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Abstract

In this paper, we introduce two linear convex combination estimators by using known
estimators such as ordinary least squares, ridge and Liu estimators and examine the predictive
performance of these estimators. Furthermore, a numerical example is examined to compare these

estimators under the prediction mean squared error criterion.

Keywords: Biased estimation; Ridge estimator; Linear convex combination; Liu estimator;

Prediction mean square error.
Lineer Konveks Kombinasyon Tahmin Ediciler ve Karsilastirmalar
Oz

Bu makalede, en kiiciik kareler, ridge ve Liu tahmin ediciler gibi bilinen tahmin edicilerle

Ongorii performansini karsilastirmak igin iki lineer konveks kombinasyon tahmin edicisi
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tanimlanmigtir. Ayrica, dngorii hata kareleri ortalamas: kriterine gére bu tahmin edicilerin

karsilagtirilmalari bir sayisal 6rnek ile incelenmistir.

Anahtar Kelimeler: Yanli tahmin; Ridge tahmin edici; Lineer konveks kombinasyon; Liu

tahmin edici; Ongorii hata kareleri ortalamast.
1. Introduction

Consider the following multiple linear regression model:

y=XpB +e, 6]
where y is an nx1 vector of responses, X is an nxp full column rank matrix of explanatory
variables, f§ is a px1 vector of unknown parameters, and ¢ is an nx1 vector of random errors with
iid(0,0?).

The ordinary least squares (OLS) estimator is given by

B=&X)"XYy. )
In the presence of multicollinearity, the OLS estimator is unstable and gives unreliable
information. As biased alternatives, ridge, Liu, and two-parameter estimators can be handled in

this context.

Hoerl and Kennard [1] proposed the ordinary ridge regression (ORR) estimator which is

given by

Bk)=XX+kD'X'y, k=0, 3)
where k is the biasing parameter. The ORR estimator was commonly used in applied researches.
For example; Askin [2] suggested several approaches for extending estimation results to
forecasting with multicollinearity, Montgomery and Friedman [3] examined several biased

estimation methods for forecasting and prediction with multicollinearity.
Liu [4] defined the following alternative biased estimator dealing with multicollinearity
p(d) = XX+ D7 (Xy +dp)
=XX+DIXX+dDB, 0<d <1, 4)
where d is the biasing parameter. (d) is called the Liu estimator by Akdeniz and Kagiranlar [5].
Liu estimator has an advantage over the ORR estimator because it is a linear function of d and it

has smaller mean square error (MSE) than the OLS estimator. Sakallioglu et al. [6] compared the

performance of Liu estimator with the ORR and the iterative estimators using the matrix MSE
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(MMSE) criterion. In the literature, Liu and Liu-type estimators were widely used in linear

models.

Furthermore, Ozkale and Kagiranlar [7] introduced a new two-parameter estimator (TPE)
by grafting the contraction estimator into the modified ridge estimator proposed by Swindel [8].

This estimator is given by

Ble,d)= XX +kD)'(Xy+kdB), k=0,0<d<1. 5)
B (k,d) is a two-parameter variation of the Liu estimator. Ozkale [9] has also noted that 3 (k, d)

can also be demonstrated as
B(k,d) = dB + (1 — d)B (k). (6)

The TPE is a convex combination of the OLS and the ORR estimator. It is also called the ‘affine
combination type’ estimator by Ozkale [9]. Using the mixed estimation method suggested by
Theil [10] and Theil and Goldberger [11], we also derive B(k, d). Similar to the ORR and Liu
estimator, (k,d) was used both theoretically and practically by researchers in various fields.
Ozbay and Kaciranlar [12] introduced Almon TPE based on the TPE procedure for the distiributed
lag models. Ozbay and Kagiranlar [13] introduced a new two-parameter-weighted mixed
estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [14]
and the TPE. Tekeli et al. [15] introduced new algorithms using genetic algorithm (GA) for
estimating the biasing parameters of TPE. Cetinkaya and Kagiranlar [16] introduced new TPE for

negative binomial regression (NBR) and Poisson regression (PR) models by unifying the TPE.

Gruber [17, 18] demonstrated that B (k, d) is a special case of the linear Bayes, mixed and
minimax estimators. This new estimator is a general estimator which includes the OLS, the ORR,

the Liu, and the contraction estimators as special cases. We have the following properties:
1. éiﬂﬁ(k, d) = f and ll{i_r)ré[?(k,d) =B
2. limB(k,d) = f(k)
3. For k = 1, we get the Liu estimator, 8(1,d) = (d)
4. ﬁ(k, d) has the following alternative forms

Bk,d) = [I +kXX)"]*(B —dp) +dp
= (X'X + kD)"Y(X'X + kdD)f.
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From this representation, it is clear that lgimﬁ(k, d) = df3, which is the contraction estimator
—00

[19]. In this sense, £ (k, d) overcomes the disadvantage of the contraction estimator.

Then, Gruber [18] demonstrated that the Liu-type estimator can be given as follows:

Bros = dB + (1 — d)py, (7
where d is a biasing parameter, 0 < d < 1 and S, is the linear Bayes estimator (see in details, p.
3741, Eqn. (3.7), Eqn. (3.8) for B, and p. 3742, Eqn. (3.12) for BL0p).

Gruber [18] showed how the Liu-type estimator is optimal according to the Zellner’s
balanced loss function (ZBLF) criterion and compared the efficiency of the Liu-type estimator to
the OLS estimator in terms of the MSE and the ZBLF criteria. A convex combination of two
estimators can be useful when both estimators appear to be appropriate in a specific situation.
Following the Liu-type estimator in Eqn. (7), we consider linear convex combination estimators
taking the ORR and the Liu estimators as the special cases of ;. Then, the linear convex

combination of the OLS estimator and the ORR estimator (LOR) can be given as follows:

Bror =Bk, d) =df + (1 —d)f(k) , k=0,0<d <1 (8)

Similarly, we can define another linear convex combination of the OLS estimator and the Liu

estimator as follows:
Bror = B(d,y) =vB + (1 —y)B(A), )

where y is an arbitrary scalar and 0 <y < 1. Also, B0, = f(d,¥) in Eqn. (9) includes £ and

,é(d) as special cases:
L limp(d,y) = B,
y—-1
2. limB(d,y) = B(d).
y—0

Friedman and Montgomery [20] compared the predictive performance (PP) of the ORR,
OLS and the principal component (PC) estimators according to the prediction mean square error
(PMSE) criterion. Later, Ozbey and Kagiranlar [21] compared the Liu estimator with the OLS,
PC and ORR estimators. Dawoud and Kagiranlar [22] examined the PP of biased regression
predictors with correlated errors. Dawoud and Kagiranlar [23, 24] evaluated the PP of the r-k and

r-d class estimators and they also focused on evaluating the PP of the Liu-type estimator which is
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defined by Liu [25]. This estimator is different from Gruber’s Liu-type estimator which is given
in Eqn. (7). Following Ozbey and Kagiranlar [21] and Dawoud and Kagiranlar [22], Li et al. [26]
evaluated the PP of the principal component two-parameter estimator which is defined by Chang

and Yang [27].

As a consequence, since fror = B(k,d) and Bo, = f(d,y) are more general than the
ORR and the Liu estimators, respectively. Therefore, the PP of the LOR and the LOL estimators
are examined in the sense of the PMSE criterion. To examine the theoretical results, a numerical

example study is conducted.
2. Comparisons of the Prediction Mean Squared Errors

We can obtain the PMSE of the LOR and the LOL estimators. The PMSE of a predictor 7,

is given by

PMSE = E(yo — $0)%, (10)
where y, is the value to be predicted. Let J represents the PMSE. ] is the sum of the variance

(V) and the squared bias (B):

J=V+B. (11)

The variance and the bias can be given as follows:

V(yo —J0) = V(o) + V(Fo), (12)

and

Bias = E(yy — ¥o). (13)

Now, we consider the following canonical form of the model (1)

y=~Za+eg, (14)
where @ = U’ and Z = XU . Then the OLS estimator of « is

@a=Z2)yZy=4"17Z"y, (15)

’

where A = diag(44,4;,...,4,) is the matrix of the eigenvalues of Z'Z and for i = 1,2,...,p A;’s

are in descending order. Its PMSE is given by

2.
Jors = 0° (1 + Z?ﬂzl—oil). (16)

where z is the orthonormalized point for J,. Since & is unbiased, we have

Jors = Vors- (17)
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The ridge estimator of « is

&=CZ+kDZy=UA+kD)Zy, k=0,
and its PMSE is

i=1 4

B

2.9, a2
Jx = o? (1 + Z?ﬂ_zzlg l) + k? ( p —Z‘”le)
i
where a; = A; + k . The Liu estimator of « is

@ =ZZ+DY(Z'y+da)
=(A+DYA+dDHa, 0<d<1,
and its PMSE is

bict 0itti)
]a=02(1+2?=1%5)+(1_d)2( 4 ﬂ) :

i=1 b;

where b; = 1; + 1 and ¢; = A; + d . The LOR estimator or TPE of « is

Gor=[d(Z2) '+ A -d)ZZ+kD)Zy

=[dA'+ (A —-d)( A+ kD) Zy, k= 0.

The variance and bias of the prediction error of the LOR estimator are given by respectively

Vior(Vo — $0) = V(o) + Vior(Fo)
= 0% 4+ V(2o@L0r)

— . 12,2,
=02(1+Z£1W'MMM%]%)

Aiaiz
Bias;or = E(¥o — o) = zoa — zoE (@10r)

=k(1—d) zle—z";lf’“'.

So, the squared bias is

2
. Zoii
Biok = BiasZon = k(1 — d)? (TP, 224",

i=1" ¢,
By summing up the variance and the squared bias of the LOR estimator we obtain

Jror = Vior + Bror
— . 12,2,
— 42 (1 + Z?_l [(A-d)A+da;]?z3;

i=1" g,
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The LOL estimator of « is

oL =W +A-VEZZ+DY(ZZ+dD]a
=I+A-y)A+D Y A+dD]A"Zy, 0<d <1 (27)

The variance of the prediction error of the LOL estimator is

VioL o — o) = V(o) + VioL o)
=02+ V(2@101)

bi+(1-y)c; 252,
= o7 (14 3p., oerConala) 28)
Similarly, the bias, the squared bias and PMSE of the prediction error of the LOL estimator are
given by respectively
Biasyo, = E(yo — $o) = 2o —ZZéaE_(&LOL)
=(1-na-dIL, = (29)

N2
Bio. = Biasfo, = (1 —y)*(1 — d)? ( b Z%lal) , (30)

and

Jror = VioL + Brow

[ybi+(1-y)cil*zg; 0itti)?
= g2 (1 + 25;1%) + (1 -2 -ad)?( le%) . (31)

3. Comparisons of Prediction Mean Squared Errors in Two Dimensional Space

We will study the PP of the LOR and the LOL estimators. Considering a two-dimensional
space, a single prediction point (zq, Zy;) is to be predicted, the ratio z2,/zZ; can be obtained and
used for a reference point in their comparisons. a? will be set to zero because non-zero values of
a? increase only the intercept values for J, J4, JLor and J.o, but leave the curve for Jy.¢

unchanged. So, comparisons of J;og With Jo;s and Ji and J; o, with Jo;s and J; will be made.
Theorem 1.

o?(a3-((1-d)A,+day)?)
A,k2(1-d)?

a)IfaZ > , then

Jror <Jous for af < ((1-d)A; + da,y)?,

2
Jior <Jous < 53 < fu(@d) for af > (1 = DAy + day)?.
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o%(a3-((1-d)A,+day)?)

2
b)Ifaf < == -t

, then

Jror < Jous for af > ((1-d)A; + day)?,
2
Jior <Jous < 53 < fu(@d) for af < (1 = DAy + day)?,

where

o2 (i_<(1-d>11+2da1>2)
fi(a3) = ol .
a2((1-d)Ay+daz)? k2(1-d)2a3 g2
( Aza3 - a} ’12)

(32)

Proof. If the LOR estimator is better than &, we have J;or < Jors. That is,

1—d)A + day)?z? 1—d)A, +da,)?z? k?(1 — d)?a2z?
o2 + o2 (( A ! 1) 01+(( ), ! 2) 02 ( 2) 2%02 _
Aaf Ayas a;

2 2

Z Z
o2+ 0% (2= + 22,

Mo A

Rearranging this inequality, we will obtain

2001— 2 2(1—d)2 g2 2 _ 2
72 (a ((1-d)Az+day) n k*(1-d)*aj _a_) < 2310'2 (i_ ((1-d)A,+daq) )

0z Apa2 a2 A, Ay 2102
If both
o*(1-d)Ap+day)* | k*(1-d)*a; o*
Aya2 + a? A, (33)
and
2 (1 _ (=) +day)?
o (/11 Ara? ) (34)

have the same signs, the superiority condition of the LOR estimator over & is

%< fiad). (39)

2
Zg

If Eqn. (33) and Eqn. (34) have opposite signs, we have
282 2
— > fi(az). (36)
01

If Eqn. (33) and Eqn. (34) have different signs, the right-hand side of Eqn. (36) is smaller than
zero, thus, Eqn. (36) always holds. That is, in this region the LOR estimator is superior to &. The

condition for the positiveness of Eqn. (33) can be easily written as
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a2 %(a2-((1-d)A,+day)?)

2 A,k2(1-d)2 (7
and the condition for the positiveness of Eqn. (34) can be given as
a? > (1 - d)A, +da;)?. (38)

The contrary conditions are required for the negativeness of Eqn. (33) and Eqn. (34). The vertical

asymptote of the hyperbola f; (a%) is at the point

o2 = 2(a3-(1-D 2z +day)?)
2 A,k2(1-d)2

(39)
Corollary 1. If d = 0 in Theorem 1, we get Friedman and Montgomery’s [20] results.
Corollary 2. If k = 1 in Theorem 1, we get Ozbey and Kagiranlar’s [21] results.

Theorem 2.

02(A3-((1-d) A, +day)?)

2
) lfa; > = oy

, then

Jror < Ji for A7 < ((1-d)A; + day)?,
2

Jror < Ji & 22 < fr(a3) for 23 > ((1 — d)A; + day)®.
01

02(A3-((1-d)Ap+day)?)

2
b. Ifas < LR [(—d)?—1]

, then

Jror <J for 23 > ((1-d)A; + day)?,

2
Jior <Ju = 33 < fo(a) for AT < (1 = d)Ay + day)?.

where
2(M1_((1-d)Aq+daq)?
2 7 af A1af
a) = . 40
fZ( 2) a2((1-d)Ay+daz)? | k2(1-d)2a% o221, k2a3 ( )
Aza% ' a% a% a%

Proof. Suppose LOR estimator is better than &, , then, J;op < Ji. That is,

1—d)A + day)?z? 1—d)A, +da,)?z? k?(1 — d)?a?z?
o2 + o2 (( A i 1) 01+(( ), ! 2) 02 ( 2) 2702 _
Aaf Ayas a;

A z2 A, z2 k2a2z2
1401 2402 2402
02+02< —+—— |+ —.
a a a
1 2 2

Rearranging this inequality, we get
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Z02 2 2 2

) (az((l —d)A, + day)? 4 k?(1 - d)?a3 3 22, k2a§>
Apal a; a; a;

Z§510

. (zl (- dA+ da1)2>
) .

a_f /11‘1%
If both
o*((A-d)Ap+day)® | k*(1-d)*ai o%d; ka3
( Aya? + a? a? a? ) (41)
and
2 (A _ (A=ditdan®
g (a% Aia? ) (42)
have the same signs, we have
Zgz 2 43
oz < fa(a3). (43)
01
If Eqn. (41) and Eqn. (42) have opposite signs, we have
Zgz 2
— > fa(a3). (44)
01

If Eqn. (41) and Eqn. (42) have opposite signs, the right-hand side of Eqn. (44) is negative, so,

Eqn. (44) always holds. The condition for the positiveness of Eqn. (41) can be written as

2 _ 02(A3-((1-d)Ay+day)?)

2 k2 [(1-d)2—1] (45)
The condition for the positiveness of Eqn. (42) can be given as
23> ((1 - d)A; + day)2. (46)

The contrary conditions are required for the negativeness of Eqn. (41) and Eqn. (42). The vertical

asymptote of the hyperbola f, (a3) is

2 02(A3—((1-d)A,+da3)?)
27 hka-d)-1]

47)
Theorem 3.

02(b2-(ybo+(1-¥)c2)?)

2
) Ifaz > =

. then

Jror < Jovs for bf < (yby + (1-y)c1)?,

2
Jror < ]OLSC:’% < fz(ag) for bf > (yby + (1 — y)cy)%
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2 _ 02(b3-(yby+(1-7)c2)?)
D) Ifa; <= amraar

, then

Jror < Jovs for bf > (yby + (1-y)c1)?,

2
Jror <Jors < % < fz(ag) for bf < (yb; + (1-y)c1)?,

where
Uz(;gxyb1+(ryya)2)
2 A1 A1b?
f3(a2)=dz( 2 121202 2\
yba+(1-y)c2)?  (1-Y)“(1-d)*as o
( 2203 ' b3 12)

Proof. If the LOL estimator is superior to &, we have J; o1 < Jors. That is,

(48)

o2 + o2 [(Vbl + (1 —=y)e)?z8  (vby + (1 —¥)c2)?25, + (1 -2 - d)a3z5,

A, b? A, b2 b2
<
2 2
2 g2 (%01 Zoz
og°+o (/11 + 1, .

Rearranging this inequality, we get

2 _ 2 —aN2(1—A\2 2 2 _ 2
72 (a (rbz+(1-y)c2) + a-p*a-d)e; o ) < 72,02 (L_ (rb1+(1-y)c) )

02 A2b3 b 2 P 1167

If both

a?(yby+(1-y)cy)? + 1-n*a-a’af o
A, b2 b2 Az

and

o2 (i _ (Yb1+(1—V)C1)2)
A A1b?

have the same signs, we have
Zgz 2
oz < fz(a3z).
01
If Eqn. (49) and Eqn. (50) have opposite signs, we have

78, 2
) > f3(a3).

2
Zg

(49)

(50)

(51

(52)

If Eqn. (49) and Eqn. (50) have opposite signs, the right-hand side of Eqn. (52) is negative, thus

Eqn. (52) always holds. The condition for the positiveness of Eqn. (49) can be written as
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2  02(b3=(yb+(1-y)cz)?)

%2 L (1-)2(1-a)? (53)
Similarly, the condition for the positiveness of Eqn. (50) can be given as
b > (yby + (1 = ¥)cy) (54)

The contrary conditions are required for the negativeness of Eqn. (49) and Eqn. (50). The vertical

asymptote of the hyperbola f;(a3) is at the point

Q2 = 02(bZ-(yby+(1-y)c2)?)
27 0a-v)2(-d)?

(55)
Corollary 3: If y = 0 in Theorem 3, we get Ozbey and Kagiranlar’s [21] results.

Theorem 4.

02(c3-(vby+(1-¥)c3)?)
A2(1-d)2[(1-y)2-1]

a)IfaZ > , then

Jro <Ja forcf < (yby + (1-¥)cy)?,
2
Jior <Ja 33 < fa(@d) for ¢f > (vby + (1y)er)”.

o2(c3-(vby+(1-7)c2)?)
A2(1-d)2[(1-)?-1]

b)IfaZ < , then

Jro <Ja forcf > (yby + (1-¥)cy)?,
2
Jior <Ja 33 < fa(@d) for cf < (vby + (19)er)?,

where

Uz( cf _(yb1+(1-y)cl)2)

A1b% A1b%

a2(yba+(1¥)c)? , A-N2(-d)2ad 02c3 (1-d)2ad)’
A2b3 ' b3 A2b2 b3

(56)

fala3) = (

Proof. If the LOL estimator is superior to &,, we have J; o, < J4. That is,

o o [by + (1-¥)e)?28; | (vby + (1-¥)c2)%25,| - (1) (1-d)?as 25,
oc°+o > > + > <
b2 A,b2 b2
2 4 2 <012251 522252> (1-d)*a3z5,
o
Mbi " A;b3 b3

Rearranging this inequality, we get

, (02(rby + (1 =¥)cy)? N 11—y’ -d)?a; oc; (1- d)ZCX%)
%02 A,b2 b2 A,b2 b2
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Z510

22<& _@m+m—wqf>
. .

Abf Aybf
If both
o? (b +(1-Y)cx)? | (1-p)°(-d)?ad o}  (1-d)%a}
( A b2 + b2 A, b2 b2 ) (7
and
2( i (bi+(1-y)ep)?
g ()le§ A.b2 ) (58)

have the same signs, we have

2
%<ﬁmﬁ (59)

If Eqn. (55) and Eqn. (56) have opposite signs, we have

%2 > fo(ad). (60)

28,
If Eqn. (55) and Eqn. (56) have opposite signs, the right-hand side of Eqn. (58) is negative, thus
Eqn. (58) holds. The condition for the positiveness of Eqn. (55) can be given as follows

2  02(c3=(ybo+(1-7y)c2)?)

2 7 a2y -1] (61)
Similarly, the condition for the positiveness of Eqn. (56) can be given as
cf > (yby + (1 =) (62)

The contrary conditions are required for the negativeness of Eqn. (55) and Eqn. (56). The vertical

asymptote of the hyperbola f, (a2) is

2 _ 02(c=(yb+(1-v)c2)?)
27 na-a2[a-yz-1] (63)

The estimation of the parameters k and d is an important issue. We have not made any attempt to
estimate them. However, we refer our readers to Hoerl and Kennard [1], Kibria [28], Khalaf and

Shukur [29], Muniz and Kibria [30] and Liu [4] among others.
4. Numerical Example

In this section, we will illustrate theoretical results using the example given by Friedman
and Montgomery [20] (i.e., 02 = 1,k = 0.1 and r;, = 0.95) and Ozbey and Kagiranlar [21] (i.e.,
d = 0.9) as well as we let y = 0.5.
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Let us consider the LOR and the OLS estimators. From Eqn. (32), we get

0.004991

2y —

filaz) = 0.0044440%-2.57778’ (64)
which is a hyperbola with a vertical asymptote at

a? = 580. (65)

Because of both z3,/z2; and a3 are positive, we are interested only in the points which lie
in the first quadrant. Figure 1 illustrates this situation. For values of a2 smaller than 580, the LOR
estimator is better than the OLS estimator. For larger values of a3, there is a trade-off between
these two estimators. If the value of the ratio zZ,/z3, is smaller than the value of f; (@3), then the
LOR estimator is superior to the OLS estimator; otherwise, the OLS estimator is better than the
LOR estimator. We take different values of d as 0.1,0.2,...,0.9 to determine the effect of d on
the predictive performance of the LOR estimator and the OLS estimator. Table 1 shows that if d
increases, the value of a% increases. That means, when a% increases, the region where the LOR
estimator is uniformly superior to the OLS estimator increases.

In this part, we get the same results of the example given by Friedman and Montgomery
[20] if d = 0. Also, we get the same results of the example given by Ozbey and Kagiranlar [21]
if k=1.

Let us consider the ORR and the LOR estimators. From Eqn. (40) and Eqn. (47), we get

0.04382
0.44a%-15.2

f2(af) = (66)

and

a3 = 34.54. (67)
Figure 2 shows this case. For values of a7 < 34.54, the LOR estimator is better than &,. For
great values of a3 there is a trade-off between these estimators. If (z2,/z5,) < f,(a3), then the

LOR estimator is superior to &, otherwise &, is better than the LOR estimator.

The effect of d on the PP of the LOR estimator and &, is described in Table 2. Table 2
shows that if d increases, the value of @3 increases. That means, when a2 increases, the region

where the LOR estimator is better than & increases.

Let us take into account the PP of the OLS and the LOL estimators. From Eqn. (48) and
Eqn. (55), we have

2y 0.017236
fa(az) = 0.00226a2-1.8595 (68)
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and

a? = 820. (69)

Figure 3 shows this situation. For values of a3 < 820, the LOL estimator is uniformly superior
to the @. If (28,/25,) < f3(a3), then the LOL estimator is better than &. Otherwise, @ is better

than the LOL estimator.

The effect of y on the PP of the LOL estimator and & is described in Table 3. Table 3 shows
that if y increases, the value of a2 increases. That means, when a# increases, the region where

the LOL estimator is uniformly superior to & increases.

In this part, we get the same results of the example given by Ozbey and Kagiranlar [21] if

y =0.
Let us examine the PP of the LOL and &;. From Eqn. (56) and Eqn. (63), we have
2y 0.01694
falaz) = 0.00681a2-1.7687 (70)
and
a? = 260. (71)

Figure 4 shows this case. For values of a5 < 260 , the LOL estimator is superior to &,. If
(28,/231) < fa(a?), then the LOL estimator is superior to &;; otherwise, @4 is superior to the

LOL estimator.

The effect of y on the PP of the LOL estimator and &, is described in Table 4. Table 4
shows that if y increases, the value of a2 increases. That means, when a3 increases, the region

where the LOL estimator is uniformly superior to &, increases.

Table 1. d and a2 values for the LOR vs. the OLS

d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
aZ  46.67 55.00 65.71 80.00 100.00  130.00  180.00  280.00  580.00

Table 2. d and a2 values for the LOR vs. the ORR

d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a? 11.58 1333 1529 17.50 20.00 22.86 26.15 30.00 34.54

Table 3. y and a3 values for the LOL vs. the OLS

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a? 446.667 505.000 580.000 680.000 820.000 1030.000 1380.000 2080.00  4180.00
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Table 4. y and a3 values for the LOL vs. the Liu

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9

a? 201.053 213.333 227.059 242.500 260.000 280.000 303.077  330.000

361.818
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Figure 1: Comparison of the PMSE for LOR and OLS estimators

0,5 7 fy(a)
0,45 -

0,4 -
0,35 -
0,3 -
0,25 - 4
0,2 -
0,15 -
0,1 -
0,05 -

0 — T T T T T T T T T T 1 0!22

0 51015202530354045505560

A=J,r <J,
B=J,<J,

Figure 2: Comparison of the PMSE for LOR and ORR estimators
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Figure 4: Comparison of the PMSE for LOL and Liu estimators

5. Conclusion

The predictive performance of the LOR estimator over the OLS and the ORR estimators is
evaluated. Similarly, the predictive performance of the proposed LOL estimator over the OLS
and the Liu estimators is examined in the sense of the PMSE. The comparisons of these estimators
are in terms of the PMSE criterion at a specific point in the two-dimensional regressor variable
spaces. In this context, the PMSE of the LOR and the LOL estimators are developed and four
theorems are given. In addition, three corollaries are given here examining that the theorems given
by Friedman and Montgomery [20] and Ozbey and Kagiranlar [21] are just special cases of the

Theorems 1 and 3.
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