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Abstract
In this paper we consider r(x)−Kirchhoff type equation with variable-exponent nonlinearity of the form

utt −∆u−
(
a+b

∫
Ω

1
r(x)
|∇u|r(x)dx

)
∆r(x)u+βut = |u|p(x)−2u,

associated with initial and Dirichlet boundary conditions. Under appropriate conditions on r(.) and p(.), stability
result along the solution energy is proved. It is also shown that regarding arbitrary positive initial energy and
suitable range of variable exponents, solutions blow-up in a finite time.
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1. Introduction
Let Ω be a bounded domain of Rn(n≥ 1) with a smooth boundary ∂Ω. Consider the following r(x)−Kirchhoff type hyperbolic
boundary value problem

utt −∆u−
(
a+b

∫
Ω

1
r(x)
|∇u|r(x)dx

)
∆r(x)u+βut = |u|p(x)−2u, (x, t) ∈Ω× (0,∞), (1.1)

u(x, t) = 0 (x, t) ∈ ∂Ω× (0,∞), (1.2)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈Ω, (1.3)

where a,b,β are positive constants and ∆r(x) is called r(x)−Laplace operator defined as

∆r(x)u = div(|∇u|r(x)−2
∇u).
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Here, we have the following condition on the variable exponents:
(A1) the exponents r(.) and p(.) are given measurable functions on Ω such that:

2 < r1 ≤ r(x)≤ r2 < ∞,

2 < p2 ≤ p(x)≤ p2 < ∞,

with
r1 := essin fx∈Ω

r(x), r2 := esssupx∈Ω
r(x),

p1 := essin fx∈Ω
p(x), p2 := esssupx∈Ω

p(x).

Before going any further, it is worth pointing out some results about the Kirchhoff-type equations. Kirchhoff equation

utt −M
(∫

Ω

|∇xu|2dx
)
∆xu = f (x, t), (1.4)

where M(s) = as+b, a,b > 0, was proposed by Kirchhoff [1] as an extension of the classical D’Alembert’s wave equation for
free vibrations of elastic strings. In the last decade many papers in the literature have investigated the existence of solutions
and blow-up results to the Kirchhoff-type problem. For example, Matsuyama and Ikehata [2] considered the following
initial-boundary value problem

utt −M
(
‖∇u(t)‖2

2

)
∆u+δ |ut |p−1ut = µ|u|q−1u, t ≥ 0, x ∈Ω,

u(0,x) = u0(x), ut(0,x) = u1(x), x ∈Ω,

u(t,x)|∂Ω = 0, t ≥ 0.

They proved a global solvability in the class H2×H1
0 and energy decay of the problem without the smallness of the initial data in

a certain sense. Ono [3] investigated the global existence, decay properties, and blow-up of solutions to the nonlinear Kirchhoff
strings with nonlinear dissipation. Pişkin [4] considered the initial-boundary value problem for the following extensible beam
equation with nonlinear damping and source terms

utt +∆
2u−M

(
‖∇u‖2)

∆u+ |ut |p−1ut = |u|q−1u (x, t) ∈Ω× (0.T ),

u(x,0) = u0(x), ut(x,0) = u1(x) x ∈Ω,

u(x, t) =
∂

∂ν
u(x, t) = 0 x ∈ ∂Ω,

author established the existence of the solution by Banach contraction mapping principle and the decay estimates of the solution
by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, the blow up of solutions in finite time
has been proved.
In another study, the following initial boundary value problem for a Kirchhoff type plate equation has been considered by Zhou
[5]:

utt +α∆
2u−a∆u−b

(∫
Ω

|∇u|2dx
)γ

∆u+λut = µ|u|p−2u in ΩT ,

u(x,0) = u0(x), ut(x,0) = u1(x) in Ω,

u(x, t) = ∂ν u(x, t) = 0 on Γ.

He proved the blow-up of solutions and the lifespan estimates for three different ranges of initial energy. Global existence of
solutions has been proved by the potential well theory, and decay estimates of the energy function have been established by
using Nakao’s inequality. For more results about the Kirchhoff type equations we refer the readers to [6, 7, 8, 9, 10].
On the other hand, it is known that modeling of some physical phenomena such as flows of electro-rheological fluids, nonlinear
viscoelasticity and image processing give rise to equation with nonstandard growth conditions, that is, equations with variable
exponents of nonlinearities. In [11], Shahrouzi and Kargarfard proved the blow-up result for the following Kirchhoff type
problem:

utt −M(‖∇u‖2)∆u−∆m(x)u+h(x, t,u,∇u)+βut = φp(x)(u), in Ω× (0,+∞){
u(x, t) = 0, (x, t) ∈ Γ0× (0,+∞)

M(‖∇u‖2) ∂u
∂n (x, t) = αu−|∇u|m(x) ∂u

∂n , (x, t) ∈ Γ1× (0,+∞)
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u(x,0) = u0(x), ut(x,0) = u1(x), in Ω,

and proved the blow up of solutions with positive initial energy and suitable conditions on datas. Recently, Antontsev et. al
[12], investigated the following nonlinear Timoshenko equation with variable exponents

utt +∆
2u+M

(
‖∇u‖2

L2(Ω)

)
∆u+ |ut |m(x)−2ut = |u|q(x)−2u,

and by using the Faedo–Galerkin method, they proved the local existence of the solution under suitable conditions. Also, the
nonexistence of solutions with negative initial energy has been investigated. (see also [13, 14, 15])
Dai and Hao [16] studied the following problem

−M
(∫

Ω

1
p(x)
|∇u|p(x)dx

)
div(|∇u|p(x)−2

∇u) = f (x,u), in Ω

u = 0, on ∂Ω.

By means of a direct variational approach and the theory of the variable exponent Sobolev spaces, they established conditions
ensuring the existence and multiplicity of solutions for the problem. Recently, Hamdani et. al. [17] investigated the following
nonlocal p(x)−Kirchhoff problem:

−(a−b
∫

Ω

1
p(x)
|∇u|p(x)dx)div(|∇u|p(x)−2

∇u) = λ |u|p(x)−2u+g(x,u), in Ω

u = 0, on ∂Ω.

They obtained a nontrivial weak solution by using the Mountain Pass theorem. For more results in Kirchhoff type equations
with variable-exponents nonlinearities we refer the reader to [18, 19, 20, 21, 22, 23] and references therein.

Motivated by the aforementioned works, in the present paper, we study a r(x)− Kirchhoff type equation with variable-
exponent nonlinearities. Under appropriate conditions on the initial data and variable exponents, we prove asymptotic stability
and blow up of solutions with positive initial energy.
The rest of paper is organized as follows. In Section 2, we recall some definitions and Lemmas about the variable-exponent
Lebesgue space, Lp(.)(Ω), the Sobolev space, W 1,p(.)(Ω) and additional conditions that be use for main results. In Section 3,
we prove the asymptotic stability of solutions for appropriate initial data and variable exponents. Finally, the blow-up result has
been proved with positive initial energy and suitable conditions on data and variable exponents, in fourth Section.

2. Preliminaries
Throughout this work, all the functions considered are real-valued. We denote by ‖.‖q the Lq-norm over Ω . In particular, the
L2-norm is denoted ‖.‖ in Ω. In order to study problem (1.1)-(1.3), we need some theories about Lebesgue and Sobolev spaces
with variable-exponents (for detailed, see [24, 25, 26, 27, 28]). Let p(x)≥ 1 and measurable, we assume that

C+(Ω) = {h|h ∈C(Ω), h(x)> 1 ∀x ∈Ω},

h+ = max
Ω

h(x), h− = min
Ω

h(x) f or any h ∈C(Ω),

Lp(x)(Ω) =
{

u| u is a measurable real− valued f unction,
∫

Ω

|u(x)|p(x)dx < ∞

}
.

We equip the Lebesgue space with a variable exponent, Lp(x)(Ω), with the following Luxembourg-type norm

‖u‖p(x) := inf
{

λ > 0
∣∣∣∫

Ω

|u(x)
λ
|p(x)dx≤ 1

}
Lemma 2.1. [24, 28] Let Ω be a bounded domain in Rn

(i) the space (Lp(x)(Ω),‖.‖p(x)) is a Banach space, and its conjugate space is Lq(x)(Ω), where 1
q(x) +

1
p(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have ∣∣∫
Ω

uvdx
∣∣≤ ( 1

p−
+

1
q−
)
‖u‖p(x)‖v‖q(x).

(ii) If p,q ∈C+(Ω), q(x)≤ p(x) for any x ∈Ω, then Lp(x)(Ω) ↪→ Lq(x)(Ω), and the imbedding is continuous.
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The variable-exponent Lebesgue Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | ∇u exists and |∇u| ∈ Lp(x)(Ω)}.

This space is a Banach space with respect to the norm ‖u‖W 1,p(x)(Ω) = ‖u‖p(x)+‖∇u‖p(x). Furthermore, let W 1,p(x)
0 (Ω) be the

closure of C∞
0 (Ω) in W 1,p(x)(Ω). The dual of W 1,p(x)

0 (Ω) is defined as W−1,p′(x)(Ω), by the same way as the usual Sobolev
spaces, where 1

p(x) +
1

p′(x) = 1.
If we define

p∗(x) =

{
N p(x)

N−p(x) , p+ < N
∞, p+ ≥ N,

then we have

Lemma 2.2. [24, 28] Let Ω be a bounded domain in Rn then for any measurable bounded exponent p(x) we have
(i) W 1,p(x)(Ω) and W 1,p(x)

0 (Ω) are separable Banach spaces;
(ii) if q ∈C+(Ω) and q(x)< p∗(x) for any x ∈Ω, then the imbedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact and continuous;
(iii) if p(x) is uniformly continuous in Ω then there exists a constant C > 0, such that

‖u‖p(x) ≤C‖∇u‖p(x) ∀u ∈W 1,p(x)
0 (Ω).

By (iii) of Lemma 2.2, we know that the space W 1,p(x)
0 (Ω) has an equivalent norm given by ‖u‖W 1,p(x)(Ω) = ‖∇u‖p(x).

We recall the trace Sobolev embedding in Lebesgue space with a constant exponent

H1
Γ0
(Ω) ↪→ Lq(Γ1) f or 2≤ q <

2(n−1)
n−2

where
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}

and the embedding inequality

‖u‖q,Γ1 ≤ Bq‖∇u‖2, (2.1)

where Bq is the optimal constant.
We sometimes use the Young’s inequality

ab≤ βaq +C(θ ,q)bq′ , a,b≥ 0, θ > 0,
1
q
+

1
q′

= 1, (2.2)

where C(θ ,q) = 1
q′
(θq)−

q′
q are constants.

3. Asymptotic stability
In this section we prove a stability result for the solution energy. For this goal we make the following assumptions:
(A2) There exist ε > 0 sufficiently small and β sufficiently large such that

p2 ≤
1

ε(β − ε)
≤ r1 ≤ r(x)≤ r2 ≤ 2ε(β − ε)r2

1.

The energy associated with problem (1.1)-(1.3) is given by

E(t) =
1
2
(
‖ut‖2 +‖∇u‖2)+ (a+ b

2

∫
Ω

1
r(x)
|∇u|r(x)dx

)∫
Ω

1
r(x)
|∇u|r(x)dx−

∫
Ω

1
p(x)
|u|p(x)dx. (3.1)

Our main result in this section reads in the following theorem:

Theorem 3.1. Let the conditions (A1) and (A2) are satisfied. Then the energy E(t) of problem (1.1)-(1.3) tends to zero as time
goes to infinity.
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To prove the above theorem, we need following Lemmas. First, we define

F(t) = E(t)+ ε

∫
Ω

uutdx,

for some ε > 0.

Lemma 3.2. Let u be the solution of (1.1)-(1.3). Then the energy functional satisfies

E ′(t) =−β

∫
Ω

|ut |2dx≤ 0. (3.2)

Proof. By multiplying equation (1.1) by ut and integrating over Ω, using integration by parts, we obtain (3.2) for any regular
solution. This equality remains valid for weak solutions by a simple density argument.

The following Lemma estimates an appropriate upper bound for F ′(t):

Lemma 3.3. Under the assumptions of Theorem 3.1, F(t) satisfies, along the solution, the estimate

F ′(t)≤−(β − ε)‖ut‖2− ε‖∇u‖2− εβ

∫
Ω

uutdx− ε

∫
Ω

|u|p(x)dx− ε(a+b
∫

Ω

1
r(x)
|∇u|r(x)dx)

∫
Ω

|∇u|r(x)dx. (3.3)

Proof. To prove this Lemma, at first we differentiate F(t) to obtain

F ′(t) = E ′(t)+ ε‖ut‖2 + ε

∫
Ω

uuttdx,

thanks to Lemma 3.2, we get

F ′(t)≤−(β − ε)‖ut‖2 + ε

∫
Ω

uuttdx. (3.4)

By multiplying (1.1) in u, it is easy to see that∫
Ω

uuttdx =−‖∇u‖2− (a+b
∫

Ω

1
r(x)
|∇u|r(x)dx)

∫
Ω

|∇u|r(x)dx−β

∫
Ω

uutdx+
∫

Ω

|u|p(x)dx. (3.5)

Combining (3.5) with (3.4), proof is completed.

Now, from definition of F(t) and Lemma 3.3, we have

F ′(t)+
1

(β − ε)
F(t)≤−

(
β − 1

2(β − ε)
− ε

)
‖ut‖2−

(
ε− 1

2(β − ε)

)
‖∇u‖2−a

(
ε− 1

r1(β − ε)

)∫
Ω

|∇u|r(x)dx

−b
(

ε

r2
− 1

2r2
1(β − ε)

)(∫
Ω

|∇u|r(x)dx
)2
−
( 1

p2(β − ε)
− ε

)∫
Ω

|u|p(x)dx−
∫

Ω

uutdx. (3.6)

Using the Young and Poincaré inequalities, we get

|
∫

Ω

uutdx| ≤ ε

2
‖∇u‖2 +

B2
2

2ε
‖ut‖2, (3.7)

where B2 is the best constant in Poincaré inequality.
Utilizing (3.7) into (3.6) to get

F ′(t)+
1

(β − ε)
F(t)≤−

(
β − 1

2(β − ε)
− ε− B2

2
2ε

)
‖ut‖2−

(
ε

2
− 1

2(β − ε)

)
‖∇u‖2−a

(
ε− 1

r1(β − ε)

)∫
Ω

|∇u|r(x)dx

−b
(

ε

r2
− 1

2r2
1(β − ε)

)(∫
Ω

|∇u|r(x)dx
)2
−
( 1

p2(β − ε)
− ε

)∫
Ω

|u|p(x)dx. (3.8)

Thanks to the (A2), we deduce

F ′(t)+
1

(β − ε)
F(t)≤ 0. (3.9)

Integrating over (0,t), we get from (3.9)

F(t)≤ F(0)e
−t

β−ε ,

according to (A2), this inequality show that F(t)→ 0 as t→ ∞. Since E(t)≤C0F(t), thus the proof of Theorem 3.1 has been
completed.
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4. Blow-up
In this section we are going to prove that for appropriate initial data some of the solutions blow up in a finite time. To prove the
blow-up result for certain solutions with positive initial energy, we assumed that:
(A3)

p1 ≥ r2 +2, r2
2 ≤ 2r2

1 ≤ 2r2
2.

At this point, we shall add a new variable v(x, t) to the system (1.1)-(1.3). Let us define for any λ > 0

v(x, t) = e−λ tu(x, t). (4.1)

A direct computation by substituting (4.1) into the problem (1.1)-(1.3), yields

vtt +(2λ +β )vt +λ (λ +β )v−∆v−(a+b
∫

Ω

1
r(x)
|eλ t

∇v|r(x)dx)div(|eλ t
∇v|r(x)−2

∇v)= |eλ tv|p(x)−2v, (x, t)∈Ω×(0,∞) (4.2)

v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞), (4.3)

v(x,0) = u0(x), vt(x,0) = u1(x)−λu0(x), x ∈Ω. (4.4)

The energy function related with problem (4.2)-(4.4) is given by

Eλ (t) = e−2λ t
∫

Ω

|eλ tv|p(x)

p(x)
dx− 1

2
I(t), (4.5)

where

I(t) = ‖vt‖2 +λ (λ +β )‖v‖2 +‖∇v‖2 +2ae−2λ t
∫

Ω

|eλ t∇v|r(x)

r(x)
dx+be−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)2

Now we are in a position to state our blow-up result as follows:

Theorem 4.1. Let the conditions (A1) and (A3) are satisfied. Assume that Eλ (0)> 0. Then there exists a finite time t∗ such
that the solution of the problem (1.1)-(1.3) blows up in a finite time, that is

‖u(t)‖→+∞ as t→ t∗.

To prove the blow-up result, we need the following Lemma.

Lemma 4.2. Under the conditions of Theorem 4.1, the energy functional Eλ (t), defined by (4.5), satisfies

Eλ (t)≥ er2λ tEλ (0) ∀t ∈ R+. (4.6)

Proof. A multiplication of equation (4.2) by vt and integrating over Ω gives

E ′
λ
(t) = (2λ +β )‖vt‖2−bλe−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)2−ae−2λ t

∫
Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx

+e−2λ t
∫

Ω

λ (p(x)−2)
p(x)

|eλ tv|p(x)dx−be−2λ t(∫
Ω

|eλ t∇v|r(x)

r(x)
dx
)(∫

Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx

)
,

next, for any ε > 0, we have

E ′
λ
(t)− εEλ (t) = (2λ +β +

ε

2
)‖vt‖2 +b(

ε

2
−λ )e−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)2

+
ε

2
λ (λ +β )‖v‖2 +

ε

2
‖∇v‖2

+aεe−2λ t
∫

Ω

|eλ t∇v|r(x)

r(x)
dx−ae−2λ t

∫
Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx+ e−2λ t

∫
Ω

λ (p(x)−2)
p(x)

|eλ tv|p(x)dx
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−εe−2λ t
∫

Ω

|eλ tv|p(x)

p(x)
dx−be−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)(∫

Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx

)
. (4.7)

Utilizing additional condition (A1), we get

E ′
λ
(t)− εEλ (t)≥ b(

ε

r2
2
− λ (r2−2)

r2
2

− λ

r2
1
)e−2λ t(∫

Ω

|eλ t
∇v|r(x)dx

)2
+a(

ε

r2
− λ (r2−2)

r2
)e−2λ t

∫
Ω

|eλ t
∇v|r(x)dx

+
1
p1

(λ (p1−2)− ε)e−2λ t
∫

Ω

|eλ tv|p(x)dx.

Finally, if we set ε := r2λ then by using (A3) we arrive at

E ′
λ
(t)− εEλ (t)≥ 0,

and by integration over (0, t) we obtain the desired result.

Proof of Theorem 4.1. For obtaining the blow-up result, the choice of the following functional is standard

ψ(t) = ‖v(t)‖2, (4.8)

then

ψ
′(t) = 2

∫
Ω

vvtdx, (4.9)

ψ
′′(t) = 2

∫
Ω

vvttdx+2‖vt‖2. (4.10)

A multiplication of equation (4.2) by v and integrating over Ω gives∫
Ω

vttvdx =−(2λ +β )
∫

Ω

vvtdx−λ (λ +β )‖v‖2−‖∇v‖2− e−2λ t(a+b
∫

Ω

|eλ t∇v|r(x)

r(x)
dx)

∫
Ω

|eλ t
∇v|r(x)dx.

+e−2λ t
∫

Ω

|eλ tv|p(x)dx (4.11)

By using definition of Eλ (t) in (4.11), we have∫
Ω

vttvdx≥ r2Eλ (t)+
r2

2
‖vt‖2 +λ (

r2

2
−1)(λ +β )‖v‖2 +(

r2

2
−1)‖∇v‖2 +

b(r1−2)
2r1

e−2λ t(∫
Ω

|eλ t
∇v|r(x)dx

)2

+(1− r2

p1
)e−2λ t

∫
Ω

|eλ tv|p(x)dx− (2λ +β )
∫

Ω

vvtdx,

and taking into account (A3) to obtain∫
Ω

vttvdx≥ r2Eλ (t)+
r2

2
‖vt‖2 +λ (

r2

2
−1)(λ +β )‖v‖2− (2λ +β )

∫
Ω

vvtdx. (4.12)

By substituting (4.8)-(4.10) in (4.12) we get

ψ
′′(t) ≥ 2r2Eλ (t)+(r2 +2)‖vt‖2 +λ (λ +β )(r2−2)ψ(t)− (2λ +β )ψ ′(t)

≥ (r2 +2)‖vt‖2 +λ (λ +β )(r2−2)ψ(t)− (2λ +β )ψ ′(t), (4.13)

where Lemma 4.2 and hypotheses of Theorem 4.1 about initial energy have been used.
Multiplying (4.13) in ψ(t), we get

ψ(t)ψ ′′(t)≥ (r2 +2)‖v‖2‖vt‖2 +λ (λ +β )(r2−2)ψ2(t)− (2λ +β )ψ(t)ψ ′(t), (4.14)
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and finally we obtain

ψ(t)ψ ′′(t)≥ (r2 +2)
4

(ψ ′(t))2 +λ (λ +β )(r2−2)ψ2(t)− (2λ +β )ψ(t)ψ ′(t),

where the inequality (ψ ′(t))2 ≤ 4‖v‖2‖vt‖2 has been used.
Thus by the modified concavity method we deduce that there exists a finite time t∗ such that

lim
t→t∗

ψ(t) = ∞.

Consequently, the proof of Theorem 4.1 has been completed.
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[13] E. Pişkin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal.

Appl. 11(1), 37–45 (2020).
[14] M. Shahrouzi, Blow up of solutions for a r(x)−Laplacian Lamé equation with variable-exponent nonlinearities and
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