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Abstract: Edible oils are often adulterated with fixed oils because of their high quality and price. Sesame
oil is prone to adulteration due to its high commodity value and popularity. Therefore, a rapid, simple,
and non-invasive method to detect adulteration in sesame oil is necessary for quality control purposes.
Handheld and portable FT-NIR, FT-MIR, and Raman spectrometers are easy to operate, non-destructive,
rapid, and easy to transport for in-situ assessments as well as being cheaper alternatives to traditional
instruments.  This  study  aimed  to  evaluate  three  different  vibrational  spectroscopic  techniques  in
detecting sesame oil adulteration with sunflower and canola oil. Sesame oils were adulterated with fixed
oils  at  different  concentrations  (0  –  25%) (w/w).  Spectra  were  collected  with  portable  devices  and
analyzed using Soft Independent Modelling of Class Analogy (SIMCA) to generate a classification model to
authenticate pure sesame oil and Partial Least Squares Regression (PLSR) to predict the levels of the
adulterant. For confirmation, the fatty acid profile of the oils was determined by gas chromatography
(GC). In all  three instruments, SIMCA provided distinct clusters for pure sesame oils and adulterated
samples  with  interclass  distance  (ICD)  over  3.  Furthermore,  FT-NIR  and  FT-MIR  showed  excellent
performance in predicting adulterant levels with rval>0.96. Specifically, the FT-MIR unit provided more
precise classification and PLSR prediction models over FT-NIR and Raman units. Still, all the units can be
used as an alternative method to traditional methods such as GC, GC-MS, etc. These units showed great
potential for in-situ surveillance to detect sesame oil adulterations.
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INTRODUCTION

Sesame oil is a seed oil extracted from Sesamum
indicum L.  Because  it  provides  many  health
benefits  and  contains  antioxidants,
polyunsaturated fatty acids, tocopherols, sesamin
and sesamol, which are cardioprotective functional
components,  it  is  becoming  more  popular  and
demanded worldwide (1,2). Sesame oil consists of
up  to  48%  linoleic  acid,  43%  oleic  acid,  12%
palmitic acid, and 7% stearic acid (3). Sesame oil
is  used  in  foods  as  a  flavor  enhancer,  in
shortening, cosmetics, and pharmaceuticals (4,5).

China, Myanmar, India, and Nigeria are the leading
countries  for  sesame oil  production,  followed  by
Japan (6). The largest sesame oil producer, China,
had an annual production of 302,354 tons (29%),
followed by  Myanmar  with  168,100  tons  (16%),
India with 87,200 tons (8%), Nigeria with 54,000
tons (5%), and Japan with 52,700 tons (5%) in
2018 (6). Sesame oil is a premium oil, therefore
an expensive oil,  which increases the concern of
authentication.  Sunflower,  canola,  maize,  and
soybean oils are the most common oils used for
adulterations in sesame oil (7).
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Conventional  analytic  techniques  such  as  GC,
HPLC,  NMR,  and  IMS  have  focused  on  specific
marker  compounds  in  the  pure  oils  (4).  These
traditional methods focus on targeted approaches
that  pre-define  the  chemical  marker  for  their
identification  and  quantification;  however,  those
can be failed to detect unexpected adulterants that
cannot be determined through the selected method
(8).  Although  these  methods  susceptible  and
accurate, they require transportation of samples to
the facilities where analysis is carried, are invasive,
expensive, time-consuming, and require high-cost
instrumentation  and  maintenance  and  complex
sample  preparation  (9).  Vibrational  spectroscopy
techniques (VST) combined with multivariate data
analysis  can  be  used  as  an  alternative  to  the
conventional techniques because VST can provide
rapid, precise, and sensitive chemical information
of the samples. Besides, a non-targeted approach
using  VST  focuses  on  all  chemical  compounds
without knowing the sample's chemical structure,
which  could  then  be  compared  with  the  pure
sample's fingerprint profile (10). The performance
of  VST  on  the  detection  of  adulteration  in  the
edible  oils  has  been  evaluated  in  the  literature,
including  olive  oil  (8),  avocado  oil  (11),  and
sesame  oil  (12).  With  the  advancement  of
microelectromechanical  systems,  fibers,  sensors,
optical parts, and detectors have been assisted the
miniaturization  of  vibrational  spectroscopy  units.
These units can provide  in-situ analysis, real-time
assessments,  rapid  and  cost-efficient  results
because there is no need to transport the samples
and  convenience  to  the  food  industry  and  food
control agencies (13).  

This study aimed to evaluate the performance of
three different vibrational spectroscopy techniques
and  portable  devices  on  the  authentication  of
sesame oil.

MATERIALS and METHODS

Materials 
Sesame  oils  (32  different  commercial  products),
sunflower  oils  (6  different  commercial  products),
canola oils (6 different commercial products) were
purchased from various local markets in Istanbul,
Turkey,  and Columbus,  OH,  USA.  Sunflower and
canola  oil  were  selected  because  both  oils  were
cheaper  than  sesame  oil  and  could  be  used  as
adulterants in sesame oil. Samples were stored at
4 °C until further analysis to prevent any oxidative
changes in the oil. One of the pure sesame oils was
chosen randomly, and it was adulterated with 5,
10,  15,  20,  and  25%  (w/w)  sunflower  oil  and
canola oil, separately. Adulteration with adulterant
levels  lower  than  10%  may  not  be  feasible
economically;  therefore,  it  may  limit  the  use  in
food  fraud  practices,  and  high  adulterant  levels
may  be  easily  detected  by  sensory  without  any

instrument  used.  Therefore,  a  5-25% range was
selected  to  imitate  realistic  and  practical
applications in the adulteration of oils (14).

Methods 
NIR
The NIR of  the  oil  samples  were collected using
micro-NeoSpectra (Si-Ware Systems, Cairo, Egypt)
(Figure  1),  a  compact  Fourier  Transform  Near-
Infrared (FT-NIR) sensor equipped with a single-
chip  Michelson  interferometer  with  monolithic
Opto-electro-mechanical  structure  with  a  single
uncooled  indium-gallium-arsenide  (InGaAs)
photodetector. A total of 50 µL of oil sample were
deposited  on  the  unit's  sensor,  and  the  spectra
were collected at the range of 7400–3920 cm-1 in
absorbance mode and with a 16 cm-1 resolution.
Samples were scanned for 15 seconds to increase
the  signal-to-noise  ratio.  Spectral  data  collection
was carried out in duplicate.

MIR
A total of 50 μL of the oil sample was placed on the
IR crystal.  The FT-IR 5500 (Agilent Technologies
Inc.,  Santa  Clara,  CA)  (Fig.  1)  spectrometer
equipped with a temperature-controlled 5-bounce
ZnSe  crystal  set  to  40  °C.  The  spectra  were
collected at 4 cm−1 resolution over a range from
4000  to  650  cm−1,  and  an  interferogram  of  64
scans  co-added  to  increase  the  signal-to-noise
ratio.  Spectral  data  collection was carried out  in
duplicate.

Raman 
Three milliliters of oil sample were placed in a 10-
mm light  path  quartz  cuvette  (Hellma  Analytics,
Mulheim, Germany), and the Raman spectra were
collected  using  a  WP  1064  compact  portable
Raman spectrometer (Wasatch Photonics, Durham,
NC,  USA)  (Figure  1).  The  Raman  unit  was
equipped  with  an  Indium  Gallium  Arsenide
(InGaAs) detector and a laser source operating at
1064 nm. The spectra were collected from 1855 to
200 cm−1 with a resolution of 4 cm−1, and 3 scans
were co-added to improve the signal-to-noise ratio
of the spectrum with an integration time of 3000
ms.  A  background  spectrum  was  acquired  in
between  every  sample  to  eliminate  the
environmental  variations.  Spectral  data  were
displayed in terms of scattered light by the sample
and viewed using EnlightenTM software (Wasatch
Photonics,  Durham,  NC,  USA).  Spectral  data
collection was carried out in duplicate.

GC (Reference method)
The fatty acid profile was determined using a fatty
acid  methyl  ester  (FAME)  procedure  (15)  with
slight modifications. A total of 100 µL oil sample
was  dissolved  in  1  mL  of  n-hexane  in  a
microcentrifuge tube; after  adding 20 µL of  2  N
potassium hydroxide in methanol, the mixture was
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vortexed  for  a  minute.  The  microcentrifuge  tube
set aside for the phase separation, and a 750 µL of
an aliquot from the upper part was removed into
another  microcentrifuge  tube  with  a  pinch  of
anhydrous  sodium  sulfate.  The  tube  was
centrifuged at 13.2 rpm for 5 min, and the upper
part (~500 µL) was transferred into a borosilicate
glass vial. Samples were analyzed using an Agilent
6890  (Santa  Clara,  CA,  USA)  GC,  with  a  flame
ionization  detector  (FID)  and  an  HP  G1513A
autosampler  and a tray.  Fatty  acids  were  eluted
through an HP-88 100 m × 0.25 mm × 0.2 µm
column  (Agilent,  Santa  Clara,  CA,  USA),  and
helium was used as a carrier gas. A total of 1 µL of
the sample was injected with a split ratio of 20:1.
The oven temperature was set at 110 °C for 1 min,
then increased to 220 °C (5 °C/min) and held for
15 min. The injector temperature was 220 °C, and
the  detector  temperature  was  250  °C.  The
identification  of  the  fatty  acids  was  achieved  by
comparing each peak's retention time against the
reference  standards  (Supelco®37  Component
FAME Mix, Sigma Aldrich, St. Louis, MO, USA). GC
analyses  for  each  sample  were  carried  out  in
duplicate.

Data Analysis 
A  multivariate  data  analysis  software  (Pirouette
version  4.5,  Infometrix  Inc.,  Bothell,  WA,  USA)
was used to analyze the spectral data.

SIMCA
A supervised pattern  recognition technique relies
on a confidence region for each class after PCA is
applied. Observations are projected in each PC that
decides if the observation belongs to that class or
not.  Because the spectra  are complex,  SIMCA is
required  for  obtaining  meaningful  information  of
the  data  matrix  (16).  More  information  can  be
found in the literature (17-19). SIMCA was used to
determine  the  pure  samples  and  adulterated
sesame  oils.  Known  classes  (sesame,  sunflower,
and canola oils) were used to create a classification
algorithm to identify the correct classes (80% of
the total  samples). Then, the validation data set
(20% of  the samples that  were not  used in the
classification model) was informed to evaluate the
model.  SIMCA  was  evaluated  based  on  three-
dimension class projection, misclassification (if the
sample  was  predicted  in  the  correct  class),  and
interclass distance (ICD).

PLSR
Partial Least Square Regression (PLSR) was used
to  evaluate  the  fitness  of  the  model  using  the
standard error of cross-validation (SECV), standard
error of prediction (SEP), coefficient of correlation
(r),  and  outlier  diagnostics.  PLSR  is  one  of  the

most  used  multivariate  data  analyses  used  for
correlated,  noisy,  and  multi-X  variables.  For
example, data obtained from FT-NIR, FT-MIR, and
Raman  can  have  thousands  of  data  points  (X
variable, i.e., FT-MIR – from 3500 cm-1 to 800 cm-

1).  PLSR  includes  the  PCA  features  where
thousands of variables can be compressed into few
latent  variables  called  factors,  predictors,  or
components. Detailed information for PLSR can be
found in the literature (20-23). Samples with large
residuals indicating the samples with structure do
not fit in the model,  and high leverage indicates
the sample or variable have very much impact on
the calibration model were considered as outliers
(not shown in the data).

RESULTS AND DISCUSSION 

SIMCA Results – FT-NIR Spectra
Due to NIR spectra's complexity, and to make the
interpretation  more  straightforward,  the  spectra
were  mean-centered,  second  derivative,  and
smoothly  transformed before the SIMCA analysis
to  obtain  better  spectral  characteristics  (with  a
second-order  poly-nominal  filter  with  a  19-point
window).  Even  though  many  pre-processing
options were tried, the best results were obtained
using a 19-point window (i.e., 21, 25, 35-point).
SIMCA  was  used  to  generate  a  classification
algorithm for the oils. Figure 2A shows the SIMCA
3D projection to classify sesame oil, sunflower oil,
and canola oil. Based on the SIMCA, all oil samples
were clustered very distinctly (ICD>19). Figure 2B
shows  the  classification's  discriminating  power,
which expresses the variables (wavenumber (cm-

1))  responsible  for  the  classification.  Peak
identifications were made based on the literature
(24,25). Around 4386 cm-1, the combination of C-H
stretching vibration can be observed. The peak at
4876 cm-1 is associated with the C-H vibration of
cis-unsaturation. Lastly, the peak at 5660 cm-1 is
related to the first overtone of the C-H stretching
vibration  of  chemical  groups  (i.e.,  methylene).
Figure  2C  shows  the  FT-NIR  prediction.  The
prediction  model  indicated  that  adulterated
samples  were  clustered  from  pure  samples.
Moreover, two out of eight validation samples (not
used in calibration set) did not fit in the model, and
GC data confirmed that those samples' fatty acid
profile was different from pure samples. Only one
sample was misclassified when comparing FT-MIR
and Raman results. Figure 2D shows the score plot
of the model, indicating that using two factors was
enough  to  represent  the  model  with  ~  97%.
Overall,  a  miniaturized  FT-NIR  spectrometer
combined with SIMCA showed that FT-NIR could be
an  alternative  method  for  detecting  sesame  oil
adulteration with cheap vegetable oils. 
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Figure 1: Commercial portable and handheld FT-NIR, FT-MIR and Raman spectrometers, and the spectra
of oils obtained from them. 
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Figure 2: SIMCA 3D projection obtained from FT-NIR spectral data (2A), discriminating power obtained
from SIMCA (2B), Validation model of SIMCA (2C), score plot for validation model (2D). SE: sesame oil;

SF: sunflower oil; CA: canola oil; ? mark: suspected sample.

SIMCA Results – FT-MIR Spectra
Before  the  SIMCA  analysis,  the  spectra  were
mean-centered,  local-scoped,  first-derivative,
normalized,  and  smooth-transformed  (19-point
window)  for  improving  spectral  characteristics.
Figure  3A  shows  SIMCA  3D  projection  obtained
from  FT-MIR  spectral  data.  The  samples  were
clustered distinctly with ICD>10. Based on the ICD
value,  FT-NIR  was  slightly  better  than  FT-MIR.
Figure 3B shows the discriminating power, and the
peaks  assignment  was  made  based  on  previous
studies (26,27). The peaks around in the range of
3024 – 2864 cm-1 associated with C-H stretching
of methyl and methylene groups (CH2 symmetric
and CH3 asymmetric stretching), 1836 – 1709 cm-1

related  to  –C=O  ester  stretching  vibration  (C-O
stretching esters of fatty acids), 1450 – 1377 cm-1

associated  with  C-H  bending  (symmetrical  and
scissoring)  vibrations  of  CH2 and  CH3 groups.

Although  the  oil  spectral  profile  seems  similar,
triglyceride  composition  would  impact  the  band
intensities and slight shifts in the wavenumbers for
functional groups. Figure 3C shows the prediction
model. Similar to the FT-NIR results, adulterated
samples  were  clustered  very  distinctly.  Besides,
three out of eight external validation samples did
not fit in the model, and GC results were confirmed
the  fatty  acid  profile  of  those  samples  were
different  than  pure  sesame  oils.  SIMCA  results
indicated that even with low adulterant levels (5%)
could be detected by FT-MIR spectrometer. Figure
3D shows the score plot of the SIMCA validation
model  obtained  from  FT-MIR  spectral  data
indicating that using three factors was enough to
represent the prediction model with ~ 88% of all
variables.  Overall,  portable  FT-MIR  unit  showed
great  performance  in  detecting  sunflower  and
canola oil adulterations in sesame oil. 
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Figure 3 SIMCA 3D projection obtained from FT-MIR spectral data (3A), discriminating power obtained
from SIMCA (3B), Validation model of SIMCA (3C), score plot for validation model (3D). SE: sesame oil;
SF: sunflower oil; CA: canola oil; ? mark: suspected sample.

SIMCA Results – Raman Spectra 
Similar  to  previously  mentioned  techniques,
spectral data were mean-centered, locally scoped,
second-derivative,  and  smooth-transformed  (19-
point window). Figure 4A shows the classification
of three oils. Based on the spectral data, all three
oils  were  clustered  distinctly  with  ICD>5.  The
classification  obtained  from Raman spectral  data
was slightly worse than both FT-MIR and FT-NIR
data  based  on  the  ICD  value.  A  possible
explanation for this result would be the due less
scanning  region  (wavenumber)  in  our  Raman
spectrometer. For instance, FT-MIR covers 3064 –
2786 cm-1, which region associated with CH2 and
CH3; however, Raman covers up to 1855 cm-1 in
our unit. Figure 4B shows the discriminating power
for classification. 1445 cm-1, associated with -CH2

bending  vibrational  mode,  is  the  most  powerful

band for classification. 1291 cm-1 (twisting -CH2),
1640  cm-1 and  1657  cm-1 (stretching  cis-R-
HC=CH-R)  were  also  powerful  bands  for
classification. The peaks assignments were made
based on the literature (28). Figure 4C shows the
validation  model.  Similar  to  FT-MIR  unit,  Raman
spectrometer  detected  the  adulterated  samples,
and  three  suspected  samples  which  then  con-
firmed  by  GC-FID,  and  those  were  clustered
distinctly.  SIMCA results  indicated that  a  Raman
spectrometer  could  detect  as  low  as  5%
adulteration in  sesame oil.  Figure  4D shows the
score  plot  for  validation  model  indicated  three
factors  were  enough  to  represent  the  prediction
model  with  ~ 93% of  all  variables.  Overall,  the
portable  Raman  spectrometer  showed  good
performance in  detecting sesame oil  adulteration
with sunflower and canola oil. 

780



Menevseoglu A. JOTCSA. 2021; 8(3): 775-786. RESEARCH ARTICLE

Figure 4 SIMCA 3D projection obtained from Raman spectral data (4A), discriminating power obtained
from SIMCA (4B), Validation model of SIMCA (4C), score plot for validation model (4D). SE: sesame oil;
SF: sunflower oil; CA: canola oil; ? mark: suspected sample.

PLSR Results – FT-NIR, FT-MIR, and Raman
Spectra
Table 1 shows the prediction performance of three
vibrational  spectroscopy  units  for  predicting
adulterant  levels  in  sesame  oil.  The  optimum
factors for predicting models were between four to
six.  Although  the  performance  would  be  slightly
better  if  more  factors  were  used,  using  more
factors  would  include  noise  or  irrelevant
components  that  would  cause  overfitting  the
model. Likewise, using fewer factors than optimum
number would cause underfitting associated with

less variance than needed (29).  PLSR models of
the oils yielded high SECV, high SEP, rcal, and rval

values,  indicating  the  accuracy  of  the  prediction
models.  Correlation  coefficient  value  (r)  is
accepted as an excellent prediction over 0.90, and
suitable prediction over 0.80 (30). FT-NIR, FT-MIR,
and Raman units showed excellent performance in
predicting  adulterant  levels  (rval>0.90).  Portable
FT-MIR  unit  showed  superior  performance  over
handheld FT-NIR and portable Raman units since it
provided lower SEP, and higher rval.
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Figure 5 Partial Least Square Regression (PLSR) calibration and validation plots for sunflower oil levels
(5A),  canola oil  (5B) obtained from FT-NIR unit,  5C and 5D obtained from FT-MIR unit,  5E and 5F
obtained from Raman unit. Empty squares: calibration model; filled squares: validation model.
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Table 1: Statistical performance of the prediction models developed using FT-NIR, FT-MIR, and Raman
spectrometers for adulteration levels in sesame oil.

Unit Parameter
Calibration model Validation model

Rangea Nb Fc SECVd rcale Range N SEPf rvalg

FT-NIR
SFO 0-25 18 5 1.17 0.994 5.0-20.0 12 2.03 0.976
CAO 0-25 18 6 1.76 0.985 5.0-20.0 12 2.28 0.969

FT-MIR SFO 0-25 18 6 1.41 0.990 5.0-20.0 12 1.82 0.978
CAO 0-25 18 4 0.95 0.996 5.0-20.0 12 1.36 0.988

Raman SFO 0-25 18 5 2.83 0.937 5.0-20.0 12 3.23 0.898
CAO 0-25 18 4 2.87 0.924 5.0-20.0 12 3.26 0.909

aThe unit of the range is %.  bNumber of samples used in calibration models.  cThe number of factors.
dStandard  error  of  cross-validation.  eCorrelation  coefficient  of  cross-validation.  fStandard  error  of
prediction. gCorrelation coefficient of prediction for external validation. SFO: Sunflower oil. CAO: Canola
oil.

CONCLUSIONS

In  this  study,  sesame  oil  adulteration  with
sunflower  and  canola  oil  was  aimed  to  be
determined  by  portable  FT-NIR,  FT-MIR,  and
Raman spectrometers. Developed SIMCA and PLSR
models showed that sesame oil adulteration could
be detected rapidly, non-destructively, and reliably
by  using  portable  vibrational  spectroscopy units.
Based on portable units' and GC results, three out
of  32  samples  were  suspected  as  being
adulterated. FT-MIR spectrometer showed slightly
better  performance  than  FT-NIR,  superior
performance  than  Raman  spectrometers.  These
techniques  may  detect  sunflower  and  canola  oil
adulterations in sesame oil  as low as 5%. These
portable  units  can  provide  government  agencies
and the oil industry an alternative method to the
traditional methods.
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