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ABSTRACT. In this work, we study several approximation properties of Szdsz-
Mirakjan-Durrmeyer operators with shape parameter A\ € [—1,1]. Firstly,
we obtain some preliminaries results such as moments and central moments.
Next, we estimate the order of convergence in terms of the usual modulus
of continuity, for the functions belong to Lipschitz type class and Peetre’s
K-functional, respectively. Also, we prove a Korovkin type approximation
theorem on weighted spaces and derive a Voronovskaya type asymptotic the-
orem for these operators. Finally, we show the comparison of the convergence
of these newly defined operators to certain functions with some graphics and
an error of approximation table.

1. INTRODUCTION

One of the famous linear positive operators in the theory of approximation,
Szész [29] and Mirakjan 18] introduced following operators

Smliiy) = ﬁ_ojm (). 1)

m

where m € N, y > 0, p € C[0,00) and Szész-Mirakjan basis functions s, ;(y) are
defined as below:

—my (MY) @)

Sm,j(y) =e ]l
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In 1985, Mazhar and Totik [17] proposed Durrmeyer type integral modifications
of operators as follows:

Don(i9) = 55 (0) / Smg (D1 () dt, y € [0, 00), 3)

where s,;(y) given as in (2).

Recently, some various approximation properties of operators have been
introduced by several authors. We refer the readers some papers on this direc-
tion [1,3L{L11H15].

A short time ago, the Bézier basis with shape parameter A € [—1,1] which is
presented by Ye et al. [30], has attracted attention by some authors. Firstly, Cai et
al. [7] introduced A—Bernstein operators and obtained various approximation theo-
rems, namely, Korovkin type convergence, local approximation and Voronovskaya-
type asymptotic. Acu et al. [2] proposed the Kantorovich type A—Bernstein opera-
tors and established some approximation features such as order of convergence, in
connection with the Ditzian-Totik modulus of smoothness and Griiss-Voronovskaya
type theorems. In 2019, Qi et al. [25] introduced a new generalization of Szdsz-
Mirakjan operators based on shape parameter A € [—1, 1] as below:

S (115 9) Zsmyky ( > (4)

where Szdsz-Mirakjan basis functlons Sm,;(A;y) with shape parameter A € [—1,1] :

Nm A = Sm - m 5
8m,0(A1Y) = sm,0(y) m+15 +1.1(y)
~ m—2i+1
Sm,i(AY) = Smi(y) + A <mz_13m+1,i(y)
m—2t—1 .
S i) (=12 y €. (6)

For the operators defined by 7 they studied some theorems such as Korovkin
type convergence, local approximation, Lipschitz type convergence, Voronovskaja
and Griiss-Voronovskaja type. Also, we refer some recent works based on shape
parameter A € [—1, 1], see details: [5,/6L(8/19+24,26[{28].

Motivated by all above-mentioned papers, we construct the following A\—Szdsz-
Mirakjan-Durrmeyer operators as:

Dyr(1159) mzsmmy/smm (Hdt, ye0,00), (6)
where 5., j(A;y) (j =0,1,..00) given in and A € [—1,1].

This work is organized as follows: In Sect. we compute some preliminaries
results such as moments and central moments. Then, in Sect. we obtain the
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order of convergence in respect of the usual modulus of continuity, for the functions
belong to Lipschitz class and Peetre’s K-functional, respectively. Next, In Sect.
we prove a Korovkin type convergence theorem on weighted spaces also in Sect.
we establish a Voronovskaya type asymptotic theorem. Finally, with the aid of
Maple software, we present the comparison of the convergence of operators @ to
certain functions with some graphics and error of approximation table.

2. PRELIMINARIES

Lemma 1. [25]. For the A—Szdsz-Mirakjan operators Sm, A (1;y), following results
are satisfied:

Sma(Liy) =1;

1
Smat;y) =y + [

— e (mtly _ 9y \
m(m — 1) ’

2 —(m+1)y_1_4 1)
Sm7/\(t2;y):y2+7i+|:y+e (m+ )y:|/\7

m?(m —1)
3 2
Smaty) =y* + = + 2
m m
1—e Dy 2y 4 3(m — 3)(m + 1)y? — 6(m + 1)y°
+ A
m3(m —1)
6y>  Ty?
S’m,)\(t4;y) = y4 + v =+ % + %
m  m2  m
e~ DY 1 4 2my 4+ 2(3m — 11)(m + 1)y?
_|_
m4(m —1)
A(m —8)(m +1)%*y® — 8(m + 1)%y*
+ A
mi(m —1)

Lemma 2. For the operators defined by (@, we obtain the following moments

Dia(Liy) = 1 (7)
1—e(m+y _9
e y] A

m(m — 1)

1
Dpa(t;y) =y + — + [
m

dy 2 1—e (MDY 2y — 2(m + 1)y?
D n(P5y) =y* + = + — 2); 9
Alt5Y) =y +m+m2+{ m2(m — 1) ’ )

9y 18y 6

Dy 59)=9y* + — + — + —
At y) y+m+m2 m3

N [2 —2e= MDY 4y 4 (m — 11)(m + 1)y? — 2(m + 1)y?

m3(m — 1)

] 3)\(;10)
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16y 7 2y 96y 24

Dy, m,A <t7y) m3 m

)y

2

N {24 — 24e <m+1>y +y(m —25) +18(m — 7)(m + 1

m*(m —1)

2(m? — Tm — 23)(m + 1)y® + 4(m + 1)3y4] o)

m*(m — 1)

Proof. In view of the following relation

_ T(j+u+1)
/Smj(t)t“dt=m (i) v — 7
’ L(j+1

/ (G+1)

o0
it is easy to get > S ;(A;y) = 1, hence we find (7).
§=0

(11)

Now, with the help of Lemma |1}, we will compute the expressions and (@

e (mit)?
Dya(tiy) =m) s, )\y/ mtl 7 tdt
Z J i

N gy L TG +2)
= s v9) m2T(j + 1)

1
= Sm (s *Sm 1;
A y)+m A(Ly)

— e (mthy _ 9y \
m(m —1) '

|
<
4+
|
+
—

~ T —mt (M)
Dm7,\(t2;y) = stm,j(/\;y)/e t(j!)tdt

3 2
= S (t?y) + —Smalty) + 5 Sma(Liy)

dy 2 [1 — e~ (MY _ 9y 9(m + 1)y?

a2y 42
_y+m+m2+ m2(m —1)
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Similarly, from Lemma [, we can get expressions and by simple compu-
tation, thus we have omitted details. [l

Corollary 1. As a consequence of Lemmal[3, we arrive the following relations:

— e (mthy _ 9y

() Dty = = + [

- m+e—(m+1)y +2y .
- m(m —1) '
.. 2y 2
2.,
(i1) DA ((t —y)%5y) = pous + oo
L[ (m — V)ye= DY 4 (m + 2)y + (2m — 2(m + 1)?)y?
m2(m —1)

m(m —1)

= an(y);

2

2y 2
m - m?

2+ 2(m — 1)ye= (MDY 4 2(m 4 2)y + 2(2m — 2(m + 1)?)y?
’ m2(m — 1)

IN

= B (y);
1292 48y 24
(iid) D ((t —9)*y) = 2 + puve R ey s
24 — 24e~ (MDY 4 y(m — 25) + 18(m — 7)(m + 1)y?
+
m4(m —1)
2(m? = Tm = 23)(m + 1)y® + 4(m +1)%y*
mi(m —1)

N 12ye~ (MY — 12y 4 2492 — 6(m — 11)(m + 1)y° + 12(m + 1)y*

m3(m —1)
+6y2(1 —e DY) 1293 — 12(m + 1)%y*
m2(m — 1)
2y3(1 — e~ (m+Dy) 4 4y4)2)\
m(m — 1) '

3. DIRECT THEOREMS OF D, » OPERATORS

In this section, we discuss the order of convergence in connection with the usual
modulus of continuity, for the function belong to Lipschitz type class and Peetre’s
K-functional, respectively. Let the space Cg[0,00) denotes the all continuous and
bounded functions on [0, 00) and it has the sup-norm for a function u as below:

[0,00) = SUp lu(y)l -
y€[0,00)

2]
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The Peetre’s K-functional is defined as

Ko(pu,m) = Veci;l[gm) {llw=vIl+nlv"I},

where 7 > 0 and C%[0,00) = {v € Cp[0,00) : V', " € Cp[0,00)}.
From [9], there exists an absolute constant C' > 0 such that
Ky (psm) < Cwa(ps /), n>0, (12)
where

wa(psn) = sup  sup |u(y +22) — 2u(y + 2) + p(y)|,
0<z<n y€[0,00)

is the second order modulus of smoothness of the function u € Cg[0, c0). Also, we
define the usual modulus of continuity of u € Cg[0,00) as follows

w(p;n) == sup  sup |u(y+z) — p(y)l.
0<a<n ye€[0,00)

Since n > 0, w(p;n) has some useful properties see details in [4].
Further, we give an elements of Lipschitz type continuous function with Lipr,(¢),
where L > 0 and 0 < ¢ < 1. If the following expression

() —p@)| <Lit—y*,  (tyeR)
holds, then one can say a function p belongs to Lipy(¢).

Theorem 1. Let p € Cpl0,0), y € [0,00) and X € [—1,1]. Then, the following
inequality is satisfied:

[ Do x(13y) = p(y)] < 2w(ps v/ B (9)),
where B,,(y) given as in Corollary[1

Proof. Using the well-known property of modulus of continuity |u(t) — u(y)| <
(1 i |t—5y|> w(p;0) and operating D, A(.;y), we arrive

Dalpis) = )] < (1+ 3Dmallt = ol59) ) wlps),

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality and by Corollary |1, we get

Do) = )| < (14 5y/Dal€ = 00) ) wlis

< (1 + ;JW) w(p; 6).

Choosing 6 = +/,,,(y), thus we have the proof of this theorem. O

Theorem 2. Let p € Lipr(€), y € [0,00) and X € [—1,

—

]. Then, we obtain

<
2

| Draox(159) — p(y)| < L(B,(y)) 2.
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Proof. Taking into consideration the linearity and monotonicity properties of the
operators @, it gives

Do (1) — 19)] < Do a(11(t) — uw)]39)
<mzsmj (M / e (T ) ) de
0
<LIm) Smj(X\ e I dt
JZO y{ —y

Utilizing the Holder’s inequality with p; = Z and ps = 2%4, from Corollary |1f and
Lemma [2| we arrive

N

o0

Do) = )] < E§ i3, 00 [ R 0= )2
J=0 0 I

2—¢
2

ng,j ()‘7 y)
=0
2-¢

= LD ((t— )%} (Doa(1i9)}

< L(B,(y))2.

Hence, we obtain the required sequel. (I

Theorem 3. For all p € Cg[0,00), y € [0,00) and X\ € [-1,1], the following
inequality holds:

1D r(159) = 1) < O (15 53/ B3 F (@ ()2) + (1t o (1))

where C' > 0 is a constant, ou,(y), B,,(y) defined as in Corollary[i]

Proof. We denote v, \(y) := y+L+ {w

[0, 00) for sufficently large m. We define the following auxiliary operators:
DA (1:y) = Dma(13y) = (V2 (1) + 1) (13)
From @ and , we find

] A, it is obvious that v, \(y) €

m(m—1)

ﬁm,)\(t - Y y) =0.
Using Taylor’s formula, one has
t
€0 = €W+ - €W+ [E- 0 Wdu, (€€ CRo.0). (1)

Yy



414 R. ASLAN

Operating lA)m,\(.; y) to , it gives
t

DA (&) — £(y) = Do A ((t — 1) (9);y) + ﬁm)\(/(t —u)&" (u)du; y)

t Y A (Y)
— Dy / (t — w)E" (u)dus y) / (Yo () — W)E" (u)d.
Yy Yy

Taking Lemma [2| and into the account, we get
¢

Duna(€9) = €0)| < D [ (0~ 0 (i)

<[l [ {Dmallt = )% 0) + () — )"}
< {Bm(y) + (am@))?} [[€"]]-
From @, and , it deduces the following

[Donr (5:)] < 1D (15 )|+ 2 il < sl Do (1) + 2 ) < 31l

Also by and using above relation, we get

Do (13y) — ()| < ‘f)m,x(u —&y) — (L&)
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| Do €9) = €| + () = (v w)

< Al =€l + {Bm®) + a @) 7] +w (s lam ()] -
Hence, if we take the infimum on the right hand side over all ¢ € C%[0,00) and by

, we arrive

D) — )] < s P OmOITE o)
< Clos (i 5/ Bra) T (o)) + (1l 1))
Thus, the proof is completed. O

4. WEIGHTED APPROXIMATION

In this section, we will establish the Korovkin type convergence theorem on
weighted spaces. Let B,2[0,00) be the space of all functions & verifying the con-
dition |k(y)] < M.(1 + %), y € [0,00) with constant M,, which depend only
on k. We denote with Cy2[0,00) the set of all continuous functions belonging to

l=(w)]
1+y2

B,2[0,00) and it is endowed with the norm [|s||,. = sup and also we define
[

y€[0,00

C2[0,00) :={x: Kk € Cp2[0,00), lim Wl 50},

y—00 14y?

Theorem 4. For all p € C;2[0,00), we arrive

Dm ) -
lim  sup | DA (115 y) — p1(y)]

=0.
M=y€[0,00) 1+y?

Proof. Considering to the Korovkin type convergence theorem presented by Gadzhiev
[10], we want to show that operators verifies the following condition:
) D a(t759) = °| _
im  sup 3 =
M %0y€(0,00) l+y

By @, the first condition in is clear for s = 0.
For s =1, using , we have

0, s=0,1,2. (15)

|Di(ty) —yl _ |m—1+A 1 3A y
sup 5 < sup s+ sup =
y€[0,00) 1+y m(m —1) | yeo,00) 1 + ¥ m(m —1)| yejo,00)L +¥
Hence,
Doa(ty) —
lim sup L‘ygyl = 0.
M=y €[0,00) 1+y

Similarly for s = 2, using @7 we get
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sup
y€[0,00) 1+y2

dm(m — 1) — 6\
m2(m —1)

Dy A (t%5y) — o2 2((m —1) + A 1
| Din,x (%5 9) y|<' ((ﬂ;b )+ A) sup .
m?(m—1) |00l Y
Yy 4(m + 1)\
sup ) )
yelo,00) L T Y m?(m — 1)

y2

sup )
y€[0,00) 1+y2

It follows
. | D (t%5) — 92|
lim sup 5
M=%, c[0,00) 1+y

This gives the proof of this theorem. O

=0.

5. VORONOVSKAYA TYPE ASYMPTOTIC THEOREM

In this section, we will prove Voronovskaya type asymptotic theorem. Firstly we
consider the following lemma, which we will use in the proof of our main theorem.

Lemma 3. Lety € [0,00) and X € [—1,1]. Then, the following results are satisfied:
(1) lim mDp \(t = y;9) =1,

(i1) lim mDo 5 ((t = y)*y) = 2y(1 = 2y),

(ii) lim m? Do a((¢ = y)*y) = 4y*(1 - )(2y +3).
Theorem 5. Let € Cy2[0,00) such that i, " € Cy2[0,00) and A € [—1,1], then
we have for any y € [0,00) that

im o [Di (13 9) = 1(y)] = 1/ (y) +y(1 = 29)” (y)-

Proof. Suppose that u, 1/, " € Cy2[0,00) and y € [0, 00). Using Taylor’s expansion

formula, we find

u(t) = p(y) + (t—y)p'(y) + %(t — )2 (y) + (t —y)’Alt; y). (16)

In (16), A(t;y) is a Peano of the remainder term and by the fact that A(;;y) €
C;2[0,00), we arrive tlimA(t;y) =0.
( un,

After operating D,, (.;y) to , then
1
Din(p3y) = 1(y) = D n((E = 9); )1’ (y) + 5 Dm (= v)% )" (y)
+ D n((t = y)* At ) ).

If we take the limit of the both sides of above expression as m — 0o, hence
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lim m (Do x (139) — 1(y))

= lim m <Dm,>\((t —y)siyk(y) + %Dm,/\((t =)%Y (Y) + D ((t = ) Altsy); y)) :
(17)

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality to the last term on the right
hand side of the above relation, it gives

im m Do 5 ((E=y)* Altsy)iy) < \/n}iglmDm,A(AQ(t;y); y)\/n}gnoomQDm,x((t —y)hy)-

Since A(t;y) € Cy2[0,00), then from Theorem tli_r}lA(t; y) = 0. It becomes
y

lim Dy, z(A%(y);y) = A%(y;y) = 0. (18)

m—r oo

Combining — and by Lemma (iii), one has
lim mDmA((t = y)*Altsy)iy) = 0.
m—oo
Hence, we obtain the following desired sequel
Hm m (D (3y) — p(y)] = 1/ (y) +y(1 = 291" (y).

m— 00

6. GRAPHICAL AND NUMERICAL ANALYSIS

In this section, with the aid of Maple software, we present some graphics and
an error of approximation table to see the convergence of operators @ to certain
functions with the different values of m and A parameters.

In Figure [I] we show the convergence of operators (6)) to the function u(y) =
ysin(y)/2 (black) for A = 1, m = 10 (red), m = 30 (green) and m = 75 (blue). In
Figure we show the convergence of operators @ to the function u(y) = ysin(y)/2
(black) for A = —1, m = 10 (red), m = 30 (green) and m = 75 (blue). It is obvious
from Figure[l]and Figure [2| that, as the values of m increases than the convergence
of operators (6) to the functions x(y) becomes better. In Figure 3] we compare
the convergence of operators (green) and operators (6)) (red) with the function
u(y) = 1 —sin(my) (black) for A = 1 and m = 10. It is clear from Figure [3| that,
operators @ has better approximation than operators . Also, in Tabl we
present an error of approximation of operators (6) to function u(y) = ysin(y)/2
for the certain values of m and A € [—1,1]. We can check from Table 1] that, as
the value of m increases than the error of approximation of operators @ to u(y) is
decreases. One the other hand, for A > 0, the absolute difference between operators
(6) and p(y) is smaller than between operators and p(y).
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function
— m=10 =1
s =30

— =75

FIGURE 1. The convergence of operators Dy, x(u;y) to the func-
tion u(y) = ysin(y)/2 for A =1 and m = 10,30, 75

function
— m=10 =1

| m=30

—m=75

FIGURE 2. The convergence of operators Dy, x(u;y) to the func-
tion p(y) = ysin(y)/2 for A = —1 and m = 10, 30,75
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— function
D
— )

10
10,1

0.5

FIGURE 3. The convergence of operators D,, x(p;y) and Dy, (1; y)
to the function u(y) =1 — sin(wy) for A =1 and m = 10

TABLE 1. Error of approximation D,, x(u;y) operators to u(y) =
ysin(y)/2 for m = 10, 30, 75,150

A w(y) = Do)

m =10 m = 30 m="75 m = 150
-1 0.0779267654 0.0274289801 0.0110996263 0.0055687488
-0.75 0.0778118774 0.0274227761 0.0110991971 0.0055686940
0 0.0774672138 0.0274041639 0.0110979093 0.0055685292
0.75 0.0771225502 0.0273855517 0.0110966215 0.0055683644
1 0.0770076622 0.0273793477 0.0110961923 0.0055683096
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