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A NEW SYSTEM OF GENERALIZED NONLINEAR
VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER
PRODUCT SPACES

Sumeera SHAFI

Department of Mathematics, University of Kashmir, Srinagar-190006, INDIA

ABSTRACT. In this work we reflect a new system of generalized nonlinear vari-
ational inclusion problems in 2-uniformly smooth Banach spaces. By using
resolvent operator technique, we offer an iterative algorithm for figuring out
the approximate solution of the said system. The motive of this paper is to re-
view the convergence analysis of a system of generalized nonlinear variational
inclusion problems in 2-uniformly smooth Banach spaces. The proposition
used in this paper can be considered as an extension of propositions for ex-
amining the existence of solution for various classes of variational inclusions
considered and studied by many authors in 2-uniformly smooth Banach spaces.

1. INTRODUCTION

In recent past, variational inequalities have been elongated in dissimilar directions
and sections of studies, using peculiar and ingenious techniques. One of such con-
ception is variational inclusions. Numerous problems that exist in engineering,
optimization and control situations can be designed by free boundary problems
which conveys to variational inequality and variational inclusion problems. For
details, please refer [1-5, 8-14, 18, 20-23, 25, 26].

2. RESOLVENT OPERATOR AND FORMULATION OF PROBLEM

Let X be a real 2-uniformly smooth Banach space equipped with norm ||.|| and a
semi-inner product [.,.]. Let C(X) be the family of all nonempty compact subsets
of X and 2% be the power set of X.

We need the following definitions and results from the literature.
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Definition 1. Let X be a vector space over the field F' of real or complex numbers.
A functional [.,.] : X x X — F is called a semi-inner product if it satisfies the
following:
() fo+9.2] = 0.2 + .2, Vw2 € X;
(ii) [Az,y] = Az, y], VAE F and z,y € X;
(ili) [z,z] >0, for x #0;
(iv) [fz,y]l* < [z, ][y, y].

The pair (X, .,.]) is called a semi-inner product space.

We observe that ||z|| = [#,2]2 is a norm on X. Hence every semi-inner product
space is a normed linear space. On the other hand, in a normed linear space, one
can generate semi-inner product in infinitely many different ways. Giles [7] had
proved that if the underlying space X is a uniformly convex smooth Banach space
then it is possible to find a semi-inner product, uniquely. Also the unique semi-inner

product has the following nice properties:
(i) [z,y] = 0 if and only if y is orthogonal to x, that is if and only if ||y|| <

lly + Az||, V scalars .

(ii) Generalized Riesz representation theorem: If f is a continuous linear func-
tional on X then there is a unique vector y € X such that f(z) = [z,y], Vz €
X.

(iii) The semi-inner product is continuous, that is for each x,y € X, we have
Rely, = + Ay] — Re[y, 2] as A — 0.

The sequence space [P, p > 1 and the function space L?, p > 1 are uniformly
convex smooth Banach spaces. So one can define semi-inner product on these
spaces, uniquely.

Example 1. [19] The real sequence space IP for 1 < p < oo is a semi-inner product
space with the semi-inner product defined by

[2,y] = ———= ) aylyilP 2, zy € 1P
Iy II”

Example 2. [7,19] The real Banach space LP(X, ) for 1 < p < oo is a semi-inner
product space with the semi-inner product defined by

(f.9)= s [ F@lg@l sonlg(e)du, fog € L7
HQHP X

Definition 2. [19,24] Let X be a real Banach space. Then:
(i) The modulus of smoothness of X is defined as

T4yl + [T —
o) =sup { IERALENE 0y gy = 450 )

px® _ g,
t

(il) X s said to be uniformly smooth if }in%
-



618 S. SHAFI

(iii) X s said to be p-uniformly smooth if there exists a positive real constant
¢ such that px(t) < ¢ t?, p > 1. Clearly, X is 2-uniformly smooth if there
exists a positive real constant ¢ such that py(t) < c t2.

Lemma 1. [19,24] Let p > 1 be a real number and X be a smooth Banach space.
Then the following statements are equivalent:

(i) X is 2-uniformly smooth.

(ii) There is a constant ¢ > 0 such that for every x,y € X, the following

inequality holds
[z +ylI? < [lell* + 2(y, fo) + llyll?,

where f, € J(z) and J(x) = {z* € X* : (z,2*) = ||z||* and ||z*|| = ||z||} is the
normalized duality mapping.

Remark 1. [19] Every normed linear space is a semi-inner product space (see[15]).
In fact by Hahn Banach theorem, for each x € X, there exists atleast one functional
fz € X* such that (z, f,) = ||z||>. Given any such mapping f from X into X*, we
can verify that [y, x] = (y, fz) defines a semi-inner product. Hence we can write
(ii) of above Lemma as

|z +yl1* < ||2I” + 2[y, 2] + c|lyl|*, Yo,y € X.
The constant ¢ is chosen with best possible minimum value. We call ¢, as the

constant of smoothness of X.

Example 3. The function space LP is 2-uniformly smooth for p > 2 and it is

p-uniformly smooth for 1 <p < 2. If 2 < p < oo, then we have for all x,y € LP,
|z +yl[* < [l2]1* + 2[y. «] + (p — DIyl [*.

Here the constant of smoothness is p — 1.

Definition 3. [16,19] Let X be a real 2-uniformly smooth Banach space. A map-
ping S : X — X is said to be:
(i) monotone, if [Sx — Sy, —y] > 0, Va,y € X,
(ii) strictly monotone, if [Sx — Sy,x — y] > 0, Va,y € X, and equality holds if
and only if x =y,
(iii) r-strongly monotone if there exists a positive constant r > 0 such that
[Sz — Sy,x —y] > r||lz —y|]?, Yo,y € X,
(iv) &-Lipschitz continuous, if there exists a constant § > 0 such that
15(z) = Sl < 8llz —yll, Yo,y € X,
(v) n-monotone, if [Sx — Sy,n(x,y)] >0, Vz,y € X,
(vi) strictly n-monotone, if [Sx— Sy,n(z,y)] > 0, Ya,y € X, and equality holds
if and only if x =y,
(vil) r-strongly n-monotone if there exists a positive constant r > 0 such that

[Sl’ - Syvn(xuy)] Z T||.’L' - y||27 V:E7y € Xa
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(viii) &-cocoercive if there exists a constant € > 0 such that
[Sz — Sy,z —y] > €]|Sz — Syl|*, Yo,y € X,
(ix) relaxed (&, 0)-cocoercive if there exist two constants £,0 > 0 such that
[Sz — Sy,z —y] > —¢||Sz — Syl|* + dl|l= — y|I*, Vz,y € X.
For £ =0 S is d-strongly monotone.

This class of mappings is more general than the class of strongly monotone
mappings.

Definition 4. Let X be a 2-uniformly smooth Banach space. Letn: X x X — X
be single-valued mappings and M : X x X — 2% be multi-valued mapping. Then

(1) n is said to be accretive, if

[n(ﬂmy),x - y} >0, Yo,y € X.

(ii) n is said to be strictly accretive, if

{n(%y),a? - y} >0, Va,y € X.

and equality holds only when x = y.
(iii) n is said to be r-strongly-accretive if there exists a constant r > 0 such that

[n(w,y),w = y} > rllz —y|f*, Va,y € X.
(iv) n is said to be m-Lipschitz continuous, if there exists a constant m > 0
such that
In(z,y)ll <mllz—yl, Vo, y € X,

(v) M is said to be n-accretive in the first argument if
u—uv,n(z,y)| >0, Ve,y € X, Yu € M(x,t),v € M(y,t), for each fixed ¢t € X,

(vi) p-strongly n-accretive if there exists a positive constant > 0 such that
[u—v,n(z,y)] > pllz —yl?, Yo,y € X,u € M(z,t),v € M(y,t).

Definition 5. Let X be a 2-uniformly smooth Banach space. Letn: X x X — X
be single-valued mappings, M : X x X — 2% be a multi-valued mapping, then M
is said to be m — n—accretive mapping if for each fixzed t € X, M(.,t) is n-accretive
in the first argument and (I + pM(.,t))X = X, Vp > 0.

Theorem 1. Let X be a 2-uniformly smooth Banach space. Letn: X x X — X be
q-strongly accretive mapping. Let M : X x X — 2% be m —n—accretive mapping. If
the following inequality : {u — v, n(x, y)} >0, holds ¥(y,v) € Graph (M(.,t)), then
(x,u) € Graph(M(.,t)), where Graph (M(.,t)) :={(z,u) € X x X :u € M(x,t)}.
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Theorem 2. Let n : X x X — X be g-strongly accretive mapping. Let M :
X x X — 2% be m — n—accretive mapping. Then the mapping (I + pM(.,t))~" is
single-valued, ¥ p > 0.

Definition 6. Letn: X x X — X be single-valued mapping. Let M : X x X — 2%
be m — n—accretive mapping. Then for each fired t € X, the resolvent operator

R%g"t) : X — X is defined by
M) (N 4
RMCH () = (I + pM (., 1))} (z), Yz € X.

Theorem 3. Letn: X x X — X be p-Lipschitz continuous and q-strongly accretive
mapping. Let M : X x X — 2% be m — n—accretive mapping. Then for each fized

t € X the resolvent operator of M, RM( 2 (x) = (I+pM(., 1) (x) is B—Lipschitz
q
continuous, that is,

HRM( 0 (x) — RMD( H < Ll —y|, Va,y,t € X.

where L = B
q

Definition 7. The Hausdorff metric D(-,-) on CB(X), is defined by
D(A,B) = max{sup inf d(u,v), sup inf d(u, v)}, A, B € CB(X),
wcAVEDB veEB UEA
where d(-,-) is the induced metric on X and CB(X) denotes the family of all
nonempty closed and bounded subsets of X.

Definition 8. [6] A set-valued mapping T : X — CB(X) is said to be ~-D-
Lipschitz continuous, if there exists a constant v > 0 such that

D(T(2),T(y)) <~lz —yll, Yo,y € X.
Theorem 4. [17] Let T : X — CB(X) be a set-valued mapping on X and (X, d)
be a complete metric space. Then:

(i) For any given v > 0 and for any given u,v € X and x € T(u), there exists
y € T(v) such that

d(z,y) < (14+v)D(T(u),T(v));
(ii) If T : X — C(X), then (i) holds for v =0, (where C(X) denotes the family
of all nonempty compact subsets of X ).
Lemma 2. Let {0} be a sequence of nonnegative real numbers such that
il < (I1=a™b" + "+ h"™, Vn > no,

o0
where ng is a nonnegative integer, {a™} is a sequence in (0,1) with > a™ = oo,
n=1

c"=o(a") and Y, K" < oco. Then lim b™ = 0.

n=0 n—oo
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Definition 9. A mapping S : X x X x X — X is said to be relaxed (£, 0)— cocoercive
if there exist constants £,8 > 0 such that

2

)

[S(;v,y,z) - S(z1,11,21),x — xl} > —§HS(m,y,z) — S(ml,yl,zl)Hz + 5Hx — xl‘

vxaxlvyayhzazl € X. (1)

Definition 10. A mapping S : X x X x X — X is said to be B-Lipschitz continuous
in the first variable if there exist constant 8 > 0 such that

H‘S(xayvz) - S(xlaylvzl)H < 5Hx — T, vxaxlayvylvzvzl € X. (2>

Now, we formulate our main problem.

Foreachi=1,2,3,let N; : XxXxX = X, fi : X = X, n, : XxX — X besingle-
valued mappings. Let 4;, B;, F; : X — C(X) be set-valued mappings. Suppose that
M; : X x X — 2% is m; — n,— accretive mapping. Then we consider the following
system of generalized nonlinear variational inclusion problems (in short, SGNVIP):
Find (z1,29,23) € X x X x X,u; € A;j(x;),v; € Bi(x;),w; € F;(x;) such that

0 € fi(z1) = fi(@2) + p {N1(u2, uz,ur) + Ma(fi(21),21)}

0 € fa(w2) = fa(x3) + po{Na(vs, v1,v2) + Ma(f2(72), 22)}

0 € f3(xs) — f3(x1) + ps{N3(wi, wa, ws) + M3(fs(z3),23)}, Vp; > 0. 5
3

Special Cases:

I. If in problem (3), fi(z1) = G(x), fi(x2) = H(x), such that G,H : X — X, fo =
f3 =0,N; = Ny = N3 = 0,p; = py = p3 = 1, then problem (3) reduces to the
following problem: Find = € X such that

0€ G(z) — H(z) + M(G(x), ). (4)

This type of problem has been considered and studied by Sahu et al.[19].

3. ITERATIVE ALGORITHM

First, we give the following technical lemma:

Lemma 3. Let X be a real 2-uniformly smooth Banach space. Let for each
i € {1,2,3} Ny, fi,n,; be single-valued mappings. Let A;,B;, F; : X — C(X) be
set-valued mappings, M; : X x X — 2% be m; — n;—accretive mappings. Then
(@4, ui, v, w;) where x; € X, u; € Aj(x;),v; € Bi(z;),w; € Fy(x;) s a solution of
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(3) if and only if (z;,u;, vi,w;) satisfies
frls) = Bl { falaa) = py N (g s, )}

fa(z2) = R%fr(z;m){fﬂ%) — paNa(vs, v1, “2)}

f3(x3) = Rﬁi?é;’”){fg(m) - p3N3(w1,w2,w3)}

—1
where Rﬁ%ﬁ’) = (I + pZMl(,xl)) are the resolvent operators.

Proof. Let (x;,u;,v;,w;) is a solution of (3), then we have

filzr) = R%fé;’xl){fl(zz) - PlNl(U27U3,U1)}

= filz) = <I+01M1(~7931))_1{f1($2) - PlNl(u27U3,U1)}
= Al + o M), e) = {£i(e) = oy V(2 us, )}
= 0¢€ fi(z1) = fi(z2) + pr{Ni(uz, uz, u1) + Mi(fi(21), 1)}
Proceeding likewise by using (5), we have
Fales) = BY2GH oles) — o3 Na(ws, 01, 2) )

< 0 € fa(wz) — fa(x3) + po{Na(v3,v1,v2) + Ma(fa(x2),22)}
and
f3($3) = R%fr(h’xd){fg(l‘l) — p3N3(w17w2,w3)}

< 0 € f3(xz) — fa(w1) + p3{N3(wi, w2, wz) + M3(f3(r3),23)}.

O

Lemma 3 allows us to suggest the following iterative algorithm for finding the

approximate solution of (3).

Iterative Algorithm 1. For each i = {1,2,3} given {z9,u?, v, w

X, ud € Ay(29),0? € Bi(29),w? € Fi(2?) compute the sequences {x

defined by the iterative schemes
M;s(.x3)

fa(@s) = Rpsts, ™ { a(al) = paa(w wh i) }

n Mo (.,xd n no,n ,n
fa(z3) :RP2?7(72 2){f2(x3)—pQNg(vg,wl,vz)}

9} where 29 €
wi'}

n ny,..n n n n Mi(.,z7 n n o,n ,n
351+1 =(1-a")z} + o ($1 _fl(%)‘*‘Rpl}vgl ){fl(‘rQ)_plNl(U‘QvuSﬂul)})

oo
where ™ is a sequence of real numbers such that >, o™ = oo, ¥n > 0.

n=0
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4. EXISTENCE OF SOLUTION AND CONVERGENCE ANALYSIS

Theorem 5. For each i € {1,2,3}, let X be a real 2-uniformly smooth Banach
space with k as constant of smoothness. Let N; : X x X x X — X be a relaxed
(&;,04)-cocoercive and v;-Lipschitz continuous in the first argument. Let f; be a
relazed (r;, s;)-cocoercive and B;-Lipschitz continuous in the first argument. Let
Ai, Bi, F; : X; — C(X;) be set-valued mappings such that A; is La, — D— Lipschitz
continuous, B; is Lp, — D—Lipschitz continuous and F; is Ly, — D— Lipschitz con-
tinuous. In addition, if there are constants t; > 0 such that

| R0 ) = RA=0 ()| < il = will, Vi € X (6)
and
17(t2+q)5) >0, 1*(t3+q)6) >0
such that
LiLo L (@5 + @5) (@3 + @)
0< | Py+ Dy
(1 ~(ta+ @5)) (1 ~(ts + @6))
L1LyL3®y (‘I>2 + @5) (‘1’3 + (1)6)
+ +i ) <1, (7)
(1 ~(ta+ @5)) (1 (s + @6))
where

Oy = \[1+2p (€A%, — 01) + kPR3 LS 5 @2 = \/1+ 205(E03L%, — 02) + Kp3v3LY, .

Py = \/1 +2p5(&3v3 L%, — 03) + kp3viLE; ®a= J 1+ 2(ri f7 — 1) + kB3

o5 = \/1 +2(raf3 — 52) + kB3 6 = \/1 +2(r3B3 — s3) + kf3.

Then the sequences {z'}, {ul'}, {vl'}, {w!} generated by above iterative algorithm
1 converges strongly to (z;,u;, v, w;) where (T;,u;, vy, w;) s a solution of above
problem (3).

Proof. From Lemma 3, Iterative Algorithm 1, (6) and by using Theorem 3, it follows
that
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n\ N n n n My (.27 n n o,,n ,n
(1-a™a} +a (‘rl _fl(xl)*'Rplffgl 1){f1(x2)_plNl(u2au37ul)})

- [(1 —a™)zy + a® ($1 — fi(z1) + R%féi’zl){fl(fﬁ?) = P11 (uz, us, ul)}>] H

IN

(1-a)

] f:clu +a”

(af = 21) = (1(@}) = i)

M (-2T)

or | Rans A es) - ooV, g ) )

_RP1u77.1 {f1($2) plNl U2, us3, U1 }
Ml( :E;L

+Rp, ){f1($2) p1N1(u2, us,uy)

_R%Iél’wl {fl(@) p1 N1 (w2, us, uq }H

IN

(1—am)

(af —21) = (1(a}) = fua0)

] —x1H +a”

+04"L1Hf1($5‘) — fi(z2) — py (Nl(ug,ug,u?) - Nl(u2,u3,u1)) H

+aty ||z} — 24|

IN

(1—a™)

2 — || + | (@t — 1) = (A(a}) = falar))|

+oz”L1H(335‘ —x3) — (f1(2}) — fl(xz)H

+Of”L1H($§’ —T2) = py (Nl(ug,ug, uf) — Ni(ug, us, Ul)) H

+aty ||z —aa]. (®)

Since Nj is relaxed (£, d1)-cocoercive and v4-Lipschitz continuous in the first ar-
gument, therefore by using Remark 1 , it follows that

2
|5 = w2) = py (Mo, ) = N (g ) )|
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2
7 = @ = 20, [Na(ug i ub) = Na(uz, g, wn), o - 2]

2
+kp%HN1(u§,u§,u’f) - Nl(u2au37U1)H

2 2 2
< ng - xgH - 2p1{ - §1HNl(ug,u§,u7f) - Nl(UQ,Ug,Ul)H + 51‘ x§ — xQH }
2
—|—k:p%1/%’ uy — u2H
2 2
o R R
2 2
—2p161Hx§ — xgH + kp%V%Hug — UQH
2 2
< ot — 2|+ 20,6002 (P(A2(a3), Ax(22)))
2 2
~2p10uJo — 2| + kot (D(Aa(a}), Ax(e2)))
2 2
S R R L
2 5o 2
—2p151‘ zh — .TQH + kpiviL?, ||2f — £L’2H
2
< (1L 2m(eALd, - 0 +kop ALY, ) ok - o
= H(xg —Z2) — py (Nl(uS,ué‘,u?) - N1(u2,u3,u1)) H < (th? - 332H 9)
where
O, — \/1 + 20 (6122, — 61) + kp22LA .
Also

o8 —aa| = @8 —22) — (fa(a}) — alw2)) + (alaB) — fa(w2)|

< @3 = w2) = (falah) — fale2)|
+ fot23) = fate2)| (10)
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M. .,x" n n n n L
= || RO ) — paNato o, o)} = R faws) = paNa(vs, o1, 02) |

Ms(.,xly n n n .n
= HRPQ?"(IQ 2){f2(353)_P2N2(Usa“1vvz)}

_Rrj’vz[??sé’wZ) {f2($3) — paNa(v3, v1, Ug)} H
Ma(.,@3 n n o ,n ,n
S HRP2?7§2 ){fQ(x3)_p2N2(v3aU17v2)}

—Rp, o, {f2($3) - P2N2(US,U17U2)}H
Mo (a2

+HRP2,,,2 {fz(ms)*pgNz(USa”h”?)}

_R/J}f%;m {f2($3) — paNa(vs, v1, U2)} H

< Lf|fale}) — fales) — pa(Na(0f 07 05) — Na(ws. v 0)) |
oot =]
< Lof|(at - a5) = (£(a8) - falay))

+L2H($U§ —3) — Py (Nz(?}?w?w?) — Na(vs, v1, vz)) H

+t2Ha:g —xQH. (11)

Since Ny is relaxed (€, d2)-cocoercive and vo-Lipschitz continuous in the first ar-
gument, therefore by using Remark 1, we have

2
| @5 = 2a) = o (Na(5 07 08) = Na(es, o1, v0)) |
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2
xh — :ch — 2p, [Ng(vg, v, vY) — Na(vs,v1,v2), 2§ — $3:|

2
+kP%HN2(U§L;U?aU§L) - Nz(vs,vl,vz)H

2 2 2
< Hx%’ — :ch - 2p2{ — €2HN2(U§L,U{L,U;) - NQ(vg,vl,vg)H + 52‘ g — xg,H }
2
+kp§1/§‘ vy — ng
2 2 2
< Ja=nff o st —of s -}
2
-ﬁ-kp%V%va —ng
2 ) 2
< oy = s+ 206003 (P(Ba(at), Baaa))
2 - 2
20wt — a5+ ko3 (D(Bo(ay), Ba(as))
2 2
S R R
2 2
_2p252‘ x5 — xgH + k‘p%l/%LQB3 Ty — :CgH
2
< (14 200(€03L%, — 02) + ko333, ) |o — ws|
= H(mg — T3) — pg (Ng(vgm?,vg) — NQ(’U37’01,U2)> H < <I>2Hx§ - .T3H (12)
where

s = \/1+2py(€03 L3, — 0a) + kpRr3LY,.

Since fy is relaxed (73, s2)-cocoercive and (B5-Lipschitz continuous, therefore by
using Remark 1, we have

[ — s — (rate) — ot
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2 2
2 — 2| —2[fa(a}) = falws). 2§ — 2] + k| fale}) — falas)|

2 2 2 2
< HIQL - 503‘ - 2{ — 1o\ fa(2]) — f2(9€3)H + sa|lxs — I3H } + kﬂ%‘ xy — 173”
2 ) 2 2 ) 2
¢ -l v —of -l off o
2 2 2
< (1 +2(r2f3 — s2) + kﬂz)‘ ry — z3H
— o = 25 = (fa(a8) = falws))|| < @s|os — s (13)
where
5 = \/1+ 2(ra83 — 52) + k2.
Similarly

5 = 22 = (fa(a) = falaa))| < @5
Substituting (12), (13) in (11), we have

Hf2($3) - f2(932)H < Lo(®2 + ‘I)s)Hl“? - xgH + tQHwS - xgH (15)
Combining (10), (14) and (15), we have

xl —mQH. (14)

e -] < e+ 1o 30—+ s -]

S (‘1)5 +t2)HJE§—IE2H+L2((I)2+‘I)5)H£Eg—l’3H. (16)

Again, we have
o = s = || @5 = 20) = (Faa) = fawa)) + (fa(a) = folas))|
< |[@5 = @9) = (fa(a}) = folwa)|| + | () = fo(as))||-  (17)

Now,
| fs(ap) = folas)|
Ms(.,x% n n n n T
= HRpS?vgg 3){f3($1)—Pst(wuwz,%)}—R%igg 3){f3($1)—Pst(wlvwsz:‘a)}H
Ms3(.,x n n n .n Ms(.,x%
< HRps?vgg 3){f3(l“1)—P3N3(w1»w27w3)}—Rp3?7(73 3){f3($1)—pgNS(w17w27w3)}H
+HR£§3§;JS){JC3($1) - Pst(whwmws)} - R%%;m){fB(%l) - 03N3(w17w27w3)}H
< Lo fa(at) = fal@r) = pa(Na(wh,wh,wh) — No(wn,wp,w) ) |+t — s
< Lng? - — (fs(x’f) - f3(151)>H



A NEW SYSTEM OF GENERALIZED NONLINEAR VARIATIONAL INCLUSION 629

—I—Lng? — 1 — ps (Ng(w?,wg,wg) — Ng(wl,wg,wg)) H + tgng — xgH (18)

Since Nj is relaxed (€5, d3)-cocoercive and v3-Lipschitz continuous in the first ar-
gument, therefore by using Remark 1, we have

2
H(ff —x1) — P3 (Ns(wﬁwé‘,w?) - Ns(w1,w27w3)) H

2
3| Na(wi w§, wg) = Na(wr, wa, ws)|

2
- le —2p4 {Ng(w{’,wg,wg) — N3(wi,wa, ws), z} — xl}

2 2 2
< Hir?—le _2/)3{_53HN3(U/?7’U737W:§L)_NB(w17w27w3)H +53‘$§L—$1H}
2
it |
2 2
< ot —w| + 205003 |wr - w |
2 2
ot ot
2 2
< ot = | + 205803 (PR, Fatan))
2 2
~2pus|ot — 2|+ ko2 (DR (D), Fa(o)))
2 2
< ’x?f:m” +2p3§3V§L%—~1 x?fle

2 2
72p353Hx? - le + kp3v3L3, Hx? - :c1H

2
< (1 205(€a3L3, — 0) + boBALE, )|t — o

= [0 = 21) = pa(Na(wf, w3, wh) — Na(wr,wa,w5)) | < @slat — ]| (19)

where

By = \/1 +205(€302L%, — 83) + kpRU3L3, .

Since f3 is relaxed (rs,ss)-cocoercive and [4-Lipschitz continuous, therefore by
using Remark 1, it follows that

[t =1~ Gatep) — st
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4| fse) — o)

v — || =2 psap) — fatwn). 2t -]

IA

Hxi’ - :le2 - 2{ - 7’3’ fa(z}) — fs(xl)H2 + 83Hx’f - x1“2}

2
—Hcﬂg’ - x1H

IA

2 2
o =]+ 2rssifet =

2 2
2ot | kot =

IA

2
m?—le

(1 +2(r3f3 — s3) + kﬁg) ’

= |

o =21 = (fa(at) = falen) | < @ et — a1

| (20)

where

D = \/1 +2(r3f3 — s3) + kp3.
Similarly

5 = 2 = (fa(a3) = fa(aa))|| < @[} — s (21)
Substituting (19), (20) in (18), we have
Hfs(fvg) - f3(933)H < L3(®s + ‘I’s)‘

Combining (17), (21) and (22), we have

x?—le—l—tngg—xgH. (22)

IN

@6‘

Ty — 1:3” + L3 (<I>3 + <I>6> H:c? — le + tngg — x;»,H

(5-0)

— (1—(t3+‘1>6)>HJ3§L—x3H §L3<©3+@6)HJZ?—JJ1H

IN

xrh — m” + Ls (<I>3 + <I>6) Hm’f - le

Ls (<1>3 + c1>6) ‘
(1 — (t3 + ‘%))

= |

zh — 1:1H (23)
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Substltutmg (23) in (16), we have

LoLs (<1>2 + <1>5) (<1>3 + @6) ‘

< (12 + @) (1 (ts + 20))

-+

e (1= 0 - < LaLy (@2 + @5 ) (5 + @) ot o
(1 (3 + Pg )
o < LaLy (s + @5 ) (5 + ) ot - o] o
(1 — (ta+ @5)) (1 (ts + @6))
Substituting (24) in (9),
@3 = 2) = oy (Moo w5 ) = Nz, 3, 0)) |
Ly Ly®y (@ + s ) (B + ) ] )

<
(1= (2 + @5)) (1= (13 + @)
Since f; is relaxed (r1, $1)-cocoercive and (;-Lipschitz continuous, therefore follow-
ing the same procedure as in (13), (20), we have

ot = 21 = (f1@D) = frl@))| < @lfot — (26)
and similarly, we have
a3 =22 = (£1(@5) = frl@2))]| < @fos — 22 (27)
where
oy = \/1 +2(r1 8% — 51) + kB2
Combining (24) and (27)
a3 =22 = (1@3) — i)
. LoLs (<I>2 n <I>5) (@3 + <I>6) . xlu o8

(1 —(ta+ @5)) (1 —(ts+ ‘%)) H
Substituting (25), (26), (28) in (8), it follows that

|-

< {(1 —a") 4+ a" P+ "Dy

n+1 n
1 — 21

LiLoLs (‘I’z + ‘135) (‘1)3 + (1)6)
(1 — (ta + %)) (1 —(ts + (1’6))
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Ly LyLsd, (q>2 + <I>5) (cb3 T @6)
(1 —(ty + <I>5)) (1 —(ts + @6))
LyLoLs (@2 + <1>5) (¢>3 + @6)
(1 —(ta+ <I>5)) (1 — (ts + @6))
Ly LoLs®, (<1>2 + <1>5) (<I>3 + <1>6)

+a” +a™ty Haﬂf — H

S 1—a" 1—(1)4—(134

R
(1 —(t2+ %)) (1 —(ts + <I>6))

<(1—a™1—-h) “x?—xl‘]. (29)

where i < 1 by assumption (7). Therefore by using Lemma 2, {z'} converges

strongly to a solution of (3). This completes the proof. a

5. CONCLUSION

A new system of generalized nonlinear variational inclusion problems has been
introduced in semi-inner product spaces. Using resolvent operator technique, an
iterative algorithm has been constructed to solve the proposed system and the con-
vergence analysis of the iterative algorithm has been investigated. The obtained
results generalizes many known classes of variational inequalities and variational
inclusions in the literature. The results presented can be used for approximation
solvability of some different classes of problems in the literature.

Declaration of Competing Interests The author declare that there is no conflict
of interest regarding the publication of this article.
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