𝛽(𝑘, 𝑑) = 𝑑𝛽 + (1 − 𝑑)𝛽(𝑘).                                                             (6) 

 

The TPE is a convex combination of the OLS and the ORR estimator. It is also called the ‘affine 

combination type’ estimator by Özkale [9]. Using the mixed estimation method suggested by 

Theil [10] and Theil and Goldberger [11], we also derive 𝛽(𝑘, 𝑑). Similar to the ORR and Liu 

estimator, 𝛽(𝑘, 𝑑) was used both theoretically and practically by researchers in various fields. 

Özbay and Kaçıranlar [12] introduced Almon TPE based on the TPE procedure for the distiributed 

lag models. Özbay and Kaçıranlar [13] introduced a new two-parameter-weighted mixed 

estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [14] 

and the TPE. Tekeli et al. [15] introduced new algorithms using genetic algorithm (GA) for 

estimating the biasing parameters of TPE. Çetinkaya and Kaçıranlar [16] introduced new TPE for 

negative binomial regression (NBR) and Poisson regression (PR) models by unifying the TPE. 

Gruber [17, 18] demonstrated that 𝛽(𝑘, 𝑑) is a special case of the linear Bayes, mixed and 

minimax estimators. This new estimator is a general estimator which includes the OLS, the ORR, 

the Liu, and the contraction estimators as special cases. We have the following properties: 

1. 𝑙𝑖𝑚
=→4

𝛽(𝑘, 𝑑) = 𝛽 and 𝑙𝑖𝑚
?→@

𝛽(𝑘, 𝑑) = 𝛽 

2. 𝑙𝑖𝑚
=→@

𝛽(𝑘, 𝑑) = 𝛽(𝑘) 

3. For 𝑘 = 1, we get the Liu estimator, 𝛽(1, 𝑑) = 𝛽(𝑑) 

4. 𝛽(𝑘, 𝑑) has the following alternative forms 

𝛽(𝑘, 𝑑) = 𝐼 + 𝑘(𝑋′𝑋)34 34(𝛽 − 𝑑𝛽) + 𝑑𝛽 

             = (𝑋′𝑋 + 𝑘𝐼)34(𝑋′𝑋 + 𝑘𝑑𝐼)𝛽. 
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From this representation, it is clear that 𝑙𝑖𝑚
?→B

𝛽(𝑘, 𝑑) = 𝑑𝛽, which is the contraction estimator 

[19]. In this sense, 𝛽(𝑘, 𝑑) overcomes the disadvantage of the contraction estimator.  

Then, Gruber [18] demonstrated that the Liu-type estimator can be given as follows: 

𝛽CDE = 𝑑𝛽 + (1 − 𝑑)𝛽F,                                                                   (7) 

where 𝑑 is a biasing parameter, 0 < 𝑑 < 1 and 𝛽F is the linear Bayes estimator (see in details, p. 

3741, Eqn. (3.7), Eqn. (3.8) for 𝛽F and   p. 3742, Eqn. (3.12) for 𝛽CDE).  

Gruber [18] showed how the Liu-type estimator is optimal according to the Zellner’s 

balanced loss function (ZBLF) criterion and compared the efficiency of the Liu-type estimator to 

the OLS estimator in terms of the MSE and the ZBLF criteria. A convex combination of two 

estimators can be useful when both estimators appear to be appropriate in a specific situation. 

Following the Liu-type estimator in Eqn. (7), we consider linear convex combination estimators 

taking the ORR and the Liu estimators as the special cases of 𝛽F. Then, the linear convex 

combination of the OLS estimator and the ORR estimator (LOR) can be given as follows: 

𝛽CDG = 𝛽(𝑘, 𝑑) = 𝑑𝛽 + (1 − 𝑑)𝛽(𝑘) , 𝑘 ≥ 0, 0 < 𝑑 < 1.                                         (8) 

 

Similarly, we can define another linear convex combination of the OLS estimator and the Liu 

estimator as follows: 

𝛽CDC = 𝛽(𝑑, 𝛾) = 𝛾𝛽 + (1 − 𝛾)𝛽(𝑑),                                           (9) 

 

where 𝛾 is an arbitrary scalar and 0 ≤ 𝛾 ≤ 1.  Also, 𝛽CDC = 𝛽(𝑑, 𝛾) in Eqn. (9) includes 𝛽 and 

𝛽(𝑑) as special cases: 

1. 𝑙𝑖𝑚
J→4

𝛽(𝑑, 𝛾) = 𝛽, 

2. 𝑙𝑖𝑚
J→@

𝛽 𝑑, 𝛾 = 𝛽 𝑑 . 

Friedman and Montgomery [20] compared the predictive performance (PP) of the ORR, 

OLS and the principal component (PC) estimators according to the prediction mean square error 

(PMSE) criterion. Later, Özbey and Kaçıranlar [21] compared the Liu estimator with the OLS, 

PC and ORR estimators. Dawoud and Kaçıranlar [22] examined the PP of biased regression 

predictors with correlated errors. Dawoud and Kaçıranlar [23, 24] evaluated the PP of the r-k and 

r-d class estimators and they also focused on evaluating the PP of the Liu-type estimator which is 
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defined by Liu [25]. This estimator is different from Gruber’s Liu-type estimator which is given 

in Eqn. (7). Following Özbey and Kaçıranlar [21] and Dawoud and Kaçıranlar [22], Li et al. [26] 

evaluated the PP of the principal component two-parameter estimator which is defined by Chang 

and Yang [27].  

As a consequence, since 𝛽CDG = 𝛽(𝑘, 𝑑) and 𝛽CDC = 𝛽(𝑑, 𝛾) are more general than the 

ORR and the Liu estimators, respectively. Therefore, the PP of the LOR and the LOL estimators 

are examined in the sense of the PMSE criterion. To examine the theoretical results, a numerical 

example study is conducted.  

2. Comparisons of the Prediction Mean Squared Errors  

We can obtain the PMSE of the LOR and the LOL estimators. The PMSE of a predictor 𝑦@ 

is given by 

𝑃𝑀𝑆𝐸 = 𝐸(𝑦@ − 𝑦@)1,                                                                (10)    

where 𝑦@ is the value to be predicted. Let 𝐽 represents the PMSE. 𝐽 is the sum of the variance 

(𝑉) and the squared bias (𝐵): 

𝐽 = 𝑉 + 𝐵.                                                                                   (11) 

The variance and the bias can be given as follows: 

𝑉(𝑦@ − 𝑦@) = 𝑉(𝑦@) + 𝑉(𝑦@),                                                                (12) 

and 

𝐵𝑖𝑎𝑠 = 𝐸(𝑦@ − 𝑦@).                                                                            (13) 

Now, we consider the following canonical form of the model (1) 

𝑦 = 𝑍𝛼 + 𝜀,                                                            (14) 

where 𝛼 = 𝑈X𝛽 and 𝑍 = 𝑋𝑈 . Then the OLS estimator of 𝛼 is 

𝛼 = (𝑍 ′𝑍)34𝑍 ′𝑦 = 𝛬34𝑍 ′𝑦,                                                        (15) 

where 𝛬 = 𝑑𝑖𝑎𝑔(𝜆4, 𝜆1, . . . , 𝜆\) is the matrix of the eigenvalues of 𝑍X𝑍 and for 𝑖 = 1,2, . . . , 𝑝 𝜆^’s 

are in descending order. Its PMSE is given by 

𝐽DC_ = 𝜎1 1 + `ab
c

db
\
^e4 ,                                                                                      (16) 

where 𝑧@ is the orthonormalized point for 𝑦@. Since 𝛼 is unbiased, we have 

𝐽DC_ = 𝑉DC_.                                                                                 (17) 
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The ridge estimator of 𝛼 is 

𝛼? = (𝑍 ′𝑍 + 𝑘𝛪)34𝑍 ′𝑦 = (𝛬 + 𝑘𝛪)34𝑍 ′𝑦, 𝑘 ≥ 0,                                             (18) 

and its PMSE is 

𝐽? = 𝜎1 1 + `ab
c db
gb
c

\
^e4 + 𝑘1 `hbib

gb
\
^e4

1
,                                                                   (19) 

where 𝑎^ = 𝜆^ + 𝑘 . The Liu estimator of 𝛼 is 

𝛼= = (𝑍 ′𝑍 + 𝛪)34(𝑍 ′𝑦 + 𝑑𝛼)	

							= (𝛬 + 𝛪)34(𝛬 + 𝑑𝛪)𝛼, 0 < 𝑑 < 1,                                                                                (20)    

and its PMSE is 

𝐽= = 𝜎1 1 + `ab
c jb

c

dbFb
c

\
^e4 + (1 − 𝑑)1 `hbib

Fb
\
^e4

1
,                                                   (21) 

where 𝑏^ = 𝜆^ + 1 and 𝑐^ = 𝜆^ + 𝑑 . The LOR estimator or TPE of 𝛼 is 

𝛼CDG = 𝑑( 𝑍 ′𝑍)34 + (1 − 𝑑)(𝑍 ′𝑍 + 𝑘𝛪)34 𝑍 ′𝑦	

											= 𝑑𝛬34 + (1 − 𝑑)(𝛬 + 𝑘𝛪)34 𝑍 ′𝑦, 𝑘 ≥ 0.                                                                 (22)     
                 

 

The variance and bias of the prediction error of the LOR estimator are given by respectively 

𝑉LOR(𝑦@ − 𝑦@) = 𝑉(𝑦@) + 𝑉LOR(𝑦@)	

																												= 𝜎1 + 𝑉(𝑧@′ 𝛼LOR)	

																												= 𝜎1 1 + (43=)dbp=gb c`ab
c

dbgb
c

\
^e4 ,                                                          (23)                         

𝐵𝑖𝑎𝑠LOR = 𝐸(𝑦@ − 𝑦@) = 𝑧@′ 𝛼 − 𝑧@′ 𝐸(𝛼LOR)	

																	= 𝑘(1 − 𝑑) `hbib
gb

\
^e4 .                                                                                      (24)                                 

So, the squared bias is 

𝐵LOR = 𝐵𝑖𝑎𝑠LOR1 = 𝑘1(1 − 𝑑)1 `hbib
gb

\
^e4

1
.                           (25) 

By summing up the variance and the squared bias of the LOR estimator we obtain 

𝐽LOR = 𝑉LOR + 𝐵LOR	

									= 𝜎1 1 + (43=)dbp=gb c`ab
c

dbgb
c

\
^e4 + 𝑘1(1 − 𝑑)1 `hbib

gb
\
^e4

1
.                             (26)      
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The LOL estimator of 𝛼 is 

𝛼LOL	 = 𝛾𝛪 + (1 − 𝛾)(𝑍 ′𝑍 + 𝛪)34(𝑍 ′𝑍 + 𝑑𝛪) 𝛼	

											= 𝛾𝛪 + (1 − 𝛾)(𝛬 + 𝛪)34(𝛬 + 𝑑𝛪) 𝛬34𝑍 ′𝑦, 0 < 𝑑 < 1.                                   (27)               

The variance of the prediction error of the LOL estimator is 

𝑉LOL	(𝑦@ − 𝑦@) = 𝑉(𝑦@) + 𝑉LOL	(𝑦@)	
																												= 𝜎1 + 𝑉(𝑧@′ 𝛼LOL	)	
																												= 𝜎1 1 + JFbp(43J)jb c`ab

c

dbFb
c

\
^e4 .	                                                          (28)              

Similarly, the bias, the squared bias and PMSE of the prediction error of the LOL estimator are 

given by respectively 

𝐵𝑖𝑎𝑠LOL	 = 𝐸(𝑦@ − 𝑦@) = 𝑧@′ 𝛼 − 𝑧@′ 𝐸(𝛼LOL	)	
																	= (1 − 𝛾)(1 − 𝑑) `hbib

Fb
\
^e4 ,                                                                            (29)                              

𝐵LOL	 = 𝐵𝑖𝑎𝑠LOL	1 = (1 − 𝛾)1(1 − 𝑑)1 `hbib
Fb

\
^e4

1
,                                          (30) 

and 

𝐽LOL	 = 𝑉LOL	 + 𝐵LOL		

									= 𝜎1 1 + JFbp(43J)jb c`ab
c

dbFb
c

\
^e4 + (1 − 𝛾)1(1 − 𝑑)1 `hbib

Fb
\
^e4

1
.                    (31)     

 

3. Comparisons of Prediction Mean Squared Errors in Two Dimensional Space 

We will study the PP of the LOR and the LOL estimators. Considering a two-dimensional 

space, a single prediction point (𝑧@4, 𝑧@1) is to be predicted, the ratio 𝑧@11 /𝑧@41  can be obtained and 

used for a reference point in their comparisons. 𝛼41 will be set to zero because non-zero values of 

𝛼41 increase only the intercept values for 𝐽?, 𝐽=, 𝐽CDG and 𝐽CDC but leave the curve for 𝐽DC_ 

unchanged. So, comparisons of  𝐽CDG with 𝐽DC_ and  𝐽? and 𝐽CDC with 𝐽DC_ and 𝐽= will be made. 

Theorem 1.   

a) If 𝛼11 >
sc gcc-((4-=)dcp=gc)c

dc?c(4-=)c
, then  

-𝐽CDG < 𝐽DC_ for 𝑎41 < ((1-𝑑)𝜆4 + 𝑑𝑎4)1, 

-𝐽CDG < 𝐽DC_Û
`acc

`auc
< 𝑓4(𝛼11) for 𝑎41 > ((1 − 𝑑)𝜆4 + 𝑑𝑎4)1. 
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b) If 𝛼11 <
sc gcc-((4-=)dcp=gc)c

dc?c(4-=)c
, then  

-𝐽CDG < 𝐽DC_ for 𝑎41 > ((1-𝑑)𝜆4 + 𝑑𝑎4)1, 

-𝐽CDG < 𝐽DC_Û
`acc

`auc
< 𝑓4(𝛼11) for 𝑎41 < ((1 − 𝑑)𝜆4 + 𝑑𝑎4)1, 

where  

𝑓4(𝛼11) =
sc u

wu
-((u-x)wuyxzu)

c

wuzu
c

{c((u-x)wcyxzc)c

wczc
c p

|c(u-x)c}c
c

zc
c -{

c
wc

.                                                     (32) 

Proof. If the LOR estimator is better than 𝛼, we have 𝐽CDG < 𝐽DC_. That is, 

𝜎1 + 𝜎1
((1 − 𝑑)𝜆4 + 𝑑𝑎4)1𝑧@41

𝜆4𝑎41
+
((1 − 𝑑)𝜆1 + 𝑑𝑎1)1𝑧@11

𝜆1𝑎11
+
𝑘1(1 − 𝑑)1𝛼11𝑧@11

𝑎11
<	

𝜎1 + 𝜎1
𝑧@41

𝜆4
+
𝑧@11

𝜆1
. 

Rearranging this inequality, we will obtain 

𝑧@11
sc((43=)dcp=gc)c

dcgcc
+ ?c(43=)cicc

gcc
− sc

dc
< 𝑧@41 𝜎1

4
du
− ((43=)dup=gu)c

duguc
. 

If both 

sc((43=)dcp=gc)c

dcgcc
+ ?c(43=)cicc

gcc
− sc

dc
                                                                (33) 

and 

𝜎1 4
du
− ((43=)dup=gu)c

duguc
                                                                 (34) 

have the same signs, the superiority condition of the LOR estimator over 𝛼 is 

`acc

`auc
< 𝑓4(𝛼11).                                                                            (35) 

If Eqn. (33) and Eqn. (34) have opposite signs, we have 

`acc

`auc
> 𝑓4(𝛼11).                                                                   (36) 

If Eqn. (33) and Eqn. (34) have different signs, the right-hand side of Eqn. (36) is smaller than 

zero, thus, Eqn. (36) always holds. That is, in this region the LOR estimator is superior to 𝛼. The 

condition for the positiveness of Eqn. (33) can be easily written as 
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𝛼11 >
sc gcc3((43=)dcp=gc)c

dc?c(43=)c
                                                                       (37) 

and the condition for the positiveness of Eqn. (34) can be given as 

𝑎41 > ((1 − 𝑑)𝜆4 + 𝑑𝑎4)1.                                                                                              (38) 

The contrary conditions are required for the negativeness of Eqn. (33) and Eqn. (34). The vertical 

asymptote of the hyperbola 𝑓4(𝛼11) is at the point 

𝛼11 =
sc gcc3((43=)dcp=gc)c

dc?c(43=)c
.                                                                                            (39) 

Corollary 1. If 𝑑 = 0 in Theorem 1, we get Friedman and Montgomery’s [20] results.  

Corollary 2. If 𝑘 = 1 in Theorem 1, we get Özbey and Kaçıranlar’s [21] results.  

Theorem 2. 

a) If 𝛼11 >
sc dcc-((4-=)dcp=gc)c

dc?c[(4-=)c-4]
, then  

-𝐽CDG < 𝐽? for 𝜆41 < ((1-𝑑)𝜆4 + 𝑑𝑎4)1, 

-𝐽CDG < 𝐽?Û
`acc

`auc
< 𝑓1(𝛼11) for 𝜆41 > ((1 − 𝑑)𝜆4 + 𝑑𝑎4)1. 

b. If 𝛼11 <
sc dcc3((43=)dcp=gc)c

dc?c[(43=)c34]
, then  

-𝐽CDG < 𝐽? for 𝜆41 > ((1-𝑑)𝜆4 + 𝑑𝑎4)1, 

-𝐽CDG < 𝐽?Û
`acc

`auc
< 𝑓1(𝛼11) for 𝜆41 < ((1 − 𝑑)𝜆4 + 𝑑𝑎4)1. 

where  

𝑓1(𝛼11) =
sc wu

zu
c-
((u-x)wuyxzu)c

wuzu
c

{c((u-x)wcyxzc)c

wczc
c p

|c(u-x)c}c
c

zc
c -{

cwc
zc
c -

|c}c
c

zc
c

.                                                            (40) 

Proof. Suppose LOR estimator is better than 𝛼? , then, 𝐽CDG < 𝐽?. That is, 

𝜎1 + 𝜎1
((1 − 𝑑)𝜆4 + 𝑑𝑎4)1𝑧@41

𝜆4𝑎41
+
((1 − 𝑑)𝜆1 + 𝑑𝑎1)1𝑧@11

𝜆1𝑎11
+
𝑘1(1 − 𝑑)1𝛼11𝑧@11

𝑎11
<	

𝜎1 + 𝜎1
𝜆4𝑧@41

𝑎41
+
𝜆1𝑧@11

𝑎11
+
𝑘1𝛼11𝑧@11

𝑎11
. 

Rearranging this inequality, we get 
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𝑧@11
𝜎1((1 − 𝑑)𝜆1 + 𝑑𝑎1)1

𝜆1𝑎11
+
𝑘1(1 − 𝑑)1𝛼11

𝑎11
−
𝜎1𝜆1
𝑎11

−
𝑘1𝛼11

𝑎11
<	

𝑧@41 𝜎1
𝜆4
𝑎41
−
((1 − 𝑑)𝜆4 + 𝑑𝑎4)1

𝜆4𝑎41
. 

If both 

sc((43=)dcp=gc)c

dcgcc
+ ?c(43=)cicc

gcc
− scdc

gcc
− ?cicc

gcc
                                                              (41) 

and 

𝜎1 du
guc
− ((43=)dup=gu)c

duguc
                                                                                                 (42) 

have the same signs, we have 

`acc

`auc
< 𝑓1(𝛼11).                                                                                                                   (43) 

If Eqn. (41) and Eqn. (42) have opposite signs, we have 

`acc

`auc
> 𝑓1(𝛼11).                                                                                                                   (44) 

If Eqn. (41) and Eqn. (42) have opposite signs, the right-hand side of Eqn. (44) is negative, so, 

Eqn. (44) always holds. The condition for the positiveness of Eqn. (41) can be written as 

𝛼11 >
sc dcc3((43=)dcp=gc)c

dc?c[(43=)c34]
 .                                                                                           (45) 

The condition for the positiveness of Eqn. (42) can be given as 

𝜆41 > ((1 − 𝑑)𝜆4 + 𝑑𝑎4)1.                                                                                              (46) 

The contrary conditions are required for the negativeness of Eqn. (41) and Eqn. (42). The vertical 

asymptote of the hyperbola 𝑓1(𝛼11) is  

𝛼11 =
sc dcc3((43=)dcp=gc)c

dc?c[(43=)c34]
.                                                                                            (47) 

Theorem 3. 

a) If 𝛼11 >
sc Fcc-(JFcp(4-J)jc)c

dc(4-J)c(4-=)c
, then  

-𝐽CDC < 𝐽DC_ for 𝑏41 < (𝛾𝑏4 + (1-𝛾)𝑐4)1, 

-𝐽CDC < 𝐽DC_Û
`acc

`auc
< 𝑓�(𝛼11) for 𝑏41 > (𝛾𝑏4 + (1 − 𝛾)𝑐4)1. 
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b) If 𝛼11 <
sc Fcc-(JFcp(4-J)jc)c

dc(4-J)c(4-=)c
, then  

-𝐽CDC < 𝐽DC_ for 𝑏41 > (𝛾𝑏4 + (1-𝛾)𝑐4)1, 

-𝐽CDC < 𝐽DC_Û
`acc

`auc
< 𝑓�(𝛼11) for 𝑏41 < (𝛾𝑏4 + (1-𝛾)𝑐4)1, 

where  

𝑓�(𝛼11) =
sc u

wu
-(��uy(u-�)�u)

c

wu�u
c

{c(��cy(u-�)�c)c

wc�c
c p

(u-�)c(u-x)c}c
c

�c
c -{

c
wc

.                                                                   (48) 

Proof. If the LOL estimator is superior to 𝛼, we have 𝐽CDC < 𝐽DC_. That is, 

𝜎1 + 𝜎1
(𝛾𝑏4 + (1 − 𝛾)𝑐4)1𝑧@41

𝜆4𝑏41
+
(𝛾𝑏1 + (1 − 𝛾)𝑐1)1𝑧@11

𝜆1𝑏11
+
(1 − 𝛾)1(1 − 𝑑)1𝛼11𝑧@11

𝑏11

<	

𝜎1 + 𝜎1
𝑧@41

𝜆4
+
𝑧@11

𝜆1
. 

Rearranging this inequality, we get 

𝑧@11
sc(JFcp(43J)jc)c

dcFcc
+ (43J)c(43=)cicc

Fcc
− sc

dc
< 𝑧@41 𝜎1

4
du
− (JFup(43J)ju)c

duFuc
. 

If both 

sc(JFcp(43J)jc)c

dcFcc
+ (43J)c(43=)cicc

Fcc
− sc

dc
                                                                            (49) 

and 

𝜎1 4
du
− (JFup(43J)ju)c

duFuc
                                                                                                  (50) 

have the same signs, we have 

`acc

`auc
< 𝑓�(𝛼11).                                                                                  (51) 

If Eqn. (49) and Eqn. (50) have opposite signs, we have 

`acc

`auc
> 𝑓�(𝛼11).                                                                    (52) 

If Eqn. (49) and Eqn. (50) have opposite signs, the right-hand side of Eqn. (52) is negative, thus 

Eqn. (52) always holds. The condition for the positiveness of Eqn. (49) can be written as 
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𝛼11 >
sc Fcc3(JFcp(43J)jc)c

dc(43J)c(43=)c
 .                                                    (53) 

Similarly, the condition for the positiveness of Eqn. (50) can be given as 

𝑏41 > (𝛾𝑏4 + (1 − 𝛾)𝑐4)1.                                                                                                       (54) 

The contrary conditions are required for the negativeness of Eqn. (49) and Eqn. (50). The vertical 

asymptote of the hyperbola 𝑓�(𝛼11) is at the point 

𝛼11 =
sc Fcc3(JFcp(43J)jc)c

dc(43J)c(43=)c
.                                                                         (55) 

Corollary 3: If 𝛾 = 0 in Theorem 3, we get Özbey and Kaçıranlar’s [21] results.  

Theorem 4. 

a) If 𝛼11 >
sc jcc-(JFcp(4-J)jc)c

dc(4-=)c[(4-J)c-4]
, then  

-𝐽CDC < 𝐽= for 𝑐41 < (𝛾𝑏4 + (1-𝛾)𝑐4)1, 

-𝐽CDC < 𝐽=Û
`acc

`auc
< 𝑓�(𝛼11) for 𝑐41 > (𝛾𝑏4 + (1-𝛾)𝑐4)1. 

b) If 𝛼11 <
sc jcc-(JFcp(4-J)jc)c

dc(4-=)c[(4-J)c-4]
, then  

-𝐽CDC < 𝐽= for 𝑐41 > (𝛾𝑏4 + (1-𝛾)𝑐4)1, 

-𝐽CDC < 𝐽=Û
`acc

`auc
< 𝑓�(𝛼11) for 𝑐41 < (𝛾𝑏4 + (1-𝛾)𝑐4)1, 

where  

𝑓�(𝛼11) =
sc �u

c

wu�u
c-
(��uy(u-�)�u)c

wu�u
c

{c(��cy(u-�)�c)c

wc�c
c p

(u-�)c(u-x)c}c
c

�c
c -

{c�c
c

wc�c
c-
(u-x)c}c

c

�c
c

.                                                   (56)  

Proof. If the LOL estimator is superior to 𝛼=, we have 𝐽CDC < 𝐽=. That is, 

𝜎1 + 𝜎1
(𝛾𝑏4 + (1-𝛾)𝑐4)1𝑧@41

𝜆4𝑏41
+
(𝛾𝑏1 + (1-𝛾)𝑐1)1𝑧@11

𝜆1𝑏11
+
(1-𝛾)1(1-𝑑)1𝛼11𝑧@11

𝑏11
<	

𝜎1 + 𝜎1
𝑐41𝑧@41

𝜆4𝑏41
+
𝑐11𝑧@11

𝜆1𝑏11
+
(1-𝑑)1𝛼11𝑧@11

𝑏11
. 

Rearranging this inequality, we get 

𝑧@11
𝜎1(𝛾𝑏1 + (1 − 𝛾)𝑐1)1

𝜆1𝑏11
+
(1 − 𝛾)1(1 − 𝑑)1𝛼11

𝑏11
−
𝜎1𝑐11

𝜆1𝑏11
−
(1 − 𝑑)1𝛼11

𝑏11
<	
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𝑧@41 𝜎1
𝑐41

𝜆4𝑏41
−
(𝛾𝑏4 + (1 − 𝛾)𝑐4)1

𝜆4𝑏41
. 

If both 

sc(JFcp(43J)jc)c

dcFcc
+ (43J)c(43=)cicc

Fcc
− scjcc

dcFcc
− (43=)cicc

Fcc
                                   (57) 

and 

𝜎1 juc

duFuc
− (JFup(43J)ju)c

duFuc
                                                        (58) 

have the same signs, we have 

`acc

`auc
< 𝑓�(𝛼11).                                                                          (59) 

If Eqn. (55) and Eqn. (56) have opposite signs, we have 
`acc

`auc
> 𝑓�(𝛼11).                                                                                                                   (60) 

If Eqn. (55) and Eqn. (56) have opposite signs, the right-hand side of Eqn. (58) is negative, thus 

Eqn. (58) holds. The condition for the positiveness of Eqn. (55) can be given as follows 

𝛼11 >
sc jcc3(JFcp(43J)jc)c

dc(43=)c[(43J)c34]
 .                                                                   (61) 

Similarly, the condition for the positiveness of Eqn. (56) can be given as 

𝑐41 > (𝛾𝑏4 + (1 − 𝛾)𝑐4)1.                                                                                    (62) 

The contrary conditions are required for the negativeness of Eqn. (55) and Eqn. (56). The vertical 

asymptote of the hyperbola 𝑓�(𝛼11) is  

𝛼11 =
sc jcc3(JFcp(43J)jc)c

dc(43=)c[(43J)c34]
.                                                                                             (63)              

The estimation of the parameters 𝑘 and 𝑑 is an important issue. We have not made any attempt to 

estimate them. However, we refer our readers to Hoerl and Kennard [1], Kibria [28], Khalaf and 

Shukur [29], Muniz and Kibria [30] and Liu [4] among others.  

4. Numerical Example  

In this section, we will illustrate theoretical results using the example given by Friedman 

and Montgomery [20] (i.e., 𝜎1 = 1, 𝑘 = 0.1 and 𝑟41 = 0.95) and Özbey and Kaçıranlar [21] (i.e., 

𝑑 = 0.9) as well as we let 𝛾 = 0.5.  
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     Let us consider the LOR and the OLS estimators. From Eqn. (32), we get 

𝑓4(𝛼11) =
@.@@���4

@.@@����icc31.�����
,                                                                   (64) 

which is a hyperbola with a vertical asymptote at 

𝛼11 = 580.                                                                         (65) 

 

Because of both 𝑧@11 /𝑧@41  and 𝛼11 are positive, we are interested only in the points which lie 

in the first quadrant. Figure 1 illustrates this situation. For values of 𝛼11 smaller than 580, the LOR 

estimator is better than the OLS estimator. For larger values of 𝛼11, there is a trade-off between 

these two estimators. If the value of the ratio 𝑧@11 /𝑧@41  is smaller than the value of 𝑓4(𝛼11), then the 

LOR estimator is superior to the OLS estimator; otherwise, the OLS estimator is better than the 

LOR estimator. We take different values of 𝑑 as 0.1,0.2, . . . ,0.9 to determine the effect of 𝑑 on 

the predictive performance of the LOR estimator and the OLS estimator. Table 1 shows that if 𝑑 

increases, the value of 𝛼11 increases. That means, when 𝛼11 increases, the region where the LOR 

estimator is uniformly superior to the OLS estimator increases.  

In this part, we get the same results of the example given by Friedman and Montgomery 

[20] if 𝑑 = 0. Also, we get the same results of the example given by Özbey and Kaçıranlar [21] 

if  𝑘 = 1.  

Let us consider the ORR and the LOR estimators. From Eqn. (40) and Eqn. (47), we get 

𝑓1(𝛼11) =
@.@���1

@.��icc34�.1
,                                                                                                      (66) 

and 

𝛼11 = 34.54.                                                                                                                     (67) 

Figure 2 shows this case. For values of 𝛼11 < 34.54, the LOR estimator is better than 𝛼?. For 

great values of 𝛼11 there is a trade-off between these estimators. If (𝑧@11 /𝑧@41 ) < 𝑓1(𝛼11), then the 

LOR estimator is superior to 𝛼?, otherwise 𝛼? is better than the LOR estimator. 

The effect of 𝑑 on the PP of the LOR estimator and 𝛼? is described in Table 2. Table 2 

shows that if 𝑑 increases, the value of 𝛼11 increases. That means, when 𝛼11 increases, the region 

where the LOR estimator is better than 𝛼?increases.  

Let us take into account the PP of the OLS and the LOL estimators. From Eqn. (48) and 

Eqn. (55), we have 

𝑓�(𝛼11) =
@.@4�1��

@.@@11�icc34.����
,                                                                  (68) 
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and 

𝛼11 = 820.                                                                                            (69) 

Figure 3 shows this situation. For values of 𝛼11 < 820, the LOL estimator is uniformly superior 

to the 𝛼. If (𝑧@11 /𝑧@41 ) < 𝑓�(𝛼11), then the LOL estimator is better than 𝛼. Otherwise, 𝛼 is better 

than the LOL estimator. 

The effect of 𝛾 on the PP of the LOL estimator and 𝛼 is described in Table 3. Table 3 shows 

that if 𝛾 increases, the value of 𝛼11 increases. That means, when 𝛼11 increases, the region where 

the LOL estimator is uniformly superior to 𝛼 increases.  

In this part, we get the same results of the example given by Özbey and Kaçıranlar [21] if      

𝛾 = 0.  

Let us examine the PP of the LOL and 𝛼=. From Eqn. (56) and Eqn. (63), we have 

𝑓�(𝛼11) =
@.@4���

@.@@��4icc34.����
,                                                           (70) 

and 

𝛼11 = 260.                                                                                                   (71) 

Figure 4 shows this case. For values of 𝛼11 < 260 , the LOL estimator is superior to 𝛼=. If 

(𝑧@11 /𝑧@41 ) < 𝑓�(𝛼11), then the LOL estimator is superior to 𝛼=; otherwise, 𝛼= is superior to the 

LOL estimator. 

The effect of 𝛾 on the PP of the LOL estimator and 𝛼= is described in Table 4. Table 4 

shows that if 𝛾 increases, the value of 𝛼11 increases. That means, when 𝛼11 increases, the region 

where the LOL estimator is uniformly superior to 𝛼= increases.  

Table 1. 𝑑 and 𝛼11 values for the LOR vs. the OLS 
𝑑 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
𝛼11 46.67 55.00 65.71 80.00 100.00 130.00 180.00 280.00 580.00 

 
Table 2. 𝑑 and 𝛼11 values for the LOR vs. the ORR 

𝑑 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
𝛼11 11.58 13.33 15.29 17.50 20.00 22.86 26.15 30.00 34.54 

 
Table 3. 𝛾 and 𝛼11 values for the LOL vs. the OLS 

𝛾 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
𝛼11 446.667 505.000 580.000 680.000 820.000 1030.000 1380.000 2080.00 4180.00 
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Table 4. 𝛾 and 𝛼11 values for the LOL vs. the Liu 

𝛾 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
𝛼11 201.053 213.333 227.059 242.500 260.000 280.000 303.077 330.000 361.818 
     

 

 
Figure 1: Comparison of the PMSE for LOR and OLS estimators   
                                                                                               

 
Figure 2: Comparison of the PMSE for LOR and ORR estimators      
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Figure 3: Comparison of the PMSE for LOL and OLS estimators                        

                                 

 
 
Figure 4: Comparison of the PMSE for LOL and Liu estimators    
         

5. Conclusion 

The predictive performance of the LOR estimator over the OLS and the ORR estimators is 

evaluated. Similarly, the predictive performance of the proposed LOL estimator over the OLS 

and the Liu estimators is examined in the sense of the PMSE. The comparisons of these estimators 

are in terms of the PMSE criterion at a specific point in the two-dimensional regressor variable 

spaces. In this context, the PMSE of the LOR and the LOL estimators are developed and four 

theorems are given. In addition, three corollaries are given here examining that the theorems given 

by Friedman and Montgomery [20] and Özbey and Kaçıranlar [21] are just special cases of the 

Theorems 1 and 3.  
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