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 The production of land use and land cover (LULC) maps using UAV images obtained by RGB 
cameras offering very high spatial resolution has recently increased. Vegetation indices (VIs) 
have been widely used as an important ancillary data to increase the limited spectral 
information of the UAV image in pixel-based classification. The main goal of this study is to 
analyze the effect of frequently used RGB-based VIs including green leaf index (GLI), red- 
green-blue vegetation index (RGBVI) and triangular greenness index (TGI) on the 
classification of UAV images. For this purpose, five different dataset combinations comprising 
of RGB bands and VIs were formed. In order to evaluate their effects on thematic map 
accuracy, four ensemble learning methods, namely RF, XGBoost, LightGBM and CatBoost were 
utilized in classification process. Classification results showed that the use of RGB UAV image 
with VIs increased the overall accuracy (OA) values in all cases. On the other hand, the highest 
OA values were calculated with the use of Dataset-5 (i.e. RGB bands and all VIs considered). 
Additionally, the classification result of Dataset-4 (i.e. RGB bands and TGI) showed superior 
performance compared to Dataset-2 (i.e. RGB bands and GLI) and Dataset-3 (i.e. RGB bands 
and RGBVI). All in all, the TGI was found to be useful for improving classification accuracy of 
UAV image having limited spectral information compared to GLI and RGBVI. The improvement 
in overall accuracy reached to 2% with the use of RGB bands and TGI index. Furthermore, 
within the ensemble algorithms, CatBoost produced the highest overall accuracy (92.24%) 
with the dataset consist of RBG bands and all VIs considered.  

 
 
 
1. Introduction  

 
Gathering accurate and reliable land use and land 

cover (LULC) information about the Earth's surface is a 
prerequisite for the success of a wide range of 
applications carried out at local, regional and global 
scales (Colkesen and Ertekin, 2020). Recent 
developments in the field of unmanned aerial vehicle 
(UAV) technologies and imaging sensor systems have 
led to a renewed interest in extracting required 
information about surface objects from high spatial 
resolution UAV images (Yao and Qin, 2019).  

Supervised pixel-based image classification that 
one of the popular classification techniques to produce 
LULC maps in the literature (Huth et al., 2012; Tehrany 
et al., 2014; Goldblatt et al., 2018). Pixel-based image 
classification is generally based on the assignment of the 
image pixels into pre-defined LULC classes using their 
digital numbers. The RGB-UAV-based platform is an 

alternative and low-cost aerial platform technology 
ensuring the capturing surface images at very high 
spatial and temporal resolutions. Although the RGB 
cameras are able to provide high spatial information 
about the surface, their spectral resolutions are limited 
for distinguishing spectrally similar pixels (Jang et al., 
2020). In order to overcome this limitation, the ancillary 
data such as vegetation indices, texture features and 
principal components have been widely used in image 
classification process. Combinations of various 
vegetation indices (VIs) and RGB bands have been 
frequently used in the literature to improve the 
classification performance of RGB-UAV images (Sumesh 
et al., 2021). Many vegetation indices based on different 
sensor specifications have been developed since the 
launch of the first remote sensing satellite, Landsat.  
They are widely used for quantitative and qualitative 
evaluations of vegetation information (Xue and Su, 
2017). 
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Choosing the most appropriate classification 
algorithm for classifying UAV images having limited 
spectral information is also one of the important factors 
effecting the thematic map accuracy. In recent years, 
there has been great interest in classifying digital 
images using ensemble learning methods in the 
literature due to their robust, effective and fast 
performance (Zhiwei et al., 2016).  The main idea behind 
the ensemble learning is to combine predictions of 
multiple learners (e.g. decision trees) to final decision  
on a given unknown sample (Tonbul et al., 2020).  
Previous studies confirmed that decision tree based 
ensemble learning algorithms such as bagging, boosting, 
RF, XGBoost, LightGBM and CatBoost perform better 
than utilize of single decision tree classifier (Sagi and 
Rokach, 2018; Shi et al., 2021). 

The main purpose of this study is to analyse the 
effect of the use of RGB based vegetation indices on the 
LULC classification accuracy. For this purpose, three 
widely preferred vegetation indices, namely green leaf 
index (GLI), red-green-blue vegetation index (RGBVI) 
and triangular greenness index (TGI) were formed as 
ancillary dataset. RF, XGBoost, LightGBM and CatBoost 
ensemble learning algorithms were utilized to perform 
classification process. Classification results were 
evaluated using overall accuracy (OA), Kappa coefficient 
and F-score measures. 

 
2. Study area and dataset 

 
The study area covers the north-eastern part of 

Gebze Technical University located in Gebze district of 
Kocaeli province. As shown in Figure 1, within the 
boundaries of the study area, faculty buildings, other 
man-made structures, green vegetation and bare soil 
areas exist. Study area consists of six main LULC classes: 
concrete including gray stone floor, road, gray and white 
roofs, forest class including deciduous trees, coniferous 
trees and grass, parkour including bicycle road, 
basketball and tennis court, shadow, soil and tile roof. 

 
 

 
 

 
Figure 1. Study area 

 

In this study, UAV-based high-resolution remote 
images were acquired on 24 September 2020 by 
Phantom IV Pro V2.0 drone equipped with a 20 MP RGB 
camera (Table 1). “Pix4Dmapper” application was 
preferred for flight planning. The images collected from 
80 m flight altitude with 80% forward overlap and %70 
side overlap, resulting in ground sampling distance 2.3 
cm. Agisoft PhotoScan software was used to process the 
obtained images and as a result, an 8-bit ortho-mosaic 
with a spatial resolution of 5 cm was produced. 

 
Table 1. Specifications of Phantom IV Pro V2.0 

Technical Specifications Value 
Sensor 1 inch 20MP 
Weight 1375 gr 
Max Flight Time  30 min 
Max Speed 45 mph (72 km/h) 
Max Ascent Speed  6 m/s 
Max Descent Speed  4 m/s 
GNSS Module GPS/GLONASS 

Hover Accuracy Range 
Vertical: ±0.1 m 
Horizontal: ±0.3 m 

 
3. Methodology 

 
In this study, the effect of the use of RGB based GLI, 

RGBVI and TGI vegetation indices on the accuracy of 
thematic maps produced from UAV image were 
analyzed. For this purpose, training and validation 
pixels for each LULC classes were determined on UAV 
images. Four robust ensemble learning algorithms, 
namely, RF, XGBoost, LightGBM and CatBoost, were 
utilized to construct classification model using training 
samples. Then, the datasets consisting of the 
combinations of UAV images and vegetation indices 
were classified with the constructed classification 
models and thematic maps were produced. In order to 
conduct the accuracy assessment, OA, kappa coefficient 
and F-scores were utilized, and derived results 
analyzed.   
 
3.1. Vegetation indices (VIs) 

 
VIs are obtained from the mathematical equations 

applied to two or more spectral bands to emphasize the 
vegetation characteristics. Various VIs based on RGB 
bands have been developed. In this study, GLI, RGBVI 
and TGI indices, frequently used in various studies in the 
literature, were evaluated.  

GLI was developed by the Louhaichi et al. (2001) 
for determination of wheat planted areas using 8-bit 
RGB camera. GLI values take values between -1 and +1. 
Negative values correspond to soil and lifeless features, 
whereas positive values correspond to green vegetation.  

 

𝐺𝐿𝐼 =  
2 × 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

2 × 𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
                     (1) 

 
RGBVI was developed for biomass estimation by 

Bendig et al. (2015). It can be described as the 
normalized difference of the squared green spectral 
band and the product of blue×red bands.  
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𝑅𝐺𝐵𝑉𝐼 =  
𝐺𝑟𝑒𝑒𝑛2 − 𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛2 + 𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑
                    (2) 

 
TGI, based on red, green and blue spectral bands, is 

sensitive to chlorophyll content at leaf and canopy (Hunt 
et al. 2011).  Since this indice uses the bands in the 
visible region, chlorophyll content can be estimated 
with TGI on images acquired from UAVs equipped with 
an RGB camera. 

 
𝑇𝐺𝐼 = 𝐺𝑟𝑒𝑒𝑛 − 0.39 × 𝑅𝑒𝑑 − 0.61 × 𝐵𝑙𝑢𝑒           (3) 
 

3.2. Ensemble learning methods 
 
3.2.1. Random forest (RF) 
 

The RF algorithm, proposed by Breiman (2001), is 
one of the most popular decision tree based ensemble 
learning algorithms used for performing pixel-based 
image classification procedure due to its robust and 
efficient performance (Nitze et al., 2015; Fu et al., 2017). 
RF utilizes multiple decision trees in that each tree 
trained using bootstrapped samples of input dataset for 
constructing classification model. Majority voting rule is 
applied to make the final prediction and simple majority 
rule is applied for final prediction (Colkesen and 
Kavzoglu, 2017). Based on bootstrapping strategy, 
decision trees are trained using two thirds of input 
dataset and the remaining one-third of input dataset is 
utilized to evaluate the classification error (Tonbul et al., 
2020). The results of each tree are aggregated, and final 
model output is composed. RF requires two main 
parameters to employ RF, such as the number of sample 
trees (ntree) and the number of variables suitable for 
splitting (mtry). 

 
3.2.2. Extreme gradient boosting (XGBoost) 
 

XGBoost, one of the advanced and effective tree-
based algorithm presented by Chen and Guestrin 
(2016), has been used in various remote sensing 
applications due to its effective and fast performance 
(Zou et al., 2019; Abdi, 2020). It works based on 
essential of gradient boosting that construct multiple 
decision trees iteratively and transform weak learners 
to strong learners in each iteration (Sahin, 2020). The 
main difference of XGBoost than other tree-based 
algorithms, it uses the loss function to correct the error 
of weak learners of previous model in each iteration and 
employs regularization parameter to prevent 
overfitting to produce accurate classification model 
(Hamedianfar et al., 2020; Ustuner et al., 2020). XGBoost 
consists of several tuning parameters that should be 
defined by user-side.  Seven parameters including eta, 
gamma, min_child_weight, subsample, 
colsample_bytree, max_depth, nround were optimized 
for XGBoost ensemble model in this study. 

 
3.2.3. Light gradient boosting machines (LightGBM) 

 
LightGBM, developed by Microsoft (2017), is one of 

the most preferred open-source and gradient boosting 
based method for regression and classification 

problems (Ma et al., 2018; Sun et al., 2020). It uses a 
histogram-based model that speeds up the training 
process and enables a more accurate model to be 
constructed (Al Daoud, 2019).  The main difference 
between LightGBM and other gradient-based methods 
are that it utilizes gradient-based one-side sampling 
(GOSS) algorithms that divide training samples into 
smaller subsamples and leaf-wise growth strategy 
(Chen et al., 2019). LightGBM has several parameters 
and “boosting”, “learning_rate”, “num_leaves”, 
“min_data”, “sub_features”, “feature_fraction”, 
“bagging_fraction” and  “max_depth” were tuned to 
construct classification model (Ke et al., 2017).   
 
3.2.4. Categorical boosting (CatBoost) 

 
CatBoost, novel gradient boosting method, was 

developed by Yandex (2018) for handle different 
datasets such as categorical features using random 
permutation technique and minimize overfitting 
problems (Pham et al., 2020). CatBoost consists of two 
main training steps. In the first step, training data is 
randomly divided into subsets and labels are 
transformed into integer. Categorical features are 
converted into numerical in the second step. The 
maximum depth of trees (depth), the control of training 
time (learning_rate), the number of trees in model 
(iteration), coefficient at the L2 regularization 
(l2_leaf_reg), the percentage of variables to utilize at 
each split selection (rms) and the controlling number of 
splits for numerical variables (border_count) were 
utilized for implementation of CatBoost ensemble 
classification model. 

 
4. Results 

 
In this study, the effect of VIs on pixel based LULC 

classification of RGB image acquired by UAV was 
investigated.  To achieve this purpose, three VIs (i.e., GLI, 
RGBVI and TGI) were calculated using equation given in 
section 3.2 and stretched to 0-255 pixel values. In order 
to construct classification model and to evaluate 
accuracies of thematic maps, totally 30,000 pixels (i.e. 
5,000 pixels for each LULC class) were selected as 
training and 6,000 pixels (i.e. 1,000 pixels for each LULC 
class) were selected as validation. Five datasets were 
created using RGB bands and different combination of 
VIs to evaluate classification results: Dataset-1 includes 
only RGB band, Dataset-2 consists of RGB bands and GLI, 
Dataset-3 consists of RGB bands and RGBVI, Dataset-4 
consists of RGB bands and TGI and Dataset-5 
corresponds to combination of RGB bands and all VIs 
considered. On the hand, parameters of each classifier 
should be determined by user side to obtain optimal 
classification models. Tuning parameters required for 
each ensemble methods were determined by grid 
search algorithm and estimated values were given in 
Table 2. Note that all classification processes and 
accuracy assessments were performed in R software. 
Additionally, the “randomForest”, “xgboost”, “lightgbm” 
and “catboost” packages were utilized for 
implementation of RF, XGBoost, LightGBM and CatBoost 
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ensemble methods, respectively and “caret” package 
was utilized to calculate accuracy assessment measures. 
 
Table 2. Optimal parameters of ensemble methods  

Method Parameter Value 

RF 
ntree 380 
mtry 2 

XGBoost 

eta 0.3 
gamma 0 

min_child_weight 0.6 
subsample 0.8 

colsample_bytree 1 
max_depth 4 

nround 400 
 boosting goss 

LightGBM 

learning_rate 0.3 
num_leaves 20 

min_data 80 
sub_features 0.8 

feature_fraction 1 
bagging_fraction 1 

max_depth 4 

CatBoost 

depth 4 
learning_rate 0.3 

iteration 400 
l2_leaf_reg 0.7 

rms 0.95 
border_count 128 

 
Accuracy assessment results of each Dataset were 

given in Table 3. As could be seen from the table, the 
highest OA values estimated for Dataset-5 as 91.2% 
(Kappa value of 0.89), 92.2% (Kappa value of 0.90), 
92.0% (Kappa value of 0.90) and 92.4% (Kappa value of 
0.91) by the use of RF, XGBoost, LightGBM and CatBoost, 
respectively. On the other hand, the lowest OA values 
were observed for Dataset-1 with all ensemble learning 
algorithms. Furthermore, the OA values of Dataset-4 
calculated from all classifiers were very close to the OA 
values obtained with Dataset-5 (lower about 0.1%). 
Additionally, it was observed that calculated OA values 
increased by about 0.3% with the use of Dataset-2 
compared to use of Dataset-3. When the classification 
results based on OA accuracy were evaluated it was seen 
that while the CatBoost showed quite similar 
performance to XGBoost and LightGBM, the highest OA 
value was obtained as 92.24% with the CatBoost 
algorithm. On the other hand, it has been observed that 
the classification performance of the RF algorithm is 
lower than that of the others for all datasets except for 
Dataset-1.   

In order to evaluate and compare class-based 
accuracy performances, F-score values were also 
calculated, and derived statistics were given in Table 3. 
It can be seen that concrete, forest and parkour classes 
were classified with over 91% classification accuracy by 
all ensemble algorithms. Furthermore, the highest F-
score values were estimated for parkour class, whereas 
the worst class-based accuracy calculated for soil class. 
The reason why the class-level accuracy of the soil class 
was lowest may be that various substances that were 
mixed into the soil and have similar spectral properties 
with other LULC classes could be easily distinguished in 
the images obtained with the UAV. Moreover, with the 
classification of the RGB bands with all calculated 

indices (Dataset-5), the F-score value of soil class 
produced by all classifiers increased up to 4% compared 
to results of Dataset-1. Furthermore, the accuracies of 
concrete class estimated by XGBoost, LightGBM and 
CatBoost for Dataset-4 were significantly higher than 
result of RF (about 3%).   

 
Table 3. Classification results of each dataset  

 
To visual comparison of datasets, thematic maps 

were produced by RF and CatBoost classifiers which 
yield the lowest and highest OA values and presented in 
Figure 2. Determined misclassification error on the 
thematic maps are highlighted with a dashed white 
circle. According to visual analysis, thematic maps 
produced by CatBoost were smoother than those of RF. 
On the other hand, main classification errors were 
occurred among concrete, soil, shadow and tile roof.  It 
was observed that both ensemble methods were 
insufficient in distinguishing soil, shadow and concrete 
classes. This visual result is consistent with the F-score 
values of the soil class.  As can be seen from marked 
areas, CatBoost outperformed to RF in assigning the 
pixels corresponding to the concrete class to the correct 
land cover class.  Additionally, the noise generated in the 
concrete class was reduced in the thematic map 
produced by RF using Dataset-5 compared to other 
thematic maps by RF. 

 

Method 
LULC 
Class 

F-scores 
D-1 D-2 D-3 D-4 D-5 

RF 
 

Concrete 91.3 91.8 92.4 92.4 94.6 
Forest 97.5 97.0 96.9 97.2 96.7 
Parkour 98.5 99.4 99.5 99.7 99.2 
Shadow 89.2 90.4 90.0 90.5 89.9 
Soil 79.5 81.2 79.5 80.0 80.0 
Tile roof 84.5 85.8 85.9 87.2 87.3 
OA 90.0 90.8 90.6 91.1 91.2 
Kappa 0.88 0.89 0.89 0.89 0.89 

 Concrete 91.6 92.8 93.4 95.5 95.8 
 Forest 97.4 96.3 96.1 97.9 97.8 
 Parkour 98.0 98.7 98.4 98.7 99.4 
 Shadow 88.7 91.1 91.1 89.8 91.1 

XGBoost Soil 79.7 82.2 80.2 81.3 81.2 
 Tile roof 84.4 86.6 86.7 88.5 88.2 
 OA 89.9 91.2 90.9 92.0 92.2 
 Kappa 0.88 0.89 0.89 0.90 0.90 

LightGBM 

Concrete 92.9 92.5 93.8 95.3 95.7 
Forest 97.1 96.6 96.6 97.6 97.1 
Parkour 97.1 98.8 98.8 98.6 98.8 
Shadow 88.4 90.8 91.4 90.2 91.2 
Soil 79.2 81.4 81.2 81.9 81.2 
Tile roof 85.1 86.2 86.7 88.3 88.2 
OA 89.8 91.0 91.3 91.9 92.0 
Kappa 0.88 0.90 0.90 0.90 0.90 

CatBoost 

Concrete 92.2 92.6 95.5 95.3 95.8 
Forest 97.1 97.7 96.5 97.8 97.7 
Parkour 97.9 99.7 99.1 99.1 99.6 
Shadow 89.5 90.7 90.4 90.7 91.4 
Soil 80.1 82.1 81.3 82.5 81.2 
Tile roof 85.6 86.8 88.4 88.9 88.3 
OA 90.4 91.5 91.8 92.3 92.4 
Kappa 0.89 0.90 0.90 0.91 0.91 
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Figure 2. Thematic maps of each dataset produced by 
(a) RF, (b) CatBoost. 
 
4. Discussion and conclusions   

 
In recent years, there has been an increasing interest 

in the production of thematic maps with UAV images 
using ensemble learning algorithms due to their 
effective classification performance. VIs used to 
highlight the features of the Earth’s provide a great 
advantage in increasing the spectral information in the 

pixel-based classification of RGB images. In this context, 
the effects of widely used three VIs (i.e. GLI, RGBVI and 
TGI) on the classification of UAV image having three 
spectral bands were investigated. For this purpose, five 
datasets containing different combination of VIs and 
UAV image were created and each dataset was classified 
with RF, XGBoost, LightGBM and CatBoost. 

The following conclusions can be made by 
analyzing the classification results obtained. OA values 
obtained by the classification of UAV image with VIs 
(Dataset-5) increased by 1% with the use of RF and by 
2% with other remaining methods compared to results 
of visible spectral bands only (Dataset-1). This could be 
probably result of the increase in spectral information 
by means of vegetation indices usage. Kerkech et al. 
(2018), Wan et al. (2018) and Lu et al. (2021) analyzed 
the performance of several VIs derived from RGB drone 
images. They reported that while the highest 
classification and regression accuracies were computed 
in the processing of the RGB image with all evaluated 
vegetation indices, the accuracy decreased as the 
spectral information decreased.  On the other hand, the 
OA values of Dataset-4 (combination of RGB bands and 
TGI) generated by all the algorithms are about 0.1% less 
than the classification results of Dataset-5. Additionally, 
all ensemble learning methods yielded higher 
classification results in the use of UAV image with TGI 
compared to datasets consisting of aggregation of RGB 
band with other indices (Dataset-2 and Dataset-3). 
These results clearly showed that TGI was found to be 
the most useful indices to identification of LULC classes 
in classifying three-band UAV images for considered 
dataset used in this study. Fuentes-Peailillo et al. (2018) 
analyzed the various RGB-based vegetation indexes for 
distinguishing soil and vegetation areas and they found 
that TGI index showed superior performance than other 
VIs. Starý et al. (2020) conducted comparative study 
using seven RGB-based VIs including GLI, RGBVI and TGI 
indexes for estimating hops plants in hop gardens and  TGI  
outperformed to others in their study. Hindersah et al. 
(2018) also found similar results with our study. 
Moreover, CatBoost, relatively new ensemble learning 
algorithm, showed superior classification performance 
in separation of LULC classes compared to other 
algorithms. The implementation of CatBoost for 
classification and regression problems of remote 
sensing problems in the literature is very limited. In 
addition, pixel-based classification of UAV images has 
not been made with this algorithm until now. However,  
it was verified by Samat et al. (2020), Ha et al. (2021) 
and Pham et al. (2021)  that CatBoost have effective and 
superior classification and regression performance 
compared to other bagging, boosting and other 
classifiers (i.e., RF, XGBoost, SVM). Our findings also 
contribute their studies. Different vegetation indices can 
be evaluated with various robust classifiers (e.g., 
support vector machines, canonical corelation forest, 
rotation forest) in order to better analyse the effect of 
VIs on the classification of the RGB image. In addition, 
further studies are required to evaluate the 
effectiveness of the use of RGB derived vegetation 
indices on object-based classification accuracy. 
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