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ABSTRACT. The class IV2 of 2-nondegenerate constant Levi rank 1 hypersurfaces M5 ⊂ C3 is governed by Poc-
chiola’s two primary invariants W0 and J0. Their vanishing characterizes equivalence of such a hypersurface M5 to
the tube M5

LC over the real light cone in R3. When either W0 6≡ 0 or J0 6≡ 0, by normalization of certain two group
parameters c and e, an invariant coframe can be built on M5, showing that the dimension of the CR automorphism
group drops from 10 to 5.

This paper constructs an explicit {e}-structure in case W0 and J0 do not necessarily vanish. Furthermore, Pocchi-
ola’s calculations hidden on a computer now appear in details, especially the determination of a secondary invariant
R, expressed in terms of the first jet of W0. All other secondary invariants of the {e}-structure are also expressed
explicitly in terms of W0 and J0.
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1. INTRODUCTION

We study the equivalence problem under biholomorphisms of real hypersurfaces M5 ⊂
C3 — hence of CR dimension 2 — whose Levi form is degenerate of constant rank 1, and
whose Freeman form is nowhere zero, or equivalently, which are 2-nondegenerate. There are
previous approaches to this problem, and we refer our readers to the the articles of Medori-
Spiro [12, 13], in which a Cartan connection was adressed.

In a recently published article [18], the authors exhibited two important primary invariants,
W0 and J0, whose existence was not previously discovered prior to Pocchiola’s prepublica-
tion [25], and which, in depth, required the help of a computer algebra system. These invari-
ants have useful applications, such as in Isaev’s study [9] of tube hypersurfaces in C3 that are
2-nondegenerate and uniformly Levi degenerate of rank 1.

Our first objective here is to reconstruct W0 and J0, by presenting fully detailed computa-
tions, only by hand, without the help of any computer. In contrast to [25, 18], the present text
has the ambition of exhibiting all calculations, without requiring any extra work from the read-
ers: ‘no pen needed, no computer needed’. Within the Cartan theory, this sounds quite like a
challenge opposite to a certain tradition of hiding a lot of computations. But we believe that
fully detailed articles can be read, checked and studied more rapidly.

As a second objective, we construct an explicit {e}-structure which characterizes equiva-
lences under biholomorphisms of these types of hypersurfaces M5 ⊂ C3. This way, we give a
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theoretical proof which will provide a definitive confirmation of the existence of exactly 2 pri-
mary invariants, W0 and J0. Unlike the approach of [25, 18] which proceeded at each step with
systematic and explicit calculations of all torsion coefficients, we will bypass some of these steps,
thereby economizing some computations. On the way, we will closely observe the evolution of
the modified Maurer-Cartan 1-forms during the Cartan process.

The basic principle of Cartan’s approach is to create a collection of 1-forms (a coframe), by
absorbing as many as possible torsion terms, in order that the structure of this coframe be as
close as possible to the structure of the Maurer-Cartan coframe on the (prolongation of the)
model M5

LC ⊂ C3, the tube over the real light cone
{
x21 + x22 = x23} in R3:

M5
LC :=

{
(z1, z2, z3) ∈ C3 : (Re z1)2 + (Re z2)2 = (Re z3)2

}
whose local CR automorphism group is known to be isomorphic to SO3,2(R).

Recall that a Maurer-Cartan form ω valued in some Lie algebra g satisfies the structure equa-
tion with no curvature:

dω + 1
2

[
ω ∧ ω

]
= 0.

In practice, as in our current case, the right-hand side of the equation is not always zero, and
this constitutes the default of ω being a Maurer-Cartan form. This happens when an invariant
is written as a linear combination of torsion terms, and such a linear combination fails to follow
the structure equations, thus obstructing the absorption process.

We now give a summary of our results. Recall that if J denotes the complex structure of
TC3, then the tangent bundle TM5 has a distribution T cM5 := TM5 ∩ JTM5 ⊆ TM5 of
codimension 1 which is invariant under J at each point of M5. Let ρ be a real 1-form with
Ker ρ = T cM5. The Levi form is a bilinear map on T cM5 defined as (X,Y ) 7→ dρ(X, JY ) for
any two sections X , Y of T cM5.

Letting CTM5 := C⊗RTM
5 be the complexification of the tangent bundle ofM5, by defining

T 1,0M5 := CTM5 ∩ T 1,0C3 together with its complex conjugate T 0,1M5 := T 1,0M5, we have
the (classical) direct sum decomposition CT cM5 = T 1,0M5⊕T 0,1M5. Let {L1,L2} be two local
generators of T 1,0M5, i.e. a frame for T 1,0M5.

Section 2 provides more information, while complete background may be found in [19].
By the assumption that the Levi form is uniformly of rank 1 at each point of M , there exists

by [19] a uniquely determined slant function k : M −→ C such that the vector field:

K := kL1 + L2

generates the kernel of the Levi form, of constant rank 2 − 1 = 1. If we let T denote a vector
field with ρ(T ) ≡ 1, we may consider the coframe

{
ρ, κ0, ζ0

}
dual to

{
T ,L1,K

}
. In fact, the

conjugates κ0, ζ0 and L1, K also come into play in order to really make up a (co)frame on
CTM5, while ρ = ρ and T = T are real. A certain appropriate real 1-form ρ will be chosen, and
denoted ρ0.

Performing the Cartan process, we will make a series of changes to these 1-forms:

(ρ0, κ0, ζ0)  (ρ0, κ
′
0, ζ
′′
0 )

and after (really a lot of) computations, we will obtain a 4-dimensional G-structure whose lifted
1-forms write up as: ρκ

ζ

 :=

 cc 0 0
−i ce c 0
− i

2
cee
c e c

c

ρ0κ′0
ζ ′′0

 .
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Also, after a long process, we will construct modified Maurer-Cartan forms:

π1 := α−
(
t− i

2
ImZ2

)
ρ−

(
R1 −K6

)
κ−R2 ζ −K6 κ− 0,

π2 := β − i Z1 ρ−
(
t− i

2
ImZ2 +K1

)
κ−K2 ζ −K3 κ−K4 ζ,

with Ri, Ki, Zi being some explicit functions on M5 × G4, where t is a new real variable, and
then, after meticulous absorption work, we will obtain as is stated below in Theorem 13.1 on
p. 366, three finalized structure equations of the neat shape:

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ

+Rρ ∧ ζ + J ρ ∧ κ+W κ ∧ ζ,

in which are present Pocchiola’s two primary invariants:

W =
1

c
W0 and J =

i

c3
J0,

together with a single secondary (derived) invariant:

R = Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
.

We would like to mention that the two invariants that Pocchiola denoted W and J are now
denoted in our paper W0 and J0, with the subscript (•)0 designating functions defined on M5

alone, independently of any extra group variable.
The expression of R was discovered by Pocchiola in [25, 18] thanks to intensive computer

explorations, but no details of proof appeared in print at all. In Section 12 of this paper, a
complete, detailed, hand-done proof, will be provided, thus verifying that R is indeed a function
of the first jet of W0, hence a secondary invariant.

We will also construct a certain real 1-form Λ = dt + · · · , and in Section 14, the final {e}-
structure that we obtain will take the following form (conjugate equations are unwritten):

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ +Wκ ∧ ζ +Rρ ∧ ζ + Jρ ∧ κ,

dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ + Ω̂1,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ + Ω̂2 + hρ ∧ κ,
dΛ = Λ ∧ π1 + Λ ∧ π1 + iπ2 ∧ π2 + Φ,
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with

Ω̂1 = − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ

+ 1
2 (Rκ − Jζ)ρ ∧ κ+ 1

2Rζρ ∧ ζ +

(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ,

Ω̂2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ
−Rζ ∧ κ.

Furthermore, we will show that h and Φ can be expressed in terms of Ω̂1, of Ω̂2 and of their
first-order derivatives. Thus, this demonstrates that there are exactly 2 primary invariants.

Clearly, when W ≡ J ≡ 0, the {e}-structure collapses to:

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,
dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ,
dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ,
dΛ = Λ ∧ π1 + Λ ∧ π1 + iπ2 ∧ π2

and these constant coefficients equations correspond to the structure equations of the tubeM5
LC

over the light cone, which is the reference model for this equivalence problem.
We would like to mention that, strictly speaking, Cartan’s equivalence method of producing

homogeneous models requires to normalize any group variable which occurs in some essential
torsion term, and this is what Pocchiola did in Section 7 of [25] for c := (J0)1/3 and in Section 8
for c := W0, showing afterwards that e can also be normalized in both cases.

For this deep reason, Pocchiola then disregarded the — essentially useless — task of con-
structing a general {e}-structure, since, when J0 ≡ W0 ≡ 0, the final Section 9 of [25] shows
that one comes uniquely to the structure equations of the modelM5

LC, without any further nonzero
essential torsion appearing. And this was really a discovery, because most of the times in CR ge-
ometry, primary invariants appear after a first prolongation.

However, because there is a tradition of setting up {e}-structures, even in absence of explicit
computations, even without discovering invariants at all, and because the needs for verifiable
computations has been expressed by some experts, we decided to set up the present article.
While re-building this chapter [25] of Pocchiola’s Ph.D. (Orsay University, September 2014),
we found a few copying mistakes in some intermediate formulas of [25, 18], but no error in
either statements or final formulas, e.g. W0 and J0 are correct.

For a more informative exposition of introductory aspects, the reader should read now the
brief and complementary Introduction to the Addendum to [18].

This paper is organized as follows. In Section 2, we recall the local geometry of 2-nondegenerate
Levi rank 1 real hypersurfaces M5 in C3. In Section 3, we give a description of the G1-structure
of the biholomorphic equivalences of such real hypersurfaces. Section 4 gives a quick glimpse
of a series of normalizations of parameters, which will be detailed in Sections 5 to 10, with the
first appearance of W0 in Section 8. The explicit expression of the invariant J0 is given in Sec-
tion 11, and a complete proof of the above formula for R is detailed in Section 12. Section 13
gives a short summary of the things that have been done in the previous sections, and finally
Section 14 gives a proposed {e}-structure for the equivalence problem.
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2. LOCAL GEOMETRY OF 2-NONDEGENERATE LEVI RANK 1 HYPERSURFACES M5 ⊂ C3

This section only summarizes what has been presented and detailed in [19, 17, 18]. Let
M5 ⊂ C3 be a Cω (real-analytic) smooth, local or global, real hypersurface and let p0 ∈ M . In
any affine holomorphic coordinate system:(

z1, z2, w
)
∈ C3 with w = u+ i v,

centered at p0 = (0, 0, 0) = 0 in which ∂
∂u

∣∣
0
6∈ T0M , there is a local Cω graphing function

F = F
(
z1, z2, z1, z2, v

)
with F(0) = 0 such that M is represented, in some (possibly small) open

neighborhood of the origin 0 by

u = F
(
z1, z2, z1, z2, v

)
.

Convention 2.1. From now on, the hypersurface will be identified with its localization in some
small open neighborhood of the origin, and it will always be denoted by M .

As is known (see [19] for detailed background), the complexified tangent bundle CTM :=
C ⊗R TM inherits from CTC := C ⊗R TC3 two biholomorphically invariant complex rank 2
vector subbundles

T 1,0M := T 1,0C3 ∩ CTM and T 0,1M := T 0,1C3 ∩ CTM = T 1,0M

which are conjugate one to another. Then a check shows that the two vector fields written in
the intrinsic coordinates (z1, z2, z1, z2, v) on M :

L1 :=
∂

∂z1
+ A1 ∂

∂v
and L2 :=

∂

∂z2
+ A2 ∂

∂v
,

whose coefficients are defined by:

Ai := − i Fzi
1 + iFv

(i = 1, 2),

generate T 1,0M , locally. Hence their two conjugates L1, L2 generate the bundle T 0,1M , also of
complex rank 2.

Then visibly the differential 1-form

%0 := dv − A1 dz1 − A2 dz2 − A1
dz1 − A2

dz2

has kernel {
%0 = 0

}
= T 1,0M ⊕ T 0,1M.

There are various (equivalent) aspects of the concept of Levi form of M , but they will not be
recalled here, since several sources treat that. Here, the Levi form of M can be represented as a
function of the points

p =
(
z1, z2, z1, z2, v

)
∈ M,

valued in the space of Hermitian 2 × 2 matrices, and in terms of %0 and of the Lie brackets of
the above vector fields, it writes as

LFM (p) :=

(
%0
(
i [L1,L1]

)
%0
(
i [L2,L1]

)
%0
(
i [L1,L2]

)
%0
(
i [L2,L2]

) ) (p).

As is known, the biholomorphic invariance of the Levi form legitimates our current

Hypothesis 2.2. [Uniform Levi rank 1] At all points p ∈M , the Levi matrix (form) LFM (p) has
constant rank 1.
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After a linear change of coordinates in the (z1, z2) space, we may assume that its (1, 1)-entry
vanishes nowhere on M :

%0
(
i [L1,L1]

)
(p) 6= 0 (∀ p ∈ M).

This means that the real vector field

T := i
[
L1,L1

]
= i

(
L1

(
A1)− L1

(
A1)) ∂

∂v
=: `

∂

∂v

has nowhere vanishing real coefficient that will be abbreviated as

` := i
(

A1

z1 + A1 A1

v − A1
z1 − A1 A1

v

)
6= 0.

Furthermore, since the 2×2 Levi matrix has constant rank 1, the collection of its 1-dimensional
kernels at all points p ∈M spans a Cω smooth subdistribution K1,0M ⊂ T 1,0M which satisfies
([19], pp. 72–73): [

K1,0M, K1,0M
]
⊂ K1,0M,[

K0,1M, K0,1M
]
⊂ K0,1M,[

K1,0M, K0,1M
]
⊂ K1,0M ⊕K0,1M (K0,1M := K1,0M).

With this, a vector field generator K of K1,0M writes uniquely as

K := kL1 + L2,

where the function k — very important in the theory — is the negative of the quotient of two
entries of the Levi matrix

k := −
L2

(
A1)− L1

(
A2)

L1

(
A1)− L1

(
A1) .

Hypothesis 2.3. [2-nondegeneracy] At all points p ∈M , the Freeman form has constant (max-
imal possible) rank 1.

For a detailed presentation of this second concept of form, also biholomorphically invariant,
see [19].

Proposition 2.4. ([19]) In this formalism, M is 2-nondegenerate if and only if:

L1(k) 6= 0 (everywhere on M).

In summary, two functions will be assumed to be nowhere vanishing on M , corresponding
to the two Hypotheses 2.2 and 2.3:

`(p) 6= 0 and L1(k)(p) 6= 0 (∀ p ∈ M).

Next, along with k, introduce a second and last fundamental function

P :=
`z1 + A1 `v − `A1

v

`
.

All invariants and semi-invariants in this paper will express in terms of k and P.
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Next, according to [17, 25, 18], there are 10 Lie bracket identities[
T ,L1

]
= −P · T ,[

T ,K
]

= L1(k) · T + T (k) · L1,[
T ,L1

]
= −P · T ,[

T ,K
]

= L1

(
k
)
· T + T

(
k
)
· L1,[

L1,K
]

= L1(k) · L1,[
L1,L1

]
= − i T ,[

L1,K
]

= L1

(
k
)
· L1,[

K,L1

]
= −L1(k) · L1,[

K,K
]

= 0,[
L1,K

]
= L1

(
k
)
· L1.

Lemma 2.5. ([19, 17]) The following 3 functional identities hold identically on M .

K
(
k
)
≡ 0,

K(P) ≡ −PL1(k)− L1

(
L1(k)

)
,

K
(
P
)
≡ −PL1(k)− L1

(
L1(k)

)
− i T (k). �

Then the coframe {
ρ0, κ0, ζ0, κ0, ζ0

}
dual to the frame {

T , L1, K, L1, K
}
,

i.e. which satisfies by definition

ρ0(T ) = 1, ρ0(L1) = 0, ρ0(K) = 0, ρ0(L1) = 0, ρ0(K) = 0,
κ0(T ) = 0, κ0(L1) = 1, κ0(K) = 0, κ0(L1) = 0, κ0(K) = 0,
ζ0(T ) = 0, ζ0(L1) = 0, ζ0(K) = 1, ζ0(L1) = 0, ζ0(K) = 0,
κ0(T ) = 0, κ0(L1) = 0, κ0(K) = 0, κ0(L1) = 1, κ0(K) = 0,

ζ0(T ) = 0, ζ0(L1) = 0, ζ0(K) = 0, ζ0(L1) = 0, ζ0(K) = 1,

has its 5 component 1-forms given explicitly by

ρ0 =
dv − A1dz1 − A2dz2 − A1

dz1 − A2
dz2

`
,

κ0 = dz1 − k dz2,
ζ0 = dz2,

κ0 = dz1 − k dz2,
ζ0 = dz2.

Notice that a different notation ρ0 6= %0 has been employed just now. Hence using a classical
formula which goes back at least to Lie ([11, Chap. 5]) which holds for two arbitrary vector
fields X and Y and for any differential 1-form ω

dω(X,Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

([
X,Y

])
,
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by representing the 10 Lie brackets in some appropriate array

T L1 K L1 K

dρ0 dκ0 dζ0 dκ0 dζ0[
T , L1

]
= −P · T + 0 + 0 + 0 + 0 ρ0 ∧ κ0[

T , K
]

= L1(k) · T + T (k) · L1 + 0 + 0 + 0 ρ0 ∧ ζ0[
T , L1

]
= −P · T + 0 + 0 + 0 + 0 ρ0 ∧ κ0[

T , K
]

= L1
(
k
)
· T + 0 + 0 + T

(
k
)
· L1 + 0 ρ0 ∧ ζ0[

L1, K
]

= 0 + L1(k) · L1 + 0 + 0 + 0 κ0 ∧ ζ0[
L1, L1

]
= − i · T + 0 + 0 + 0 + 0 κ0 ∧ κ0[

L1, K
]

= 0 + 0 + 0 + L1(k) · L1 + 0 κ0 ∧ ζ0[
K, L1

]
= 0 + −L1(k) · L1 + 0 + 0 + 0 ζ0 ∧ κ0[

K, K
]

= 0 + 0 + 0 + 0 + 0 ζ0 ∧ ζ0[
L1, K

]
= 0 + 0 · L1 + 0 + L1

(
k
)

+ 0 κ0 ∧ ζ0

and by reading this array vertically, we obtain the initial Darboux-Cartan structure:

dρ0 = P · ρ0 ∧ κ0 − L1(k) · ρ0 ∧ ζ0 + P · ρ0 ∧ κ0 − L1

(
k
)
· ρ0 ∧ ζ0 + i κ0 ∧ κ0,

dκ0 = −T (k) · ρ0 ∧ ζ0 − L1(k) · κ0 ∧ ζ0 + L1(k) · ζ0 ∧ κ0,
dζ0 = 0,

dκ0 = −T
(
k
)
· ρ0 ∧ ζ0 − L1

(
k
)
· κ0 ∧ ζ0 − L1

(
k
)
· κ0 ∧ ζ0,

dζ0 = 0.

The fact that the frame
{
T ,L1,K,L1,K

}
is dual to the coframe

{
ρ0, κ0, ζ0, κ0, ζ0

}
yields a

formula that shall be used several times later.

Lemma 2.6. The exterior differential of any function G = G
(
z1, z2, z1, z2, v

)
on M expresses as

dG = T
(
G
)
ρ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0.

Proof. Indeed, starting from the definition

dG =
∂G
∂v

dv +
∂G
∂z1

dz1 +
∂G
∂z2

dz2 +
∂G
∂z1

dz1 +
∂G
∂z2

dz2,

and inverting the above coframe

dz2 = ζ0,

dz1 = κ0 + k ζ0,

dv = ` ρ0 + A1 (κ0 + k ζ0
)

+ A2 ζ0 + A1 (
κ0 + k ζ0

)
+ A2

ζ0

= ` ρ0 + A1 κ0 +
(
A2 + k A1) ζ0 + conjugates

we can replace, reorganize — unwritting the redundant conjugates — and reach the formula

dG ≡ ∂G
∂v

(
` ρ0 + A1 κ0 +

(
A2 + k A1

)
ζ0
)
+
∂G
∂z1

(
κ0 + k ζ0

)
+
∂G
∂z2

ζ0

≡
(
`
∂

∂v

)(
G
)
· ρ0 +

(
∂

∂z1
+ A1 ∂

∂v

)(
G
)
· κ0 +

(
∂

∂z1
+ A2 ∂

∂v
+ k ∂

∂z2
+ k A1 ∂

∂v

)(
G
)
· ζ0. �
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For later much deeper computations, we need strong notational conventions. The order
succession for our five 1-forms which we will constantly use{

ρ0, κ0, ζ0, κ0, ζ0,
}
,

induces an order succession for the ten generated 2-forms on the 5-dimensional CR manifold
M

ρ0 ∧ κ0
1

ρ0 ∧ ζ0
2

ρ0 ∧ κ0
3

ρ0 ∧ ζ0
4

κ0 ∧ ζ0
5

κ0 ∧ κ0
6

κ0 ∧ ζ0
7

ζ0 ∧ κ0
8

ζ0 ∧ ζ0
9

κ0 ∧ ζ0
10

.

With such a numbering, we can abreviate the structure equations as — dropping their conju-
gates —

dρ0 = R1
0 ρ0 ∧ κ0 + R2

0 ρ0 ∧ ζ0 + R3
0 ρ0 ∧ κ0 + R4

0 ρ0 ∧ ζ0 + i κ0 ∧ κ0,

dκ0 = K2
0 ρ0 ∧ ζ0 + K5

0 κ0 ∧ ζ0 + K8
0 ζ0 ∧ κ0,

dζ0 = 0.

Convention 2.7. All functions of p = (z1, z2, z1, z2, v) ∈ M will be denoted with a lower index
(•)0, always employing the special auxiliary font characters A,B,C, . . . .

After some transformations in the next sections, this initial coframe will change and become
more complicated (unwriting the conjugates){

ρ0, κ0, ζ0
}

 
{
ρ0, κ0, ζ

′
0

}
 

{
ρ0, κ

′
0, ζ
′
0

}
 

{
ρ0, κ

′
0, ζ
′′
0

}
,

and new structure function Ri′
0 , Ki′

0 , Zi′0 , . . . will appear.
We end up this section by stating some technical commutation relations that shall be con-

stantly necessary to normalize incoming (complicated) expressions in order to avoid ambigu-
ities. In fact, we can take advantage of K(k) = 0 from Lemma 2.5, to make K ‘jump’ above
iterated derivatives like e.g. in

K
��(

L1(k)
)
, K

��(
L1

(
L1(k))

)
.

Precisely, the last, 10 th Lie bracket relation preceding Lemma 2.5

−L1

(
k
)
· L1(•) =

[
K,L1

]
(•),(2.8)

when applied to the function • := k yields

−L1

(
k
)
L1(k) =

[
K,L1

]
(k) = K

(
L1(k)

)
− L1

(
K(k)

◦

)
= K

(
L1(k)

)
.

Lemma 2.9. One has the 3 relations

K
(
L1(k)

)
= −L1

(
k
)
L1(k),(1)

K
(
L1

(
L1(k)

))
= − 2L1

(
k
)
L1

(
L1(k)

)
− L1

(
L1

(
k
))
L1(k),(2)

K
(
L1

(
L1

(
L1(k)

)))
= − 3L1

(
k
)
L1

(
L1

(
L1(k)

))
(3)

− 3L1

(
L1

(
k
))
L1

(
L1(k)

)
− L1

(
L1

(
L1(k)

))
L1(k).
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Proof. As (1) is done, we can apply L1(•) to it, reversing sides

−L1

(
L1

(
k
))
L1(k)− L1

(
k
)
L1

(
L1(k)

)
= L1

(
K
(
L1(k)

))
.

Similarly, we apply (2.8) to • := L1(k) and we reach (2) after a replacement

−L1

(
k
)
L1

(
L1(k)

)
=
[
K,L1

](
L1(k)

)
= K

(
L1

(
L1(k)

))
− L1

(
K
(
L1(k)

))︸ ︷︷ ︸
replace

.

Now, as (2) is done, we can apply L1(•) to it, and get after reorganization

L1

(
K
(
L1

(
L1(k)

)))
= − 2L1

(
k
)
L1

(
L1

(
L1(k)

))
− 3L1

(
L1

(
k
))
L1

(
L1(k)

)
− L1

(
L1

(
L1

(
k
)))
L1(k).

Lastly, we apply (2.8) to • := L1

(
L1(k)

)
and we reach (3) after a replacement

−L1

(
k
)
L1

(
L1

(
L1(k)

))
=
[
K,L1

](
L1

(
L1(k)

))
= K

(
L1

(
L1

(
L1(k)

)))
− L1

(
K
(
L1

(
L1(k)

)))︸ ︷︷ ︸
replace

. �

3. INITIAL G1-STRUCTURE FOR LOCAL BIHOLOMORPHIC EQUIVALENCES h : M
∼−→M ′

Now, let h : U
∼−→ U ′ ⊂ C3 be a (local) biholomorphism from an open set U ⊂ C3 containing

U 3 0 the origin onto its image

h(U) =: U ′ 3 0′ = h(0),

which is also an open set U ′ ⊂ C′3 containing the origin 0′ in another target complex Euclidean
space C′3 having the same dimension.

M

h
M ′

C3
C′3

0′

U ′U

0

As in Cartan’s equivalence theory, assume that h
(
M ∩ U

)
⊂ M ′ is contained in another real

hypersurface M ′ ⊂ C′3, also passing through the origin 0′ ∈ M ′, represented in holomorphic
coordinates

(
z′1, z

′
2, w

′ = u′ + i v′
)

by a similar Cω graphed equation

u′ = F′
(
z′1, z

′
2, z
′
1, z
′
2, v
′).

We now make the convention of not mentioning the open sets that must sometimes be shrunk,
so that we think of h : M

∼−→ M ′ as being a CR equivalence between hypersurfaces M ⊂ C3

and M ′ ⊂ C′3.
In the target space, introduce similar generators L′1, L′2 for T 1,0M ′. Since h is holomorphic, its
differential h∗ : CTC3 −→ CTC′3 stabilizes holomorphic (1, 0) and holomorphic (0, 1) vector
fields

h∗
(
T 1,0C3

)
= T 1,0C′3 and h∗

(
T 0,1M

)
= T 0,1M ′.

Furthermore, by invariancy of the Freeman form, h respects the Levi-kernel distributions

h∗
(
K1,0M

)
= K1,0M ′.
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Consequently, there exist functions f ′, c′, e′ on M ′ such that

h∗(K) = f ′K′,
h∗
(
L1

)
= c′ L′1 + e′K′,

whence by conjugation
h∗
(
K
)

= f
′K′,

h∗
(
L1

)
= c′ L′1 + e′K′.

On the other hand, there is a priori no special condition that shall be satisfied by h∗(T ), except
that it be a real vector field, because T is real. Thus, there are a real-valued function a′ and two
complex-valued b′ and d′ on M ′ such that

h∗(T ) = a′ T ′ + b′ L′1 + d′K′ + b
′ L′1 + d

′K′.
In fact, the function a′ is determined, because

h∗(T ) = h∗
(
i
[
L1,L1

])
= i

[
h∗
(
L1

)
, h∗

(
L1

)]
= i

[
c′L′1 + e′K′, c′L′1 + e′K′

]
≡ c′c′ i

[
L′1, L

′
1

]
mod

(
T 1,0M ′ ⊕ T 0,1M ′

)
,

whence necessarily
a′ = c′c′.

Summarizing, we have the following matrix relations

h∗


T
L1

K
L1

K

 =


c′c′ b′ d′ b

′
d
′

0 c′ e′ 0 0
0 0 f ′ 0 0
0 0 0 c′ e′

0 0 0 0 f
′



T ′
L′1
K′

L′1
K′

 .

As h∗ is invertible, the function f ′, and then the function c′ too, must be nowhere vanish-
ing. The relation between the coframe

{
ρ0, κ0, ζ0, κ0, ζ0

}
in the source space and the coframe{

ρ′0, κ
′
0, ζ
′
0, κ
′
0, ζ
′
0

}
in the target space is therefore given by a plain transposition

h∗


ρ′0
κ′0
ζ ′0
κ′0
ζ
′
0

 =


c′c′ 0 0 0 0
b′ c′ 0 0 0
d′ e′ f ′ 0 0

b
′

0 0 c′ 0

d
′

0 0 e′ f
′



ρ0
κ0
ζ0
κ0
ζ0

 .

These preliminaries, also explained in [16, 25, 18], justify that the initial G-structure for such
equivalences of CR manifolds is the matrix ambiguity group G1 is constituted of 5× 5 matrices
of the form 

cc 0 0 0 0
b c 0 0 0
d e f 0 0

b 0 0 c 0

d 0 0 e f


with free variable complex entries

c, f ∈ C\{0} and b, d, e ∈ C,
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namely 
ρ
κ
ζ
κ

ζ

 :=


cc 0 0 0 0
b c 0 0 0
d e f 0 0

b 0 0 c 0

d 0 0 e f



ρ0
κ0
ζ0
κ0
ζ0

 .

Eliminating the conjugate 1-forms κ, ζ for which the structure equations are redundant, this
can be abbreviated as  ρ

κ
ζ

 :=

 cc 0 0
b c 0
d e f

  ρ0
κ0
ζ0

 .

4. A LABYRINTHMAP TO POCCHIOLA’S CALCULATIONS

The successive reductions of this G1 structure will look as

g :=

 cc 0 0
b c 0
d e f

  g :=

 cc 0 0
b c 0
d e c

c

  g :=

 cc 0 0
−i ce c 0
d e c

c


 g :=

 cc 0 0
−i ce c 0

− i
2

ce2

c e c
c

 ,

thanks to successive normalization of some group parameters (offered by some essential tor-
sion coefficients yielding invariants that are deeper than Levi and Freeman forms)

f :=
c

c
L1(k), b := − i c e +

i

3
cB0, d := − i

2

c e e

c
+ i

c

c
H0,

in terms of the following two function on M

B0 :=
L1

(
L1(k)

)
L1(k)

− P,

H0 := −1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
P

L1(k)
+

1

6
L1

(
P
)
− 1

9
P2
.

This function H0 coincides with Pocchiola’s function H .
The next sections will present in details these successive reductions ofG-structures, by these

normalizations of the group parameters f, b, d. Contrary to [18, 25], all computations will be
progressive, simple, detailed, readable, clear, without needing any help of either a computer or
a pen. A great care will be devoted to readability.

5. FIRST LOOP: REDUCTION OF THE GROUP PARAMETER f

We recall that the initial Darboux-Cartan structure of the coframe
{
ρ0, κ0, ζ0, κ0, ζ0

}
is, with-

out writing conjugate equations — remind ρ0 = ρ0 —

dρ0 = P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ0 − L1

(
k
)
ρ0 ∧ ζ0 + i κ0 ∧ κ0,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k)κ0 ∧ ζ0 + L1(k) ζ0 ∧ κ0,(5.1)
dζ0 = 0.
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With the first G-structure exhibited above, introduce the lifted differential forms, defined by ρ
κ
ζ

 :=

 cc 0 0
b c 0
d e f

 ρ0
κ0
ζ0

 ,

id est

ρ := cc ρ0,

κ := b ρ0 + cκ0,

ζ := d ρ0 + eκ0 + f ζ0.

Here, c, f ∈ C∗ and b, e, d ∈ C. Mind that conjugate equations giving κ and ζ are not written,
but will be used.
An inversion yields

ρ0 =
1

cc
ρ,

κ0 =
1

c
κ− b

ccc
ρ,(5.2)

ζ0 =
be− cd

cccf
ρ− e

cf
κ+

1

f
ζ.

With the above 3×3 matrix g representing the general element of a 10-dimensional (real) group
G10 ⊂ GL3(C), the Maurer-Cartan matrix is

dg · g−1 =

 c dc + cdc 0 0
db dc 0
dd de df

 1
cc 0 0
− b

ccc
1
c 0

be−cd
cccf − e

cf
1
f


=:

 α+ α 0 0
β α 0
γ δ ε


in terms of the group-invariant 1-forms

α :=
dc

c
,

β :=
db

cc
− bc dc

cc
,

γ :=
dd

cc
− b de

ccc
+

be− cd

cccf
df,

δ :=
de

c
− e df

cf
,

ε :=
df

f
.

As is known, after painful computations whose outcomes are presented extensively in [25, 18],
one can re-express, using (5.1) and (5.2), the exterior differentials of the 3 lifted 1-forms ρ, ζ, κ
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as
dρ = α ∧ ρ+ α ∧ ρ

+R1 ρ ∧ κ+R2 ρ ∧ ζ +R3 ρ ∧ κ+R4 ρ ∧ ζ + i κ ∧ κ,
dκ = β ∧ ρ+ α ∧ κ

+K1 ρ ∧ κ+K2 ρ ∧ ζ +K3 ρ ∧ κ+K4 ρ ∧ ζ

+K5 κ ∧ ζ +K5 κ ∧ κ+ K8 ζ ∧ κ,
dζ = γ ∧ ρ+ δ ∧ κ+ ε ∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ
+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z8 ζ ∧ κ

in terms of certain complicated functionsRi,Ki, Zi of the horizontal variables and of the group
parameters as well (

z1, z2, z1, z2, v
)
×
(
c, c, f, f, b, b, d, d, e, e

)
∈ M5 ×G10,

but we shall not need the expressions of all these functions, and focus only on the boxed one,
K8, since it will bring an interesting normalization for the diagonal group parameter f.

Notation 5.3. Given a differential 2-form Ω ∈ Γ(M,Λ2T ∗M) on an n-dimensional manifold M
equipped with a coframe

{
ω1, . . . , ωn

}
for its cotangent bundle T ∗M , which is expanded as

Ω =
∑

16i<j6n

Ai,j ω
i ∧ ωj ,

with uniquely determined coefficients-functions A•,•, for fixed i < j, the coefficient Ai,j of
ωi ∧ ωj will be denoted by [

ωi ∧ ωj
]{

Ω
}

:= Ai,j .

To capture K8 without pain, the computation
/

re-expression of dκ starts from κ = b ρ0 + cκ0
as follows to see how Maurer-Cartan forms enter the play

dκ = db ∧ ρ0 + dc ∧ κ0 + b dρ0 + c dκ0

= db ∧
(

1
cc ρ
)

+ dc ∧
(
1
c κ−

b
ccc ρ

)
+ Torsion

=
(
db− b dc

ccc

)
∧ ρ+

(
dc
c

)
∧ κ+ Torsion

= β ∧ ρ+ α ∧ κ+ Torsion.

Certainly, K8 belongs to the torsion remainder, and we want to determine only

K8 :=
[
ζ ∧ κ

]{
dκ
}

=
[
ζ ∧ κ

]{
b dρ0 + c dκ0

}
.

For the first term b dρ0, we look at (5.1) in which we replace visually ρ0, ζ0, κ0 by ρ, ζ, κwatching
simultaneously (5.2) — no pen needed! computers shut down! — and we get

b
[
ζ ∧ κ

]{
dρ0
}

= 0 + 0 + 0 + 0 + 0 = 0.

Proceeding similarly, just with eyes

c
[
ζ ∧ κ

]{
dκ0
}

= 0 + 0 + cL1(k)
[
ζ ∧ κ

]{(be− bd

cccf
ρ− e

cf
κ+

1

f
ζ
)
∧
(
− b

ccc
ρ+

1

c
κ
)

= cL1(k)
(
1
f

) (
1
c

)
,

whence adding
K8 =

c

cf
L1(k).
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Furthermore, without computation, we see thatK8 is not absorbable in the Maurer-Cartan part
β ∧ ρ+ α ∧ κ by means of any replacement

α = α′ + a1 ρ+ a2 κ+ a3 ζ + a4 κ+ a5 ζ,

β = β′ + b1 ρ+ b2 κ+ b3 ζ + b4 κ+ b5 ζ,

because the result will always be

something ∧ ρ+ something ∧ κ,

whereas K8 ζ ∧ κ is not ∧-divisible by either ∧ρ or ∧κ.
Consequently, K8 is an essential torsion coefficient, and by general Cartan theory, K8 may

bring a group parameter normalization.
In fact, since the diagonal coefficients c 6= 0 6= f of the invertible triangular matrix must be

nonvanishing, and sinceL1(k) 6= 0 is nowhere vanishing by our assumption of 2-nondegeneracy,
it is natural, then, to normalize K8 to be constant nonzero, e.g. K8 := 1, and this yields a re-
duction of the G10-structure to an eight-dimensional G8-structure by setting

f :=
c

c
L1(k).

Inserting this in the lifted coframe ρ
κ
ζ

 :=

 cc 0 0
b c 0
d e c

c L1(k)

 ρ0
κ0
ζ0

 ,

we are conducted to change the initial coframe by introducing the new horizontal — i.e. de-
fined on M — 1-form

ζ ′0 := L1(k) ζ0.(5.4)

As anticipated in a summary supra, we are thus changing of horizontal coframe{
ρ0, κ0, ζ0, κ0, ζ0

}
 

{
ρ0, κ0, ζ

′
0, κ0, ζ

′
0

}
,

and unavoidably, we have to set up its Darboux-Cartan structure.
Thanks to Lemma 2.6, we can compute

dζ ′0 = d
(
L1(k)

)
∧ ζ0 + L1(k) ∧ dζ0◦

= T
(
L1(k)

)
ρ0 ∧ ζ0 + L1

(
L1(k)

)
κ0 ∧ ζ0 +K

(
L1(k)

)
ζ0 ∧ ζ0◦ + L1

(
L1(k)

)
κ0 ∧ ζ0

+K
(
L1(k)

)
ζ0 ∧ ζ0 + 0,

and next, replacing everywhere ζ0 =
ζ′0
L1(k)

, reorganizing, and transforming the last term above
in application of Lemma 2.9 (1), we obtain the structure equations enjoyed by this new initial
base coframe

dρ0 = P ρ0 ∧ κ0 −
L1(k)

L1(k)
ρ0 ∧ ζ ′0 + P ρ0 ∧ κ0 −

L1(k)

L1(k)
ρ0 ∧ ζ

′
0 + i κ0 ∧ κ0,

dκ0 = − T (k)

L1(k)
ρ0 ∧ ζ ′0 −

L1(k)

L1(k)
κ0 ∧ ζ ′0 + ζ ′0 ∧ κ0,

(5.5)

dζ ′0 =
T
(
L1(k)

)
L1(k)

ρ0 ∧ ζ ′0 +
L1

(
L1(k)

)
L1(k)

κ0 ∧ ζ ′0 −
L1

(
L1(k)

)
L1(k)

ζ ′0 ∧ κ0 +
L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0.
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Sometimes, it can be useful to abbreviate these formulas as

dρ0 = R1
0 ρ0 ∧ κ0 + R2

0 ρ0 ∧ ζ ′0 + R1

0 ρ0 ∧ κ0 + R0

2 ρ0 ∧ ζ
′
0 + i κ0 ∧ κ0,

dκ0 = K2
0 ρ0 ∧ ζ ′0 + K5

0 κ0 ∧ ζ ′0 + ζ ′0 ∧ κ0,

dζ ′0 = Z2
0 ρ0 ∧ ζ ′0 + Z5

0 κ0 ∧ ζ ′0 + Z8
0 ζ
′
0 ∧ κ0 + Z9

0 ζ
′
0 ∧ ζ

′
0,

and no primes will be appended to these coefficients-functions, for the reason that exactly two
further changes of initial base coframes{

ρ0, κ0, ζ
′
0, κ0, ζ

′
0

}
 

{
ρ0, κ

′
0, ζ
′
0, κ

′
0, ζ
′
0

}
 

{
ρ0, κ

′
0, ζ
′′
0 , κ

′
0, ζ
′′
0

}
will force us to introduce e.g. Zi′0 and Zi′′0 , so that we will avoid to use primes trice.

6. SECOND LOOP: REDUCTION OF THE GROUP PARAMETER b

With this new reduced (real) eight-dimensional group G8, the lifted coframe, in which for
simplicity, we use the same letters ρ, κ, ζ as before, becomes ρ

κ
ζ

 :=

 cc 0 0
b c 0
d e c

c

 ρ0
κ0
ζ ′0

 ⇐⇒


ρ := cc ρ0,

κ := b ρ0 + cκ0,

ζ := d ρ0 + eκ0 +
c

c
ζ ′0,

and inverse formulas are

ρ0 =
1

cc
ρ,

κ0 = − b

ccc
ρ+

1

c
κ,(6.1)

ζ ′0 =
be− cd

ccc
ρ− ce

cc
κ+

c

c
ζ.

The Maurer-Cartan matrix becomes

dg · g−1 =

 c dc + cdc 0 0
db dc 0
dd de dc

c −
c dc
cc

 1
cc 0 0
− b

ccc
1
c 0

be−cd
ccc − ce

cc
c
c


=:

 α+ α 0 0
β α 0
γ δ α− α

 ,

in terms of the group-invariant 1-forms

α :=
dc

c
,

β :=
db

cc
− b dc

ccc
,

γ :=
dd

cc
− b de

ccc
+

be− cd

cccc
dc− be− cd

cccc
dc,

δ :=
de

c
− e dc

cc
+

e dc

cc
.

Now, let us exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates (

z1, z2, z1, z2, v
)
×
(
c, c, b, b, d, d, e, e

)
∈ M5 ×G8.
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The computation starts as

dρ =
(
c dc + c dc

)
∧ ρ0 + cc dρ0,

dκ = db ∧ ρ0 + dc ∧ κ0 + b dρ0 + c dκ0,(6.2)

dζ = dd ∧ ρ0 + de ∧ κ0 +
(dc
c
− c dc

cc

)
∧ ζ ′0 + d dρ0 + e dκ0 +

c

c
dζ ′0.

As is known, one must replace in second lines dρ0, dκ0, dζ ′0 by the structure equations (5.5),
and after, replace everywhere ρ0, κ0, ζ ′0, using the inversion formulas (6.1).

However, contrary to Pocchiola’s systematic approach, we will not perform these calcula-
tions completely, but select only meaningful terms.

At least, at the level of Maurer-Cartan forms, after replacements of ρ0, κ0, ζ ′0 in the first lines
of (6.2) above using (6.1), we have as usual

dρ =
(
α+ α

)
∧ ρ+ Torsion,

dκ = β ∧ ρ+ α ∧ κ+ Torsion,

dζ = γ ∧ ρ+ δ ∧ κ+
(
α− α

)
∧ ζ + Torsion.

Question 6.3. Without computing everything, what are the shapes of the three Torsion remain-
ders?

Consider for instance what happens of the last term c
c dζ

′
0 in dζ, when performing the re-

quired replacements, and restrict attention even to the last term of c
c dζ

′
0 in (5.5), which becomes

c

c

L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0 =

c

c

L1(k)

L1(k)

(
be− cd

ccc
ρ− ce

cc
κ+

c

c
ζ

)
∧
(
be− cd

cc
ρ− ce

cc
κ+

c

c
ζ

)
.

After expansion, we see that are present the eight 2-forms

(•) ρ ∧ κ, (•) ρ ∧ ζ, (•) ρ ∧ κ, (•) ρ ∧ ζ,
(•)κ ∧ κ, (•)κ ∧ ζ, (•) ζ ∧ κ, (•) ζ ∧ ζ.

Doing the same for all torsion terms, we may realize — although it is not necessary to check
this for what follows — with almost no computation that the nonexplicit shape of the structure
equations of the lifted coframe is

dρ =
(
α+ α

)
∧ ρ+R1 ρ ∧ κ+R2 ρ ∧ ζ + R

1
ρ ∧ κ+R

2
ρ ∧ ζ + i κ ∧ κ,

dκ = β ∧ ρ+ α ∧ κ+K1 ρ ∧ κ+K2 ρ ∧ ζ +K3 ρ ∧ κ+K4 ρ ∧ ζ

+K5 κ ∧ ζ + K6 κ ∧ κ+ 1 · ζ ∧ κ,
dζ = γ ∧ ρ+ δ ∧ κ+

(
α− α

)
∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ

+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z7 κ ∧ ζ + Z8 ζ ∧ κ+ Z9 ζ ∧ ζ.

Of course, the preceding normalization f := c
c L1(k) forces

1 =
[
ζ ∧ κ

]{
dκ
}
,

a fact that can also be confirmed by a direct computation of this torsion coefficient (exercise).
So we do not compute all torsion coefficients like Pocchiola did, but we determine before

some essential torsions, so that we may focus on just the useful torsion terms. In advance, we
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have boxed above the 3 useful ones, shown by Pocchiola. The subtle thing is that all three
structure equations are needed.

Lemma 6.4. Here is an essential linear combination of torsion terms

R
1 − 2K6 + Z8.

Proof. In order to ’absorb’ as many torsion coefficients as possible, let us substitute

α =: α′ + a1 ρ+ a2 κ+ a3 ζ + a4 κ+ a5 ζ,

β =: β′ + b1 ρ+ b2 κ+ b3 ζ + b4 κ+ b5 ζ,

γ =: γ′ + c1 ρ+ c2 κ+ c3 ζ + c4 κ+ c5 ζ,

δ =: δ′ + d1 ρ+ d2 κ+ d3 ζ + d4 κ+ d5 ζ.

At first, we have to transform the structure equations after such a substitution, the task is easy,
and we write out the details so that the reader needs no pen and no computer.

Substituting, the Maurer-Cartan part of dρ becomes(
α+ α

)
∧ ρ =

(
α′ + α′

)
∧ ρ+ 0 + a2 κ ∧ ρ+ a3 ζ ∧ ρ+ a4 κ ∧ ρ+ a5 ζ ∧ ρ

+ 0 + a2 κ ∧ ρ+ a3 ζ ∧ ρ+ a4 κ ∧ ρ+ a5 ζ ∧ ρ,

hence adding and reorganizing visually, we get

dρ =
(
α′ + α′

)
∧ ρ

+ ρ ∧ κ
(
R1 − a2 − a4

)
+ ρ ∧ ζ

(
R2 − a3 − a5

)
+ ρ ∧ κ

(
R

1 − a4 − a2
)

+ ρ ∧ ζ
(
R

2 − a5 − a3
)

+ i κ ∧ κ.

Next

β ∧ ρ+ α ∧ κ = β′ ∧ ρ+ 0 + b2 κ ∧ ρ+ b3 ζ ∧ ρ+ b4 κ ∧ ρ+ b5 ζ ∧ ρ
+ α′ ∧ κ+ a1 ρ ∧ κ+ 0 + a3 ζ ∧ κ+ a4 κ ∧ κ+ a5 ζ ∧ κ,

hence

dκ = β′ ∧ ρ+ α′ ∧ κ

+ ρ ∧ κ
(
K1 + a1 − b2

)
+ ρ ∧ ζ

(
K2 − b3

)
+ ρ ∧ κ

(
K3 − b4

)
+ ρ ∧ ζ

(
K4 − b5

)
+ κ ∧ ζ

(
K5 − a3

)
+ κ ∧ κ

(
K6 − a4

)
+ κ ∧ ζ

(
− a5

)
+ ζ ∧ κ.

Lastly

γ ∧ ρ+ δ ∧ κ+
(
α− α

)
∧ ζ = γ′ ∧ ρ+ 0 + c2 κ ∧ ρ+ c3 ζ ∧ ρ+ c4 κ ∧ ρ+ c5 ζ ∧ ρ

+ δ′ ∧ κ+ d1 ρ ∧ κ+ 0 + d3 ζ ∧ κ+ d4 κ ∧ κ+ d5 ζ ∧ κ
+ α′ ∧ ζ + a1 ρ ∧ ζ + a2 κ ∧ ζ + 0 + a4 κ ∧ ζ + a5 ζ ∧ ζ
− α′ ∧ ζ − a1 ρ ∧ ζ − a2 κ ∧ ζ − a3 ζ ∧ ζ − a4 κ ∧ ζ − 0,
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hence

dζ = γ′ ∧ ρ+ δ′ ∧ κ+
(
α′ − α′

)
∧ ζ

+ ρ ∧ κ
(
Z1 − c2 + d1

)
+ ρ ∧ ζ

(
Z2 − c3 + a1 − a1

)
+ ρ ∧ κ

(
Z3 − c4

)
+ ρ ∧ ζ

(
Z4 − c5

)
+ κ ∧ ζ

(
Z5 − d3 + a2 − a4

)
+ κ ∧ κ

(
Z6 − d4

)
+ κ ∧ ζ

(
Z7 − d5

)
+ ζ ∧ κ

(
Z8 − a4 + a2

)
+ ζ ∧ ζ

(
Z9 − a5 + a3

)
.

Extracting the boxed three new torsion coefficients

R
1′

= R
1 − a4 − a2,

K6′ = K6 − a4,
Z8′ = Z8 − a4 + a2,

we see well the announced essentiality
/

invariancy of this torsion combination

R
1′ − 2K6′ + Z8′ = R

1 − 2K6 + Z8. �

Consequently, we may restrict ourselves to computing only these three torsion coefficients.

Lemma 6.5. Their explicit expressions are

R
1

=
P
c

+
ce

cc

L1(k)

L1(k)
− i b

cc
,

K6 = i
b

cc
− e

c
,

Z8 =
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
.

Proof. We proceed by chasing coefficients. Let us treat R
1
. From (6.2), replacing in (5.5) by

means of (6.1), we reach its expression

R
1

=
[
ρ ∧ κ

]{
cc dρ0

}
= 0 + 0 +

[
ρ ∧ κ

]{
ccP

( 1

cc
ρ
)
∧
(
− b

ccc
ρ+

1

c
κ
)

− cc
L1(k)

L1(k)

( 1

cc
ρ
)
∧
(be− cd

ccc
ρ− ce

cc
κ+

c

c
ζ
)

+ cc i
(
− b

ccc
ρ+

1

c
κ
)
∧
(
− b

ccc
ρ+

1

c
κ
)}

= cc◦ P 1

cc◦

1

c
+ cc◦

L1(k)

L1(k)

1

cc◦

ce

cc
− i cc◦

b

ccc◦

1

c
.

Next, from (6.2), let us treat

K6 =
[
κ ∧ κ

]{
b dρ0 + c dκ0

}
.
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In b dρ0, the first four terms in (5.5) have zero contribution, since they are multiples of ρ0, hence
of ρ, whence [

κ ∧ κ
]{
b dρ0

}
= 0 + 0 + 0 + 0 +

[
κ ∧ κ

]{
b i κ0 ∧ κ0

}
=
[
κ ∧ κ

]{
i b
(
− b

ccc
ρ+

1

c
κ
)
∧
(
− b

ccc
ρ+

1

c
κ
)}

= i
b

cc
.

Also, in c dκ0, the first two terms contribute 0, and it remains[
κ ∧ κ

]{
c dκ0

}
= 0 + 0 +

[
κ ∧ κ

]{
c ζ ′0 ∧ κ0

}
=
[
κ ∧ κ

]{
c
(
− ce

cc
κ
)
∧
(1

c
κ
)}

= − e

c
.

Lastly

Z8 =
[
ζ ∧ κ

]{
d dρ0 + e dκ0 +

c

c
dζ ′0

}
.

Here, d dρ0 contributes 0. Next, the first two terms in e dκ0 contribute 0, and it remains[
ζ ∧ κ

]{
e dκ0

}
=
[
ζ ∧ κ

]{
e ζ ′0 ∧ κ0

}
=
[
ζ ∧ κ

]{
e
(c
c
ζ
)
∧
(1

c
κ
)}

=
e

c
.

Also, in c
c dζ

′
0, the first two terms contribute 0, and the last two terms are[

ζ ∧ κ
]{c

c
dζ ′0

}
= − c

c

L1

(
L1(k)

)
L1(k)

[
ζ ∧ κ

]{(c
c
ζ
)
∧
(1

c
κ
)}

+
c

c

L1(k)

L1(k)

[
ζ ∧ κ

]{(c
c
ζ
)
∧
(
− ce

cc
κ
)}

= − 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)

Adding, we get Z8. �

Observing that necessarily −a5 = 0 from
[
κ ∧ ζ

]{
dκ
}

, we realize that some other invariant
relations between torsion coefficients appear

R2′ −K5′ = R2 −K5,

R
2′

+ Z9′ = R
2

+ Z9,

that could potentially bring normalizations of some group parameters, but will not, as it will
come out that they are identically satisfied. However, knowing them will be very useful later,
hence we state a supplementary:

Assertion 6.6. Three other torsion coefficients have the common explicit expression

R2 = K5 = −Z9
= − c

c

L1(k)

L1(k)
.
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Proof. Our technique gives

R2 =
[
ρ ∧ ζ

]{
cc dρ0

}
= 0− cc

L1(k)

L1(k)

1

cc

c

c
+ 0 + 0 + 0.

Next
K5 =

[
ζ ∧ κ

]{
b dρ0 + c dκ0

}
= 0 +

[
ζ ∧ κ

]{
c dκ0

}
= 0− L1(k)

L1(k)
c

1

c

c

c
+ 0.

Lastly

Z9 =
[
κ ∧ ζ

]{
d dρ0 + e dκ0 +

c

c
dζ ′0

}
= 0 + 0 +

[
κ ∧ ζ

]{c
c
dζ ′0

}
= 0 + 0 + 0 +

c

c

L1(k)

L1(k)

c

c

c

c
. �

Coming back to Lemma 6.5, we can now compute in details, emphasizing one annihilation,
the expression of the interesting invariant torsion combination

R
1 − 2K6 + Z8 =

P
c

+
ce

cc

L1(k)

L1(k)
◦

− i b

cc

− 2 i
b

cc
+ 2

e

c

+
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
◦

= − 3 i
b

cc
+ 3

e

c
− 1

c

(
L1

(
L1(k)

)
L1(k)

− P
)
.

Since the group parameter b ∈ C is not on the diagonal, there is no restriction for it to be
nonzero, hence we can normalize it by requiring that

0 = R
1 − 2K6 + Z8,

and this produces the announced normalization

b := − i ce +
i

3
c

(
L1

(
L1(k)

)
L1(k)

− P
)
.(6.7)

For convenience, let us abbreviate

B0 :=
L1

(
L1(k)

)
L1(k)

− P,

which is function on M , as its lower index 0 points out, so that

b := − i ce +
i

3
cB0.
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After this normalization, the lifted coframe becomes ρ
κ
ζ

 :=

 cc 0 0
−i ce + i

3 cB0 c 0
d e c

c

 ρ0
κ0
ζ ′0

 .

Consequently, we can transform
/

rewrite in a natural way

κ =
(
− i ce +

i

3
cB0

)
ρ0 + cκ0

=
(
− i ce

)
ρ0 + c

(
κ0 +

i

3
B0 ρ0︸ ︷︷ ︸

=: κ′0

)
,

and this conducts us to change of initial coframe on M{
ρ0, κ0, ζ

′
0, κ0, ζ

′
0

}
 

{
ρ0, κ

′
0, ζ
′
0, κ

′
0, ζ
′
0

}
,

by introducing

κ′0 := κ0 +
i

3
B0 ρ0.(6.8)

It follows that
ζ = d ρ0 + eκ0 +

c

c
ζ ′0 = d ρ0 + e

(
κ′0 −

i

3
B0 ρ0

)
+

c

c
ζ ′0

=
(
d− i

3
eB0︸ ︷︷ ︸

=: d′

)
ρ0 + eκ′0 +

c

c
ζ ′0.

Before, d ∈ C was a parameter representing some unknown function. Introducing the new
unknown

/
parameter

d′ := d− i

3
e,

we come to a new G-structure of real dimension 6 parametrized by c, e ∈ C∗ and d′ ∈ C whose
lifted coframe writes  ρ

κ
ζ

 :=

 cc 0 0
−i ce c 0
d′ e c

c

 ρ0
κ′0
ζ ′0

 .

We will write again d instead of d′.

7. DARBOUX-CARTAN STRUCTURE OF THE COFRAME
{
ρ0, κ

′
0, ζ
′
0, κ
′
0, ζ
′
0

}
Before continuing, we must compute the Darboux-Cartan structure of this new initial coframe{
ρ0, κ

′
0, ζ
′
0, κ
′
0, ζ
′
0

}
, for which absolutely no details were provided in [25, 18]. Here, we offer

complete explanations.
Abstractly, the structure in question will have the shape

dρ0 = R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ ′0 + R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ
′
0 + i κ′0 ∧ κ′0,

dκ′0 = K1′
0 ρ0 ∧ κ′0 + K2′

0 ρ0 ∧ ζ ′0 + K3′
0 ρ0 ∧ κ′0(7.1)

+ K5′
0 κ
′
0 ∧ ζ ′0 + K6′

0 κ
′
0 ∧ κ′0 + ζ ′0 ∧ κ′0,

dζ ′0 = Z2′
0 ρ0 ∧ ζ ′0 + Z5′

0 κ
′
0 ∧ ζ ′0 + Z8′

0 ζ
′
0 ∧ κ′0 + Z9′

0 ζ
′
0 ∧ ζ

′
0.

Our goal is to compute explicitly all these coefficients, and the answer is stated as follows:
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Proposition 7.2. The Darboux-Cartan structure for the initial coframe
{
ρ0, κ

′
0, ζ
′
0, κ
′
0, ζ
′
0

}
expands as

dρ0 =

(
1

3

L1

(
L1(k)

)
L1(k)

+
2

3
P
)
ρ0 ∧ κ′0 −

L1(k)

L1(k)
ρ0 ∧ ζ ′0

+

(
1

3

L1

(
L1(k)

)
L1(k)

+
2

3
P
)
ρ0 ∧ κ′0 −

L1(k)

L1(k)
ρ0 ∧ ζ

′
0 + i κ′0 ∧ κ′0,

dκ′0 =

(
− i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
i

9

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k) L1(k)

+
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− i

9

L1

(
L1(k)

)
L1(k)

P

+
2 i

9

L1

(
L1(k)

)
L1(k)

P +
i

3
L1

(
P
)
− 2 i

9
P P
)
ρ0 ∧ κ′0

+

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i
3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)

)
ρ0 ∧ ζ ′0

+

(
− i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
4 i

9

L1

(
L1(k)

)2
L1(k)2

+
i

9

L1

(
L1(k)

)
L1(k)

P +
i

3
L1

(
P
)
− 2 i

9
P P
)
ρ0 ∧ κ′0 + 0 ρ0 ∧ ζ

′
0

− L1(k)

L1(k)
κ′0 ∧ ζ ′0 +

(
−1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)
κ′0 ∧ κ′0 + ζ ′0 ∧ κ′0,

dζ ′0 =

(
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k) L1(k)

− i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− i

3

L1

(
L1(k)

)
L1(k)

P +
i

3

L1

(
L1(k)

)
L1(k)

P +
T
(
L1(k)

)
L1(k)

)
ρ0 ∧ ζ ′0

+
L1

(
L1(k)

)
L1(k)

κ′0 ∧ ζ ′0 −
L1

(
L1(k)

)
L1(k)

ζ ′0 ∧ κ′0 +
L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0.

Observe from these explicit expressions that

2 K6′
0 = R1′

0 + Z8′
0 and R2′

0 = K5′
0 .

Proof. We treat first dρ0 and dζ ′0, which are easier than dκ′0. Observing from (6.8), that

ρ0 ∧ κ0 = ρ0 ∧ κ′0 and ρ0 ∧ κ0 = ρ0 ∧ κ′0,
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it comes by replacement in (5.5)

dρ0 = P ρ0 ∧ κ′0 −
L1(k)

L1(k)
ρ0 ∧ ζ ′0 + P ρ0 ∧ κ0 −

L1(k)

L1(k)
ρ0 ∧ ζ

′
0

+ i

(
κ′0 −

i

3

(L1

(
L1(k)

)
L1(k)

− P
)
ρ0

)
∧

(
κ′0 +

i

3

(L1

(
L1(k)

)
L1(k)

)
ρ0

)
and a plain expansion yields the stated expression of dρ0. Next, again from (6.8), it comes by
replacement in (5.5)

dζ ′0 =
T
(
L1(k)

)
L1(k)

ρ0 ∧ ζ ′0 +
L1

(
L1(k)

)
L1(k)

(
κ′0 −

i

3

(L1

(
L1(k)

)
L1(k)

− P
)
ρ0

)
∧ ζ ′0

−
L1

(
L1(k)

)
L1(k)

ζ ′0 ∧

(
κ′0 +

i

3

(L1

(
L1(k)

)
L1(k)

− P
)
ρ0

)
+
L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0

and visually — no pen needed —, we obtain the stated result. To treat dκ′0, we start from

κ′0 = κ0 +
i

3
B0 ρ0

and we exterior differentiate

dκ′0 = dκ0 +
i

3
dB0 ∧ ρ0 +

i

3
B0 dρ0.(7.3)

As a preliminary, we need to know dB0. Let us recall that

B0 =
L1

(
L1(k)

)
L1(k)

− P whence B0 =
L1

(
L1(k)

)
L1(k)

− P.

A plain application of Lemma 2.6 provides this exterior differential

d

(L1

(
L1(k)

)
L1(k)

− P
)

=

(
T
(
L1

(
L1(k)

))
L1(k)

−
T
(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− T
(
P
))

ρ0

+

(
L1

(
L1

(
L1(k)

))
L1(k)

−
L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− L1

(
P
))

κ0

+

(
K
(
L1

(
L1(k)

))
L1(k)

−
K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

−K
(
P
))

ζ0

+

(
L1

(
L1

(
L1(k)

))
L1(k)

−
L1

(
L1(k)

)2
L1(k)2

− L1

(
P
))

κ0

+

(
K
(
L1

(
L1(k)

))
L1(k)

−
K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

−K
(
P
))

ζ0,

an expression that we will abbreviate as

dB0 = U0 ρ0 + V0 κ0 + W0 ζ0 + X0 κ0 + Y0 ζ0.

Assertion 7.4. After simplifications

Y0 = −
L1(k) L1

(
L1(k)

)
L1(k)

+ L1(k) P.
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Proof. In the first two terms of Y0, we replace from Lemma 2.9

K
(
L1

(
L1(k)

))
= − 2L1

(
k
)
L1

(
L1(k)

)
− L1

(
L1

(
k
))
L1(k),

K
(
L1(k)

)
= −L1

(
k
)
L1(k)

and in the third term of Y0, we replace from Lemma 2.5

K
(
P
)

= −PL1

(
k
)
− L1

(
L1

(
k
))
,

which yields the result after one (underlined) pair cancellation

Y0 = −
2L1(k) L1

(
L1(k)

)
L1(k)

− L1

(
L1(k)

)
◦

+
L1(k) L1

(
L1(k)

)
L1(k)

+ PL1

(
k
)

+ L1

(
L1(k)

)
◦
. �

Temporarily, let us work with the abbreviations U0, V0, W0, X0, Y0. So, using the previous
structure formulas (5.5) in which, directly we replace

ζ0 =
ζ ′0
L1(k)

,

let us add line-by-line all three terms of (7.3)

dκ′0 = − T (k)

L1(k)
ρ0 ∧ ζ ′0 −

L1(k)

L1(k)
κ0 ∧ ζ ′0 + ζ ′0 ∧ κ′0

+
i

3
U0 ρ0 ∧ ρ0◦ +

i

3
V0 κ0 ∧ ρ0 +

i

3
W0

ζ ′0
L1(k)

∧ ρ0 +
i

3
X0 κ0 ∧ ρ0 +

i

3
Y0

ζ
′
0

L1(k)
∧ ρ0

+
i

3
B0 P ρ0 ∧ κ0 −

i

3
B0
L1(k)

L1(k)
ρ0 ∧ ζ ′0 +

i

3
B0 P ρ0 ∧ κ0 −

i

3
B0
L1(k)

L1(k)
ρ0 ∧ ζ

′
0 −

1

3
B0 κ0 ∧ κ0,

hence after collecting coefficients of basic 2-forms, we get

dκ′0 = ρ0 ∧ ζ′0
[
− T (k)

L1(k)
− i

3

W0

L1(k)
− i

3
B0
L1(k)

L1(k)

]
+ ρ0 ∧ κ0

[
− i

3
V0 +

i

3
B0 P

]
+ ρ0 ∧ κ0

[
− i

3
X0 +

i

3
B0 P

]
+ ρ0 ∧ ζ

′
0

[
− i

3

Y0

L1(k)
− i

3
B0
L1(k)

L1(k)

]

+ κ0 ∧ ζ′0
[
− L1(k)

L1(k)

]
+ κ0 ∧ κ0

[
− 1

3
B0

]
+ ζ′0 ∧ κ0.

Next, replace everywhere

κ0 = κ′0 −
i

3
B0 ρ0.

Then using again κ0 ∧ ρ0 = κ′0 ∧ ρ0, only the last line changes, as it becomes(
κ′0 −

i

3
B0 ρ0

)
∧ ζ′0

[
− L1(k)

L1(k)

]
+
(
κ′0 −

i

3
B0 ρ0

)
∧
(
κ′0 +

i

3
B0 ρ0

) [
− 1

3
B0

]
+ ζ′0 ∧

(
κ′0 +

i

3
B0 ρ0

)
.
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Expanding and collecting visually — no pen needed —, we get

dκ′0 = ρ0 ∧ ζ ′0

[
− T (k)

L1(k)
− i

3

W0

L1(k)
− i

3
B0
L1(k)

L1(k)
◦

+
i

3
B0
L1(k)

L1(k)
◦

− i

3
B0

]

+ ρ0 ∧ κ′0
[
− i

3
V0 +

i

3
B0 P +

i

9
B0 B0

]
+ ρ0 ∧ κ′0

[
− i

3
X0 +

i

3
B0 P +

i

9
B0 B0

]
+ ρ0 ∧ ζ

′
0

[
− i

3

Y0

L1(k)
− i

3
B0
L1(k)

L1(k)
◦

]

+ κ′0 ∧ ζ ′0
[
− L1(k)

L1(k)

]
+ κ′0 ∧ κ′0

[
− 1

3
B0

]
+ ζ ′0 ∧ κ′0.

To finish, we must yet replace V0, W0, X0, Y0 by their complete values, and we will realize, as
indicated by anticipation above, that the coefficient of ρ0 ∧ ζ

′
0 vanishes identically.

Firstly, a replacement followed by a visual expansion finalizes[
ρ0 ∧ κ′0

]{
dκ′0
}

= − i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

+
i

3
L1

(
P
)

+
i

3

L1

(
L1(k)

)
L1

P− i

3
P P +

i

9

(
L1

(
L1(k)

)
L1(k)

− P
)(
L1

(
L1(k)

)
L1(k)

− P
)
.

Secondly [
ρ0 ∧ ζ ′0

]{
dκ′0
}

= − T (k)

L1(k)
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

+
i

3

K(P)

L1(k)
− i

3

L1

(
L1(k)

)
L1(k)

+
i

3
P,

but here, we must still replace the boxed term using Lemma 2.5[
ρ0 ∧ ζ ′0

]{
dκ′0
}

= − T (k)

L1(k)
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i

3
P
◦
− i

3

L1

(
L1(k)

)
L1(k)

+
1

3

T (k)

L1(k)
− i

3

L1

(
L1(k)

)
L1(k)

+
i

3
P
◦
.

A pair cancellation makes the obtained expression match precisely with what Proposition 7.2
stated, after some permutation of terms.

The third replacement conducts directly to the stated result

[
ρ0 ∧ κ′0

]{
dκ′0
}

= − i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
i

3

L1

(
L1(k)

)2
L1(k)2

+
i

3
L1

(
P
)

+
i

3

L1

(
L1(k)

)
L1(k)

P− i

3
P P

+
i

9

L1

(
L1(k)

)2
L1(k)2

− 2 i

9

L1

(
L1(k)

)
L1(k)

P +
i

9
P P,
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while the fourth (last) brings an identically zero result

[
ρ0 ∧ ζ

′
0

]{
dκ′0
}

=
i

3

L1(k) L1

(
L1(k)

)
L1(k) L1(k)

◦

− i

3

L1(k)

L1(k)
P
◦◦

− i

3

L1

(
L1(k)

)
L1(k)

L1(k)

L1(k)
◦

(7.5)

+
i

3
P L1(k)

L1(k)
◦◦

. �

8. THIRD LOOP: REDUCTION OF THE GROUP PARAMETER d

After normalization of the group parameter b from (6.7), we have a new reduced group G6

of real dimension 6, and the lifted coframe is

 ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0
d e c

c

 ρ0
κ′0
ζ ′0

 ⇐⇒


ρ := cc ρ0,

κ := − i ce ρ0 + cκ′0,

ζ := d ρ0 + eκ′0 +
c

c
ζ ′0,

(8.1)

with inverse formulas

ρ0 =
1

cc
ρ,

κ′0 = i
e

cc
ρ+

1

c
κ,(8.2)

ζ ′0 =
(
− i

cee

ccc
− d

cc

)
ρ− ce

cc
κ+

c

c
ζ.

The Maurer-Cartan matrix becomes

dg · g−1 =

 c dc + cdc 0 0
−i edc− i cde dc 0

dd de dc
c −

c dc
cc

 1
cc 0 0
i e
cc

1
c 0

−i cee
ccc −

d
cc − ce

cc
c
c


=:

 α+ α 0 0
β α 0
γ i β α− α

 ,

in terms of the group-invariant 1-forms

α :=
dc

c
,

β := i
e dc

cc
− i e dc

cc
− i de

c
,

γ :=
(cd + i cee

ccc

)(
− dc

c
+
dc

c

)
+
dd

cc
+ i

e de

cc
.

Now, if we exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates (

z1, z2, z1, z2, v
)
×
(
c, c, d, d, e, e

)
∈ M5 ×G6,
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after some computations, we may come to structure equations of the abstract shape

dρ =
(
α+ α

)
∧ ρ

+R1 ρ ∧ κ+R2 ρ ∧ ζ +R
1
ρ ∧ κ+R

2
ρ ∧ ζ + i κ ∧ κ,

dκ = β ∧ ρ+ α ∧ κ

+K1 ρ ∧ κ+K2 ρ ∧ ζ + K3 ρ ∧ κ+K4 ρ ∧ ζ
+K5 κ ∧ ζ +K6 κ ∧ κ+ ζ ∧ κ,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ

+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z7 κ ∧ ζ + Z8 ζ ∧ κ+ Z9 ζ ∧ ζ.

Before really computing explicitly some of these torsion coefficients, let us examine what are
the absorption equations. For this, we replace

α =: α′ + a1 ρ+ a2 κ+ a3 ζ + a4 κ+ a5 ζ,

β =: β′ + b1 ρ+ b2 κ+ b3 ζ + b4 κ+ b5 ζ,

γ =: γ′ + c1 ρ+ c2 κ+ c3 ζ + c4 κ+ c5 ζ.

A moment of reflection convinces that the result for dρ is the same as in the proof of Lemma 6.4:

dρ =
(
α′ + α′

)
∧ ρ

+ ρ ∧ κ
(
R1 − a2 − a4

)
+ ρ ∧ ζ

(
R2 − a3 − a5

)
+ ρ ∧ κ

(
R

1 − a4 − a2
)

+ ρ ∧ ζ
(
R

2 − a5 − a3
)

+ i κ ∧ κ.

Similarly, dκ is unchanged

dκ = β′ ∧ ρ+ α′ ∧ κ

+ ρ ∧ κ
(
K1 + a1 − b2

)
+ ρ ∧ ζ

(
K2 − b3

)
+ ρ ∧ κ

(
K3 − b4

)
+ ρ ∧ ζ

(
K4 − b5

)
+ κ ∧ ζ

(
K5 − a3

)
+ κ ∧ κ

(
K6 − a4

)
+ κ ∧ ζ

(
− a5

)
+ ζ ∧ κ.

However, for dζ, we have to compute

γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ = γ′ ∧ ρ+ 0 + c2 κ ∧ ρ+ c3 ζ ∧ ρ+ c4 κ ∧ ρ+ c5 ζ ∧ ρ

+ i β′ ∧ κ+ i b1 ρ ∧ κ+ 0 + i b3 ζ ∧ κ+ i b4 κ ∧ κ+ i b5 ζ ∧ κ
+ α′ ∧ ζ + a1 ρ ∧ ζ + a2 κ ∧ ζ + 0 + a4 κ ∧ ζ + a5 ζ ∧ ζ
− α′ ∧ ζ − a1 ρ ∧ ζ − a2 κ ∧ ζ − a3 ζ ∧ ζ − a4 κ ∧ ζ − 0

and we get

dζ = γ′ ∧ ρ+ i β′ ∧ κ+
(
α′ − α′

)
∧ ζ

+ ρ ∧ κ
(
Z1 + i b1 − c2

)
+ ρ ∧ ζ

(
Z2 − c3 + a1 − a1

)
+ ρ ∧ κ

(
Z3 − c4

)
+ ρ ∧ ζ

(
Z4 − c5

)
+ κ ∧ ζ

(
Z5 − i b3 + a2 − a4

)
+ κ ∧ κ

(
Z6 − i b4

)
+ κ ∧ ζ

(
Z7 − i b5

)
+ ζ ∧ κ

(
Z8 − a4 + a2

)
+ ζ ∧ ζ

(
Z9 − a5 + a3

)
.
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Lemma 8.3. Here is an essential linear combination of torsion terms

iK3 − Z6.

Proof. Indeed,
K3′ = K3 − b4,
Z6′ = Z6 − i b4,

whence
iK3′ − Z6′ = iK3 − Z6. �

Proposition 8.4. Their explicit expressions are

K3 = − d

cc
+

e

cc

(
−2i
L1

(
L1(k)

)
L1(k)

− i

3
P
)
− i ee

cc

L1(k)

L1(k)

+
1

cc

(
− i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
4 i

9

L1

(
L1(k)

)2
L1(k)2

+
i

9

L1

(
L1(k)

)
L1(k)

P +
i

3
L1

(
P
)
− 2 i

9
P P
)
,

Z6 = i
d

cc
− ee

cc
+

e

cc

(
1

3
P +

2

3

L1

(
L1(k)

)
L1(k)

)
+

ee

cc

L1(k)

L1(k)
.

Proof. We start by differentiating (8.1), finalizing directly the Maurer-Cartan part, thanks to the
Maurer-Cartan matrix shown above, and setting aside dρ for the moment

dκ = β ∧ ρ+ α ∧ κ
− i ce dρ0 + c dκ′0,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ

+ d dρ0 + e dκ′0 +
c

c
dζ ′0.

So we have to compute first

K3 =
[
ρ ∧ κ

]{
dκ
}

= − i ce
[
ρ ∧ κ

]{
dρ0
}

+ c
[
ρ ∧ κ

]{
dκ′0
}
.

The first term is, by (7.1), using the inversion formulas (8.2)[
ρ ∧ κ

]{
dρ0
}

=
[
ρ ∧ κ

]{
0 + 0 + R1′

0

( 1

cc

)
∧
(1

c
κ
)

+ R2′
0

( 1

cc

)
∧
(
− ce

cc
κ
)

+ i
(
i
e

cc
ρ
)
∧
(1

c
κ
)}

=
1

ccc
R1′

0 −
e

ccc
R2′

0 −
e

ccc
.

Similarly[
ρ ∧ κ

]{
dκ′0
}

=
[
ρ ∧ κ

]{
0 + 0 + K3′

0

( 1

cc
ρ
)
∧
(1

c
κ
)

+ 0 + K6′
0

(
i
e

cc
ρ
)
∧
(1

c
κ
)

+

((
− i cee

ccc
− d

cc

)
ρ

)
∧
(1

c
κ
)}

=
1

ccc
K3′

0 + i
e

ccc
K6′

0 − i
ee

ccc
− d

ccc
.
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Hence

K3′
0 = − i e

cc
R1′

0 + i
ee

cc
R2′

0 + i
ee

cc◦
+

1

cc
K3′

0 + i
e

cc
K6′

0 − i
ee

cc◦
− d

cc

= − d

cc
+

e

cc

(
− i

3

L1

(
L1

(
k)
)

L1(k)
− 2 i

3
P− i

3
L1

(
L1(k)

)
+
i

3
p
)
− i ee

cc

L1(k)

L1(k)
+

1

cc
K3′

0 .

Replacing this last term K3′
0 by its value from Proposition 7.2, we reach the stated explicit ex-

pression of K3. Next

Z6 =
[
κ ∧ κ

]{
dζ
}

= d
[
κ ∧ κ

]{
dρ0
}

+ e
[
κ ∧ κ

]{
dκ′0
}

+
c

c

[
κ ∧ κ

]{
dζ ′0
}
.

Separately [
κ ∧ κ

]{
d dρ0

}
= 0 + 0 + 0 + 0 + d i

1

cc
= i

d

cc
,[

κ ∧ κ
]{
e dκ′0

}
= 0 + 0 + 0 + 0 + eK6′

0

1

cc
+ e

(
− ce

cc

) 1

c
=

e

cc
K6′

0 −
ee

cc
,[

κ ∧ κ
]{c

c
dζ ′0

}
= 0 + 0 +

c

c
Z8′
0

(
− ce

cc

)(1

c

)
+

c

c
Z9′
0

(
− ce

cc

)(
− ce

cc

)
= − e

cc
Z8′
0 +

ee

cc
Z9′
0 ,

hence summing and inserting the explicit expressions from Proposition 7.2, we conclude

Z6 = i
d

cc
+

e

cc
K6′

0 −
ee

cc
− e

cc
Z8′
0 +

ee

cc
Z9′
0

= i
d

cc
− ee

cc
+

e

cc

(
1

3
P +

2

3

L1

(
L1(k)

)
L1(k)

)
+

ee

cc

L1(k)

L1(k)
. �

Once we have reached the explicit expressions of both K3 and Z6, when we perform the
essential combination iK3−Z6, we see that both the coefficients of e

cc and of ee
cc disappear, and

it remains

iK3 − Z6 = − 2i
d

cc
+

ee

cc
+ i

1

cc
K3′

0

= − 2i
d

cc
+

ee

cc

+
1

cc

(
1

3

L1

(
L1

(
L1(k)

))
L1(k)

− 4

9

L1

(
L1(k)

)2
L1(k)2

− 1

9

L1

(
L1(k)

)
L1(k)

P− 1

3
L1

(
P
)

+
2

9
P P︸ ︷︷ ︸

=: − 2 H0

)
.

We introduce, as is underbraced

H0 := − 1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
L1(k)

P +
1

6
L1

(
P
)
− 1

9
P P,

a function which coincides with Pocchiola’s function H . Then by means of the invariant con-
dition

0 = iK3 − Z6,
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we reach a convenient normalization of the group parameter

d := − i

2

cee

c
+ i

c

c
H0

= − i

2

cee

c
+ i

c

c

(
− 1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
L1(k)

P +
1

6
L1

(
P
)
− 1

9
P P
)
.

Before we really perform this normalization of the group parameter d, let us point out that
some other invariant relations between torsion coefficients appear. In fact, we see above that:

iK4′ = iK4 − i b5,
Z7′ = Z7 − i b5,

whence
iK4′ − Z7′ = iK4 − Z7.

However, the next lemma shows that no group parameter can be normalized so.

Lemma 8.5. Their explicit expressions are

iK4 = Z7 = − e

c

L1(k)

L1(k)
.

Proof. Indeed, by (7.1), replacing R2′
0 from Proposition 7.2, we can compute using (8.2)

K4 =
[
ρ ∧ ζ

]{
− i ce dρ0 + c dκ′0

}
= − i ce

[
ρ ∧ ζ

]{
dρ0
}

+ c
[
ρ ∧ ζ

]{
dκ′0
}

= − i ce
(

0 + 0 + 0 + R2′
0

( 1

cc

)(c
c

))
+ c · 0

= − i e
c

(
− L1(k)

L1(k)

)
,

and similarly

Z7 =
[
κ ∧ ζ

]{
d dρ0 + e dκ′0 +

c

c
dζ ′0

}
= d

[
κ ∧ ζ

]{
dρ0
}

+ e
[
κ ∧ ζ

]{
dκ′0
}

+
c

c

[
κ ∧ ζ

]{
dζ ′0
}

= 0 + 0 +
c

c

(
0 + 0 + 0 + Z9′

0

(
− ce

cc

)(c
c

))
= − e

c

L1(k)

L1(k)
. �

Another invariant torsion combination is the following.

Lemma 8.6. Here is an essential linear combination of torsion terms

− iK2 + Z5 − Z8
.

Proof. A glance at what precedes shows

K2′ = K2 − b3,
Z5′ = Z5 − i b3 + a2 − a4,
Z8′ = Z8 − a4 + a2,
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whence indeed
− iK2′ + Z5′ − Z8′

= − iK2 + Z5 − Z8
. �

Lemma 8.7. Their explicit expressions are:

K2 = i
e

c
+

1

c

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i
3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)

)
,

Z5 =
1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
,

Z8 =
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
.

Proof. Recall
dρ =

(
α+ α

)
∧ ρ+ cc dρ0,

dκ = β ∧ ρ+ α ∧ κ− i ce dρ0 + c dκ′0,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ρ+ d dρ0 + e dκ′0 +

c

c
dζ ′0,

hence
K2 =

[
ρ ∧ ζ

]{
− i ce dρ0 + c dκ′0

}
.

Visually [
ρ ∧ ζ

]{
dρ0
}

= R2′
0

( 1

cc

)(c
c

)
=

1

cc
R2′

0 ,[
ρ ∧ ζ

]{
dκ′0
}

= K2′
0

( 1

cc

)(c
c

)
+ K5′

0

(
i
e

cc

)(c
c

)
−
(c
c

)(
− i e

cc

)
=

1

cc
K2′

0 + i
ce

ccc
K5′

0 + i
e

cc
,

hence

K2 = − i ce
cc

R2′
0 +

1

c
K2′

0 + i
ce

cc
K5′

0 + i
e

c

= i
e

c
+

1

c

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i

3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)

)
.

Next, treat

Z5 =
[
κ ∧ ζ

]{
d dρ0 + e dκ′0 +

c

c
dζ ′0

}
,

using [
κ ∧ ζ

]{
dρ0
}

= 0,[
κ ∧ ζ

]{
dκ′0
}

= K5′
0

(1

c

)(c
c

)
=

c

cc
K5′

0 ,[
κ ∧ ζ

]{
dζ ′0
}

= Z5′
0

(1

c

)(c
c

)
=

c

cc
Z5′
0 ,
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so

Z5 =
ce

cc

(
− L1(k)

L1(k)

)
+

1

c

(
L1

(
L1(k)

)
L1(k)

)
.

Lastly treat

Z8 =
[
ζ ∧ κ

]{
d dρ0 + e dκ′0 +

c

c
dζ ′0

}
,

using [
ζ ∧ κ

]{
dρ0
}

= 0,[
ζ ∧ κ

]{
dκ′0
}

=
c

c

1

c
=

1

c
,[

ζ ∧ κ
]{
dζ ′0
}

= Z8′
0

c

c

1

c
+ Z9′

0

c

c

(
− ce

cc

)
=

1

c
Z8′
0 −

e

c
Z9′
0 ,

which concludes

Z8 =
e

c
+

1

c
Z8′
0 −

ce

cc
Z9′
0

=
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
. �

Thanks to these explicit expressions, we can compute the essential linear combination of
torsion terms, emphasizing two important annihilations by pairs

− iK2 + Z5 − Z8
=

e

c◦
+

1

c

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

−1

3

L1

(
L1(k)

)
L1(k)

− 1

3

L1

(
L1(k)

)
L1(k)

+
2 i

3

T (k)

L1(k)

)

+
1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
◦◦

− e

c◦
+

1

c

L1

(
L1(k)

)
L1(k)

+
ce

cc

L1(k)

L1(k)
◦◦

.

Also, in order to match exactly with Pocchiola’s function W introduced in [25, 18], we decom-
pose the last term of the second line as

2 i

3

T (k)

L1(k)
= − 1

3

L1

(
L1(k)

)
L1(k)

+
1

3

L1

(
L1(k)

)
L1(k)

+
i

3

T (k)

L1(k)
,

so that a third pair of terms disappears, and after reorganization — no pen needed —, the
result is

− iK2 + Z5 − Z8
=

1

c

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L1(k)

)
L1(k)

+
i

3

T (k)

L1(k)

)

=:
1

c
W0,

and this defines a new horizontal function W0, equal to Pocchiola’s function W .
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For now, we will not use the potential normalization c = W0 on the open subset of M5 ⊂ C3

on which
0 6= W0

(
z1, z2, z1, z2, v

)
,

if nonempty — a hypothesis must be set up —, but we will deal with this discussion later. In
fact, before proceeding, we state a technical differential relation useful later, whose proof can
be skipped in a first reading.

Lemma 8.8. One has
K
(
H0

)
= − 2L1

(
k
)

H0.

Proof. Apply the derivation K to H0

K
(
H0

)
= − 1

6

K
(
L1

(
L1

(
L1(k)

)))
L1(k)

+
1

6

K
(
L1(k)

)
L1

(
L1

(
L1(k)

))
L1(k)2

+
4

9

K
(
L1

(
L1(k)

))
L1

(
L1(k)

)
L1(k)2

− 4

9

K
(
L1(k)

)
L1

(
L1(k)

)2
L1(k)3

+
1

18

K
(
L1

(
L1(k)

))
L1(k)

P +
1

18

L1

(
L1(k)

)
K
(
P
)

L1(k)

− 1

18

K
(
L1(k)

)
L1

(
L1(k)

)
P

L1(k)2
+

1

6
K
(
L1

(
P
))
− 2

9
PK

(
P
)

perform replacements using Lemmas 2.9 and 2.5

K
(
H0

)
=

1

2

L1(k) L1
(
L1

(
L1(k)

))
L1(k)

+
1

2

L1
(
L1(k)

)
L1

(
L1(k)

)
L1(k) ◦

+
1

6
L1

(
L1

(
L1

(
k
)))
−

1

6

L1(k) L1
(
L1

(
L1(k)

))
L1(k)

−
8

9

L1
(
L1(k)

)2 L1(k)
L1(k)2

−
4

9

L1
(
L1(k)

)
L1

(
L1(k)

)
L1(k) ◦

+
4

9

L1(k) L1
(
L1(k)

)2
L1(k)2

−
1

9

L1
(
L1(k)

)
L1(k) P

L1(k)
−

1

18
L1

(
L1

(
k
))

P− 1

18

L1
(
L1(k)

)
L1(k) P

L1(k) ◦◦

−
1

18

L1
(
L1(k)

)
L1

(
L1(k)

)
L1(k) ◦

+
1

18

L1(k) L1
(
L1(k)

)
P

L1(k) ◦◦

+
1

6
K
(
L1

(
P
))

+
2

9
P PL1

(
k
)
+

2

9
PL1

(
L1

(
k
))

and observe some (underlined) cancellations to get an expression in which the last three terms
must yet be transformed

K
(
H0

)
=

1

3

L1(k) L1

(
L1

(
L1(k)

))
L1(k)

− 4

9

L1(k) L1

(
L1(k)

)2
L1(k)2

− 1

9

L1(k) L1

(
L1(k)

)
P

L1(k)

+
2

9
P PL1(k) +

1

6
L1

(
L1

(
L1

(
k
)))

+
1

6
L1

(
L1(k)

)
P +

1

6
K
(
L1

(
P
))
.

Lemma 8.9. One has

L1

(
L1

(
L1

(
k
)))

+ L1

(
L1(k)

)
P +K

(
L1

(
P
))

= − 2L1

(
k
)
L1

(
P
)
.

Proof. Apply the vector field L1 to Lemma 2.5

L1

(
K
(
P
))

= −L1

(
P
)
L1

(
k
)
− PL1

(
L1

(
k
))
− L1

(
L1

(
L1

(
k
)))

.

On the other hand, apply the Lie bracket
[
L1,K

]
(•) to the function P, using the concerned

known commutation relation shown in Section 2

L1

(
K
(
P
))
−K

(
L1

(
P
))

=
[
L1,K

](
P
)

= L1

(
k
)
L1

(
P
)
,
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and replace the first term L1

(
K
(
P
))

by its value above to get the result. �

Consequently, after this transformation, we see that K
(
H0

)
is a multiple of L1(k) in which

we recognize −2 H0 as stated

K
(
H0

)
= L1

(
k
)(1

3

L1

(
L1

(
L1(k)

))
L1(k)

− 4

9

L1

(
L1(k)

)2
L1(k)2

− 1

9

L1

(
L1(k)

)
P

L1(k)
− 1

3
L1

(
P
)

+
2

9
P2

)
.

�

As we already observed, the essential (invariant) torsion iK3 −Z6 can be set 0 to normalize
the group parameter d as

d := − i

2

cee

c
+ i

c

c
H0,

whence inserting in (8.1) ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0

− i
2

cee
c + i c

c H0 e c
c

 ρ0
κ′0
ζ ′0

 .

Thus, we are naturally led to change the initial coframe on M{
ρ0, κ

′
0, ζ
′
0, κ

′
0, ζ
′
0

}
 

{
ρ0, κ

′
0, ζ
′′
0 , κ

′
0, ζ
′′
0

}
,

by introducing the new 1-form
ζ ′′0 := ζ ′0 + iH0 ρ0,

so that a new, reduced by two real dimensions, G-structure, appears ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0
− i

2
cee
c e c

c

 ρ0
κ′0
ζ ′′0

 ,

which is justified by the computation
/

reorganization

ζ =
(
− i

2

cee

c
+ i

c

c
H0

)
ρ0 + eκ′0 +

c

c
ζ ′0

= − i

2

cee

c
ρ0 + eκ′0 +

c

c

(
ζ ′0 + iH0 ρ0︸ ︷︷ ︸

=: ζ′′0

)
.

Back to previous expressions, this last coframe writes out as

ρ0 :=
1

`

(
dv − A1 dz1 − A2 dz2 − A1

dz1 − A2
dz2

)
,

κ′0 := dz1 − k dz2 +
i

3
B0 ρ0,

ζ ′′0 := L1(k) dz2 + iH0 ρ0.

9. DARBOUX-CARTAN STRUCTURE OF THE COFRAME
{
ρ0, κ

′
0, ζ
′′
0 , κ

′
0, ζ
′′
0

}
The present change of initial coframe expresses as

ζ ′′0 := ζ ′0 + iH0 ρ0 ⇐⇒ ζ ′0 = ζ ′′0 − iH0.

The exterior differentiation of ζ ′′0 comprises 3 terms that we shall compute soon

dζ ′′0 = dζ ′0 + i dH0 ∧ ρ0 + iH0 dρ0.
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Back to the previous structure equations written in the abbreviated form (7.1), we may start by
replacing ζ ′0 in dρ0, while observing that

ρ0 ∧ ζ ′0 = ρ0 ∧ ζ ′′0 and ρ0 ∧ ζ
′
0 = ρ0 ∧ ζ

′′
0 ,

we come to unchanged coefficients for

dρ0 = R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ ′′0 + R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ
′′
0 + i κ′0 ∧ κ′0,

hence without computation, the third term is

iH0 dρ0 = iH0 R1′
0 ρ0 ∧ κ′0 + iH0 R2′

0 ρ0 ∧ ζ ′0 + iH0 R1′
0 ρ0 ∧ κ′0 + iH0 R2′

0 ρ0 ∧ ζ
′
0 −H0 κ0 ∧ κ′0.

Next, we do the same replacement of ζ ′0 in

dκ′0 = K1′
0 ρ0 ∧ κ′0 + K2′

0 ρ0 ∧
(
ζ ′′0 − iH0 ρ0

)
+ K3′

0 ρ0 ∧ κ′0

+ K5′
0 κ
′
0 ∧
(
ζ ′′0 − iH0 ρ0

)
+ K6′

0 κ
′
0 ∧ κ′0 +

(
ζ ′′0 − iH0 ρ0

)
∧ κ′0,

hence
dκ′0 =

(
K1′

0 + iK5′
0 H0︸ ︷︷ ︸

=: K1′′
0

)
ρ0 ∧ κ′0 + K2′

0 ρ0 ∧ ζ ′′0 +
(

K3′
0 − iH0︸ ︷︷ ︸
=: K3′

0

)
ρ0 ∧ κ′0

+ K5′
0 κ
′
0 ∧ ζ ′′0 + K6′

0 κ
′
0 ∧ κ′0 + ζ ′′0 ∧ κ′0.

Similarly, do the same for

dζ ′0 = Z2′
0 ρ0 ∧

(
ζ ′′0 − iH0 ρ0

)
+ Z5′

0 κ
′
0 ∧
(
ζ
′′
0 + iH0 ρ0

)
+ Z8′

0

(
ζ ′′0 − iH0 ρ0

)
∧ κ′0 + Z9′

0

(
ζ ′′0 − iH0 ρ0

)
∧
(
ζ
′′
0 + iH0 ρ0

)
,

hence
dζ ′0 = iZ5′

0 H0 ρ0 ∧ κ′0 +
(

Z2′
0 − iZ9′

0 H0

)
ρ0 ∧ ζ ′′0 − iZ8′

0 H0 ρ0 ∧ κ′0

− iZ9′
0 H0 ρ0 ∧ ζ

′′
0 + Z5′

0 κ
′
0 ∧ ζ ′′0 + Z8′

0 ζ
′′
0 ∧ κ′0 + Z9′

0 ζ
′′
0 ∧ ζ

′′
0 .

Next, we have to compute the second term in dζ ′′0 , and using

dH0 = T
(
H0

)
ρ0 + L1

(
H0

)
κ0 +K

(
H0

)
ζ0 + L1

(
H0

)
κ0 +K

(
H0

)
ζ0,

it comes

dH0 ∧ ρ0 = 0− L1

(
H0

)
ρ0 ∧ κ0 −K

(
H0

)
ρ0 ∧ ζ0 − L1

(
H0

)
ρ0 ∧ κ0 −K

(
H0

)
ρ0 ∧ ζ0

= −L1

(
H0

)
ρ0 ∧

(
κ′0 −

i

3
B0 ρ0

)
−K

(
H0

)
ρ0 ∧

ζ ′0
L1(k)

− L1

(
H0

)
ρ0 ∧

(
κ′0 +

i

3
B0 ρ0

)
− K

(
H0

)
ρ0 ∧

ζ
′
0

L1(k)

= −L1

(
H0

)
ρ0 ∧ κ′0 −

K(H0)

L1(k)
ρ0 ∧ ζ ′0 − L1

(
H0

)
ρ0 ∧ κ′0 −

K(H0)

L1(k)
ρ0 ∧ ζ

′
0,

hence multiplying by i, we get the expression of the second term

i dH0 ∧ ρ0 = − iL1

(
H0

)
ρ0 ∧ κ′0 − i

K(H0)

L1(k)
ρ0 ∧ ζ ′′0 − iL1

(
H0

)
ρ0 ∧ κ′0 − i

K(H0)

L1(k)
ρ0 ∧ ζ

′′
0 .
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Summing and collecting the three computed terms yields

dζ ′′0 = ρ0 ∧ κ′0
[
iZ5′

0 H0 − iL1

(
H0

)
+ iH0 R1′

0︸ ︷︷ ︸
=: Z1′′

0

]
+ ρ0 ∧ ζ ′′0

[
Z2′
0 − iZ9′

0 H0 − i
K(H0)

L1(k)
+ iH0 R2′

0︸ ︷︷ ︸
=: Z2′′

0

]

+ ρ0 ∧ κ′0
[
− iZ8′

0 H0 − iL1

(
H0

)
+ iH0 R1′

0︸ ︷︷ ︸
=: Z3′′

0

]
+ ρ0 ∧ ζ

′′
0

[
− iZ9′

0 H0 − i
K(H0)

L1(k)
+ iH0 R2′

0

◦

]

+ Z5′
0 κ
′
0 ∧ ζ ′′0 + κ′0 ∧ κ′0

[
−H0︸ ︷︷ ︸
=: Z6′′

0

]
+ Z8′

0 ζ
′′
0 ∧ κ′0 + Z9′

0 ζ
′′
0 ∧ ζ

′′
0 .

Lemma 9.1. One has the identical vanishing of the coefficient of ρ0 ∧ ζ
′′
0 in dζ ′′0

Z4′′
0 := − iZ9′

0 H0 − i
K(H0)

L1(k)
+ iH0 R2′

0

≡ 0.

Proof. This is equivalent to

K
(
H0

) ?≡ L1

(
k
)

H0

(
− Z9′

0 + R2′
0

)
and after a replacement using Proposition 7.2, to

K
(
H0

) ?≡ L1

(
k
)

H0

(
− L1(k)

L1(k)
− L1(k)

L1(k)

)
,

an identity which was already seen by Lemma 8.8. �

In summary

dρ0 = R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ ′′0 + R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ
′′
0 + i κ′0 ∧ κ′0,

dκ′0 = K1′′
0 ρ0 ∧ κ′0 + K2′

0 ρ0 ∧ ζ ′′0 + K3′′
0 ρ0 ∧ κ′0

+ K5′
0 κ
′
0 ∧ ζ ′′0 + K6′

0 κ
′
0 ∧ κ′0 + ζ ′′0 ∧ κ′0,

dζ ′′0 = Z1′′
0 ρ0 ∧ κ′0 + Z2′′

0 ρ0 ∧ ζ ′′0 + Z3′′
0 ρ0 ∧ κ′0

+ Z5′
0 κ
′
0 ∧ ζ ′′0 + Z6′′

0 κ′0 ∧ κ′0 + Z8′
0 ζ
′′
0 ∧ κ′0 + Z9′

0 ζ
′′
0 ∧ ζ

′′
0 .

Notice that new coefficients Z2′′
0 , Z3′′

0 , Z4′′
0 appear in dζ ′′0 , which were absent in dζ ′0, as they are

coming from the second term i dH0 ∧ ρ0.

10. ABSORPTION AND APPARITION OF TWO 1-FORMS π1, π2

With the 4-dimensional group parametrized by
(
c, c, e, e

)
, the lifted coframe writes:

 ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0
− i

2
cee
c e c

c

 ρ0
κ′0
ζ ′′0

 ⇐⇒


ρ := cc ρ0,

κ := − i ce ρ0 + cκ′0,

ζ := − i

2

cee

c
ρ0 + eκ′0 +

c

c
ζ ′′0 ,
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with inverse formulas

ρ0 =
1

cc
ρ,

κ′0 = i
e

cc
ρ+

1

c
κ,(10.1)

ζ ′′0 = − i

2

cee

ccc
ρ− ce

cc
κ+

c

c
ζ.

The Maurer-Cartan matrix becomes

dg · g−1 =

 c dc + cdc 0 0
−i edc− i cde dc 0

− i
2
ee dc
c − i

ce de
c + i

2
cee dc
cc de dc

c −
c dc
cc

 1
cc 0 0
i e
cc

1
c 0

− i
2
cee
ccc − ce

cc
c
c


=:

 α+ α 0 0
β α 0
0 i β α− α

 ,

in terms of the group-invariant 1-forms

α :=
dc

c
,

β := i
e dc

cc
− i e dc

cc
− i de

c
.

Now, if we exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates (

z1, z2, z1, z2, v
)
×
(
c, c, e, e

)
∈ M5 ×G4,

after hard computations, we may come to structure equations of the abstract shape

dρ =
(
α+ α

)
∧ ρ+R1 ρ ∧ κ+R2 ρ ∧ ζ +R

1
ρ ∧ κ+R

2
ρ ∧ ζ + i κ ∧ κ,

dκ = β ∧ ρ+ α ∧ κ+K1 ρ ∧ κ+K2 ρ ∧ ζ +K3 ρ ∧ κ+K4 ρ ∧ ζ
+K5 κ ∧ ζ +K6 κ ∧ κ+ ζ ∧ κ,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ
+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z7 κ ∧ ζ + Z8 ζ ∧ κ+ Z9 ζ ∧ ζ.

A moment of reflection convinces of the truth of

Assertion 10.2. The relations coming from the normalizations of the group parameters f, b, c are
preserved

1 =
[
ζ ∧ κ

]{
dκ
}
,

0 = R
1 − 2K6 + Z8,

0 = iK3 − Z6,

as well as the auxiliary relations

K5 = R2,

Z7 = iK4,

Z9 = −R2
. �
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Now, we want to absorb as many as possible of these torsion coefficients. So we introduce
modified Maurer-Cartan forms — mind notations

π1 := α− a1 ρ− a2 κ− a3 ζ − a4 κ− a5 ζ,
π2 := β − b1 ρ− b2 κ− b3 ζ − b4 κ− b5 ζ

and we try to determine (fix) the unknown coefficients ai, bi. By replacement, setting ci := 0 in
the formula seen above for dζ, we obtain without pain

dρ =
(
π1 + π1

)
+ ρ ∧ κ

(
R1 − a2 − a4

)
+ ρ ∧ ζ

(
R2 − a3 − a5

)
+ ρ ∧ κ

(
R

1 − a4 − a2
)

+ ρ ∧ ζ
(
R

2 − a5 − a3
)

+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ρ ∧ κ
(
K1 + a1 − b2

)
+ ρ ∧ ζ

(
K2 − b3

)
+ ρ ∧ κ

(
K3 − b4

)
+ ρ ∧ ζ

(
K4 − b5

)
+ κ ∧ ζ

(
K5 − a3

)
+ κ ∧ κ

(
K6 − a4

)
+ κ ∧ ζ

(
− a5

)
+ ζ ∧ κ,

dζ = i π2 ∧ κ+
(
π1 − π1

)
∧ ζ + ρ ∧ κ

(
Z1 + i b1

)
+ ρ ∧ ζ

(
Z2 + a1 − a1

)
+ ρ ∧ κ

(
Z3
)

+ ρ ∧ ζ
(
Z4
)

+ κ ∧ ζ
(
Z5 − i b3 + a2 − a4

)
+ κ ∧ κ

(
Z6 − i b4

)
+ κ ∧ ζ

(
Z7 − i b5

)
+ ζ ∧ κ

(
Z8 − a4 + a2

)
+ ζ ∧ ζ

(
Z9 − a5 + a3

)
.

Now, replacing from Assertion 10.2

Z8 := −R1
+2K6, Z6 := iK3, K5 := R2, Z7 := iK4, Z9 := −R2

,

the absorption equations write out as

a2 + a4 = R1,

a3 + a5 = R2,

− a1 + b2 = K1,

b3 = K2,

b4 = K3,

b5 = K4,

a3 = R2,

a4 = K6,

− a5 = 0,

i b1 = −Z1,

− a1 + a1 = Z2,

0 = Z3 ,

0 = Z4 ,

− a2 + a4 + i b3 = Z5,

i b4 = iK3,

i b5 = iK4,

− a2 + a4 = −R1
+ 2K6,

− a3 + a5 = −R2
.

The boxed Z3 and Z4 are clearly essential torsions, since they cannot be annihilated by any
choice of ai, bi. We will compute them explicitly a bit later.
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At the end of the second colon, a5 = 0, whence at the ends of the other two colons, we get
a3 := R2, hence all the 4 underlined equations drop. Also, unique assignments exist for

b3 := K2,

b4 := K3,

b5 := K4,

a4 := K6,

b1 := i Z1,

b4 := K3,

b5 := K4

and it remains to solve

a2 +K
6 ∗

= R1, − a1 + b2 = K1, − a1 + a1 = Z2,

− a2 +K
6

+ iK2 ?
= Z5,

− a2 +K6 ∗= −R1
+ 2K6.

Certainly
b2 := K1 + a1

and the two equations ∗
= for a2 are equivalent — this comes from the normalization relation

0 = R
1 − 2K6 + Z8 already taken account of —, yielding

a2 := R1 −K6
.

However, the equation ?
= cannot be satisfied automatically, and this provides an essential tor-

sion combination

−R1 +K
6

+K
6

+ iK2 = Z5 ⇐⇒ − iK2 + Z5 − Z8
= 0,

which was already seen in Lemma 8.6. The last remaining equation

− a1 + a1 = Z2

shows that one can annihilate ImZ2 by choosing

Im a1 := − 1

2
ImZ2

and it still remains precisely one real degree of freedom, a free variable that we will re-denote

t := Re a1.

In summary, we have established a fundamental

Proposition 10.3. With t ∈ R being a free variable, by defining the precise modified Maurer-Cartan
forms

π1 := α−
(
t− i

2
ImZ2

)
ρ−

(
R1 −K6

)
κ−R2 ζ −K6 κ− 0,

π2 := β − i Z1 ρ−
(
t− i

2
ImZ2 +K1

)
κ−K2 ζ −K3 κ−K4 ζ,

it holds

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ

+
(

ReZ2
)
ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ +

(
Z5 +R1 − 2K

6 − iK2
)
κ ∧ ζ. �
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We yet have to compute the remaining 4 essential torsion coefficients

ReZ2, Z3, Z4, Z5 +R1 − 2K
6 − iK2.

Fortunately, by anticipation, we have already explored and finalized

Z5 +R1 − 2K
6 − iK2 = − iK2 + Z5 − Z8

=
1

c
W0.

Assertion 10.4. One torsion coefficient vanishes identically

0 ≡ Z4.

Proof. Recall
Z4 =

[
ρ ∧ ζ

]{
dζ
}

=
[
ρ ∧ ζ

]{
− i

2

cee

c
dρ0 + e dκ′0 +

c

c
dζ ′′0

}
.

Compute separately

− i

2

cee

c

[
ρ ∧ ζ

]{
dρ0
}

= − i

2

cee

c
R2′

0

( 1

cc

)(c
c

)
= − i

2

ee

cc
R2′

0 ,

e
[
ρ ∧ ζ

]{
dκ′0
}

= 0,

c

c

[
ρ ∧ ζ

]{
dζ ′′0
}

=
c

c
Z4′′
0 ◦

( 1

cc

)(c
c

)
+

c

c
Z9′
0

(
− i

2

cee

ccc

)(c
c

)
= 0− i

2

ee

cc
Z9′
0

and since we have already seen in Lemma 9.1 that Z4′′
0 ≡ 0, in the proof of which we have used

R2′
0 + Z9′

0 ≡ 0, the sum of these 3 terms is indeed zero, and we done. �

It remains to analyze Z3 and ReZ2, a substantial task to which the two next sections are
devoted. At least, we know that

dζ =
(
π1 − π1

)
∧ ρ+ i κ ∧ κ

+
(

ReZ2
)
ρ ∧ ζ + Z3 ρ ∧ κ+

1

c
W0 κ ∧ ζ.

11. COMPUTATION OF POCCHIOLA’S INVARIANT J0

We now determine

Z3 =
[
ρ ∧ κ

]{
dζ
}

= − i

2

cee

c

[
ρ ∧ κ

]{
dρ0
}

+ e
[
ρ ∧ κ

]{
dκ′0
}

+
c

c

[
ρ ∧ κ

]{
dζ ′′0
}

= − i

2

cee

c

[
R1′

0

( 1

cc

)(1

c

)
+ R2′

0

( 1

cc

)(
− ce

cc

)
+ i
(
i
e

cc

)(1

c

)
◦

]
+ e

[
K3′′

0

( 1

cc

)(1

c

)
+ K6′

0

(
i
e

cc

)(1

c

)
+
(
− i

2

cee

ccc

)(1

c

)
◦

]
+

c

c

[
Z3′′
0

( 1

cc

)(1

c

)
+ Z6′′

0

(
i
e

cc

)(1

c

)
+ Z8′

0

(
− i

2

cee

ccc

)(1

c

)
+ Z9′

0

(
− i

2

cee

ccc

)(ce
cc

)]
,
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hence after collecting

Z3 =
ee

ccc

[
− i

2
R1′

0 + iK6′
0 −

i

2
Z8′
0

]
+

eee

ccc

[
i

2
R2′

0 +
i

2
Z9′
0
◦

]
+

e

ccc

[
K3′′

0 + iZ6′′
0

]
+

1

ccc
Z3′′
0 .

As we already know, the second term vanishes, the third one as well

K3′′
0 + iZ6′′

0 = 2iH0 − iH0 − iH0,

and also the first one

− i

2
R1′

0 + iK6′
0 −

i

2
Z8′
0 = − i

2

(
1

3

L1

(
L1(k)

)
L1(k)

+
2

3
P
)

+ i

(
−1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

− i

2

(
−
L1

(
L1(k)

)
L1(k)

)
.

It remains only one term

Z3 =
1

ccc
Z3′′
0

=
1

ccc

(
− iZ8′

0 H0 − iL1

(
H0

)
+ iH0 R1′

0

)
=

i

ccc

(
L1

(
L1(k)

)
L1(k)

H0 − L1

(
H0

)
+

1

3

L1

(
L1(k)

)
L1(k)

H0 +
2

3
H0 P

)

=
i

ccc

(
4

3

L1

(
L1(k)

)
L1(k)

H0 +
2

3
P0 H0 − L1

(
H0

)
︸ ︷︷ ︸

=: J0

)
.

Then a direct expansion of the derivativeL1

(
H0

)
which uses neither Lemma 2.5, nor Lemma 2.9,

provides (exercise) exactly the same expression as the one of Pocchiola

J0 =
1

6

L1

(
L1

(
L1

(
L1(k)

)))
L1(k)

− 5

6

L1

(
L1

(
L1(k)

))
L1

(
L1(k)

)
L1(k)2

− 1

6

L1

(
L1

(
L1(k)

))
L1(k)

P

+
20

27

L1

(
L1(k)

)3
L1(k)3

+
5

18

L1

(
L1(k)

)2
L1(k)2

P +
1

6

L1

(
L1(k)

)
L1

(
P
)

L1(k)
− 1

9

L1

(
L1(k)

)
L1(k)

P P

− 1

6
L1

(
L1

(
P
))

+
1

3
L1

(
P
)

P− 2

27
P P P.
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12. COMPUTATION OF THE DERIVED INVARIANT R := ReZ2

Next, we determine

Z2 =
[
ρ ∧ ζ

]{
dζ
}

= − i

2

cee

c

[
ρ ∧ ζ

]{
dρ0
}

+ e
[
ρ ∧ ζ

]{
dκ′0
}

+
c

c

[
ρ ∧ ζ

]{
dζ ′′0
}

= − i

2

cee

c

[
R2′

0

( 1

cc

)(c
c

)]
+ e

[
K2′

0

( 1

cc

)(c
c

)
+ K5′

0

(
i
e

cc

)(c
c

)
−
(c
c

)(
− i e

cc

)]
+

c

c

[
Z2′′
0

( 1

cc

)(c
c

)
+ Z5′

0

(
i
e

cc

)(c
c

)
− Z8′

0

(c
c

)(
− i e

cc

)
− Z9′

0

(c
c

)( i
2

cee

ccc

)]

hence after collecting

Z2 = i
ee

cc
+

cee

ccc

(
− i

2
R2′

0 + iK5′
0

)
+

cee

ccc

(
− i

2
Z9′
0

)
+

e

cc

(
K2′

0 + iZ5′
0

)
+

e

cc

(
iZ8′

0

)
+

1

cc
Z2′′
0 ,

that is to say

Z2 = i
ee

cc
+

cee

ccc

(
i

2

L1(k)

L1(k)
− i L1(k)

L1(k)

)
+

cee

ccc

(
− i

2

L1(k)

L1(k)

)

+
e

cc

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i

3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)
+ i
L1

(
L1(k)

)
L1(k)

)

+
e

cc

(
−i
L1

(
L1(k)

)
L1(k)

)
+

1

cc

− iZ9′
0 H0 + iH0 R2′

0︸ ︷︷ ︸
on hold

+Z2′
0 − i

K(H0)

L1(k)

 .

Now, observe firstly that when we consider

2 ReZ2 = Z2 + Z
2
,

the real part of the sum of the first three terms of Z2

i
ee

cc
+

cee

ccc

(
− i

2

L1(k)

L1(k)

)
+

cee

ccc

(
− i

2

L1(k)

L1(k)

)
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vanishes, visibly. Secondly, in the sumZ2+Z
2
, if the terms multiples of e

cc are grouped together,
we realize that we recover W0 exactly

i
e

cc

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− 1

3

L1

(
L1(k)

)
L1(k)

− 1

3

L1

(
L1(k)

)
L1(k)

+
2i

3

T (k)

L1(k)
+
L1

(
L1(k)

)
L1(k)

+
L1

(
L1(k)

)
L1(k)

)

= i
e

cc

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L1(k)

)
L1(k)

+
i

3

T (k)

L1(k)

)
= i

e

cc
W0,

as we remember its explicit expression from Section 8.
In addition thirdly, using the explicit expressions from Proposition 7.2

R2′
0 = − L1(k)

L1(k)
and Z9′

0 =
L1(k)

L1(k)
,

and the explicit expression of

H0 = − 1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
L1(k)

P +
1

6
L1

(
P
)
− 1

9
P P,

we verify by a direct computation the identical vanishing

0 ≡ − iZ9′
0 H0 + iH0 R2′

0 +− iZ9′
0 H0 + iH0 R2′

0 ,

which means that the term ‘on hold’ underbraced above disappears when taking 2 ReZ2, and
we receive

2 ReZ2 = i
e

cc
W0 − i

e

cc
W0 +

1

cc

(
Z2′
0 − i

K(H0)

L1(k)
+ Z2′

0 + i
K(H0)

L1(k)

)
.

Fourthly and lastly, by replacing

H0 = − i

2
K3′

0 ,

we get

2 ReZ2 = 2 Re

(
i
e

cc
W0 +

1

cc

(
Z2′
0 −

1

2

K
(
K3′

0

)
L1(k)︸ ︷︷ ︸

on hold

))
.(12.1)

A miraculous re-expression of 2 ReZ2 was discovered by Pocchiola on his computer, and
was shown in [25, 18], but without any details of proof.

Lemma 12.2. One has in fact

2 ReZ2 = 2 Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
.
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This expression shows that Re(Z2) depends on the first jet of W0, that it vanishes when
W0 = 0, and therefore, ReZ2 is not a primary invariant. We provide details of proof, with no
computer help.

Proof. To transform the term ‘on hold’ above, we need a technical lemma, whose proof, to be
done afterwards, uses mainly the Poincaré relation d ◦ d = 0 applied to the structure equa-
tions (7.1).

Lemma 12.3. The following two identities hold identically

K
(
K3′

0

)
L1(k)

= L1

(
K2′

0

)
−K2′

0 K6′
0 −K1′

0 + K1′
0 + Z2′

0 ,(12.4)

L1

(
Z5′
0

)
+ L1

(
Z8′
0

)
= Z5′

0 K6′
0 + Z8′

0 K6′
0 + iZ2′

0 .(12.5)

Admitting these identities temporarily, let us prove the proposition. In order to replace the
term ‘on hold’ in (12.1) above, let us multiply by − 1

2 the first identity (12.4), and take 2 Re(•)

2 Re

(
− 1

2

K
(
K3′

0

)
L1(k)

)
= 2 Re

(
− 1

2
L1

(
K2′

0

)
+

1

2
K2′

0 K6′
0 + 0− 1

2
Z2′
0

)
.

We yet have to transform the boxed term. To this aim, we conjugate the second identity (12.5)

L1

(
Z5′
0

)
+ L1

(
Z8′
0

)
= Z5′

0 K6′
0 + Z8′

0 K6′
0 − iZ

2′
0 ,

and to this identity multiplied by i, we subtract (12.4) also multiplied by i, to get

− iL1

(
Z5′
0 − Z8′

0

)
+ iL1

(
Z5′
0 − Z8′

0

)
= − iK6′

0

(
Z5′
0 − Z8′

0

)
+ iK6′

0

(
Z5′
0 − Z8′

0

)
+ Z2′

0 + Z2′
0 .

But here, remembering that, by definition of W0

Z5′
0 − Z8′

0 = W0 + iK2′
0 ,

we can replace to get

− iL1

(
W0

)
+L1

(
K2′

0

)
+iL1

(
W0

)
+L1

(
K2′

0

)
= − iK6′

0 W0+K6′
0 K2′

0 +iK6′
0 W0+K6′

0 K2′
0 +Z2′

0 +Z2′
0 ,

that is to say for the mentioned boxed term

2 Re
(
L1

(
K2′

0

))
= 2 Re

(
iL1

(
W0

)
− iK6′

0 W0 + K2′
0 K6′

0 + Z2′
0

)
.

Multiplying this result by − 1
2 , and replacing above yields

2 Re

(
− 1

2

K
(
K3′

0

)
L1(k)

)
= 2 Re

(
− i

2
L1

(
W0

)
+
i

2
K6′

0 W0−
1

2
K2′

0 K6′
0
◦
− 1

2
Z2′
0 +

1

2
K2′

0 K6′
0
◦
− 1

2
Z2′
0

)
and a final replacement in (12.1) concludes, if one remembers that

K6′
0 = − 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P. �
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Proof of Lemma 12.3. To treat the first identity (12.4), apply the exterior differentiation operator
d to the structure equation for dκ′0 from (7.1)

0 = d2κ′0

= dK1′
0 ∧ ρ0 ∧ κ′0 + K1′

0 dρ0 ∧ κ′0 −K1′
0 ρ0 ∧ dκ′0

+ dK2′
0 ∧ ρ0 ∧ ζ ′0 + K2′

0 dρ0 ∧ ζ ′0 −K2′
0 ρ0 ∧ dζ ′0

+ dK3′
0 ∧ ρ0 ∧ κ′0︸ ︷︷ ︸

needed

+K3′
0 dρ0 ∧ κ′0 −K3′

0 ρ0 ∧ dκ′0

+ dK5′
0 ∧ κ′0 ∧ ζ ′0 + K5′

0 dκ′0 ∧ ζ ′0 −K5′
0 κ′0 ∧ dζ ′0

+ dK6′
0 ∧ κ′0 ∧ κ′0 + K6′

0 dκ′0 ∧ κ′0 −K6′
0 κ′0 ∧ dκ′0

+ dζ ′0 ∧ κ′0 − ζ ′0 ∧ dκ′0.

Because we are dealing withK
(
K3′

0

)
, we can wedge throughout with κ′0∧ζ

′
0 to obtainK

(
K3′

0

)/
L1(k)

from the term marked ‘needed’, and we get

0 = 0 + 0 −K1′
0 ρ0 ∧ dκ′0 ∧ κ′0 ∧ ζ

′
0

+ dK2′
0 ∧ ρ0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 + K2′

0 dρ0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0 −K2′

0 ρ0 ∧ dζ ′0 ∧ κ′0 ∧ ζ
′
0

+ dK3′
0 ∧ ρ0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 + K3′

0 dρ0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0 −K3′

0 ρ0 ∧ dκ′0 ∧ κ′0 ∧ ζ
′
0

+ 0 + K5′
0 dκ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 − 0

+ 0 + K6′
0 dκ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 − 0

+ 0 + dζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0 − ζ ′0 ∧ dκ′0 ∧ κ′0 ∧ ζ

′
0.

In the left column, observe that two exterior differentials appear, dK2′
0 , dK3′

0 . Already in Sec-
tion 9, we have implicitly used the following companion of Lemma 2.6.

Lemma 12.6. The exterior differential of any function G = G
(
z1, z2, z1, z2, v

)
on M expresses as

dG =

(
T
(
G
)
− i

3
B0 +

i

3
B0

)
ρ0 + L1

(
G
)
κ′0 +

K(G)

L1(k)
ζ ′0 + L1

(
G
)
κ′0 +

K(G)

L1(k)
ζ
′
0.

Proof. Replacing κ0 by κ′0 − i
3 B0 ρ0 from (6.8), and ζ0 by ζ′0

L1(k)
from (5.4), we indeed obtain

dG = T
(
G
)
ρ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0

= T
(
G
)
ρ0 + L1

(
G
) (
κ′0 −

i

3
B0 ρ0

)
+K

(
G
) ζ ′0
L1(k)

+ L1

(
G
) (
κ′0 +

i

3
B0 ρ0

)
+K

(
G
) ζ

′
0

L1(k)
. �
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Using this lemma for dK2′
0 , dK3′

0 , and replacing also dρ0, dκ′0, dζ ′0, dκ′0, dζ
′
0 by means of (7.1),

we have

0 = 0 + 0 −K1′
0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0

+ L1

(
K2′

0

)
κ′0 ∧ ρ0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 + K2′

0 R1′
0 ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 −K2′

0 ρ0 ∧ Z8′
0 ζ
′
0 ∧ κ′0 ∧ ζ

′
0

+
K(K3′

0 )

L1(k)
ζ ′0 ∧ ρ0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 + K3′

0 R2′
0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 − 0

+ 0 + K5′
0 K3′

0 ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0 − 0

+ 0 + K6′
0 K2′

0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0 − 0

+ 0 + Z2′
0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 − ζ ′0 ∧K1′

0 ∧ ρ0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0,

hence caring about signs when factoring by the naturally appearing 5-form

0 = ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0

(
0 + 0 −K1′

0

L1

(
K2′

0

)
−K2′

0 R1′
0 −K2′

0 Z8′
0

− K(K3′
0 )

L1(k)
+ K3′

0 R2′
0 − 0

+ 0 −K5′
0 K3′

0 − 0

+ 0 + K6′
0 K2′

0 − 0

+ 0 + Z2′
0 + K1′

0

)
,

whence we arrive at the announced first identity (12.4) by remembering some useful relations

K
(
K3′

0

)
L1(k)

= L1

(
K2′

0

)
+ K2′

0 K6′
0 −K2′

0

(
R1′

0 + Z8′
0︸ ︷︷ ︸

= 2 K6′
0

)
+ K3′

0

(
R2′

0 −K5′
0︸ ︷︷ ︸

= 0!

)
−K1′

0 + K1′
0 + Z2′

0 .

For the second identity (12.5), we proceed similarly, applying the exterior differentiation oper-
ator d to the structure equation for dζ ′0 from (7.1)

0 = d2ζ ′0

= d(Z2′
0 ) ∧ ρ0 ∧ ζ ′0︸ ︷︷ ︸
don’t want

+Z2′
0 dρ0 ∧ ζ ′0 − Z2′

0 ρ0 ∧ dζ ′0

+ d(Z5′
0 ) ∧ κ′0 ∧ ζ ′0︸ ︷︷ ︸

want

+Z5′
0 dκ′0 ∧ ζ ′0 − Z5′

0 κ′0 ∧ dζ ′0

+ d(Z8′
0 ) ∧ ζ ′0 ∧ κ′0︸ ︷︷ ︸

want

+Z8′
0 dζ ′0 ∧ κ′0 − Z8′

0 ζ ′0 ∧ dκ′0

+ d(Z9′
0 ) ∧ ζ ′0 ∧ ζ

′
0︸ ︷︷ ︸

don’t want

+Z9′
0 dζ ′0 ∧ ζ

′
0 − Z9′

0 ζ ′0 ∧ dζ
′
0.
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Observe that the desired identity involves the derivatives of Z5′
0 and Z8′

0 . Hence we may con-
serve those terms marked ‘want’ by wedging with the appropriate 2-form ρ0 ∧ ζ

′
0

0 = 0 + Z2′
0 dρ0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + 0

+ dZ5′
0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + Z5′

0 dκ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ
′
0 − Z5′

0 κ′0 ∧ dζ ′0 ∧ ρ0 ∧ ζ
′
0

+ dZ8′
0 ∧ ζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0 + Z8′

0 dζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ
′
0 − Z8′

0 ζ ′0 ∧ dκ′0 ∧ ρ0 ∧ ζ
′
0

+ 0 + 0 − Z9′
0 ζ ′0 ∧ dζ

′
0 ∧ ρ0 ∧ ζ

′
0.

Using Lemma 12.6 for dZ5′
0 , dZ8′

0 , and replacing also dρ0, dκ′0, dζ ′0, dκ′0, dζ
′
0 by means of (7.1),

we have

0 = 0 + Z2′
0 i κ

′
0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + 0

+ L1

(
Z5′
0

)
κ′0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + Z5′

0 K6′
0 κ
′
0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + Z5′

0 κ
′
0 ∧ Z8′

0 ζ
′
0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0

+ L1

(
Z8′
0

)
κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0 + Z8′

0 Z5′
0 κ
′
0 ∧ ζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0 + Z8′

0 ζ
′
0 ∧K6′

0 ∧ κ′0 ∧ κ′0 ∧ ρ0 ∧ ζ
′
0

+ 0 + 0 − 0,

hence caring about signs when factoring by the naturally appearing 5-form, we arrive at the
announced second identity (12.5)

0 = ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0

(
0 + iZ2′

0 + 0

− L1

(
Z5′
0

)
+ Z5′

0 K6′
0 + Z5′

0 Z8′
0 ◦

− L1

(
Z8′
0

)
− Z8′

0 Z5′
0 ◦

+ Z8′
0 K6′

0

+ 0 + 0 − 0
)
. �

13. SUMMARIZED STRUCTURE EQUATIONS

All this work conducted us to finalize the statement of Proposition 10.3, but before, let us
make an ample summary.

After normalizations of the group parameters f, b, d, the equivalence problem for 2-nondegenerate
(constant) Levi rank 1 Cω or C∞ real hypersurfaces M5 ⊂ C3 conducts to a 4-dimensional G-
structure  cc 0 0

−i ce c 0
− i

2
cee
c e c

c

 ,

where c ∈ C∗ and e ∈ C, with Maurer-Cartan forms (conjutates are not written)

α :=
dc

c
,

β := i
e dc

cc
− i e dc

cc
− i de

c
.

Furthermore, 2 fundamental primary differential invariants occur

J =
i

ccc
J0 and W =

1

c
W0,
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where J0 and W0 are explicit functions on M , together with 1 secondary invariant

R := ReZ2

= Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
.

On the 10-dimensional manifold M5 ×G4 × R equipped with coordinates(
z1, z2, z1, z2, v

)
×
(
c, c, e, e

)
× (t),

there are two modified-prolonged Maurer-Cartan forms

π1 := α−
(
t− i

2
ImZ2

)
ρ−

(
R1 −K6

)
κ−R2 ζ −K6 κ− 0,

π2 := β − i Z1 ρ−
(
t− i

2
ImZ2 +K1

)
κ−K2 ζ −K3 κ−K4 ζ,

where Ri, Ki, Zi are explicit functions on M5 ×G4.

Theorem 13.1. After finalization of absorption, the structure equations read

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ

+Rρ ∧ ζ + J ρ ∧ κ+W κ ∧ ζ. �

14. THE FINAL {e}-STRUCTURE

Let Ω1 and Ω2 be the two 2-forms defined by:

Ω1 := dπ1 − i κ ∧ π2 − ζ ∧ ζ,
Ω2 := dπ2 − π2 ∧ π1 − ζ ∧ π2.

When the two fundamental invariants J0 ≡ 0 ≡ W0 vanish identically, since we know that

R = Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
,

J =
i

ccc
J0,

W =
1

c
W0,

it comes
0 ≡ R ≡ J ≡ W.

Independently, the addendum to [18] shows that in the case where all invariants vanish, these
auxiliary 2-forms Ω1 and Ω2 satisfy (

Ω1 + Ω1

)
∧ ρ = 0,

Ω2 ∧ ρ+ Ω1 ∧ κ = 0,(
Ω1 − Ω1

)
∧ ζ + iΩ2 ∧ κ = 0.

In general, the right-hand sides of these structure equations are not necessarily zero, and they
depend on the invariants R, J , W .
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Proposition 14.1. The two 2-forms Ω1 and Ω2 satisfy(
Ω1 + Ω1

)
∧ ρ = 0,(14.2)

Ω2 ∧ ρ+ Ω1 ∧ κ = −Rρ ∧ ζ ∧ κ−W κ ∧ ζ ∧ κ,(14.3)

iΩ2 ∧ κ+
(
Ω1 − Ω1

)
∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ − i R π2 ∧ ρ ∧ κ(14.4)

+ i R κ ∧ ζ ∧ ζ − dJ ∧ ρ ∧ κ− 3 J π1 ∧ ρ ∧ κ
− J ρ ∧ κ ∧ ζ − dW ∧ κ ∧ ζ −W π2 ∧ ρ ∧ ζ
−W π1 ∧ κ ∧ ζ −WJ ρ ∧ κ ∧ κ.

Proof. These relations come from Poincaré’s identities

0 ≡ d ◦ dρ ≡ d ◦ dκ ≡ d ◦ dζ,

applied to the finalized structure equations of Theorem 13.1, in which dρ, dκ, dζ should be
replaced again using Theorem 13.1, followed by a reorganization of the obtained 3-forms.

For the first line (14.2)

0 = d ◦ dρ
=
(
dπ1 + dπ1

)
∧ ρ−

(
π1 + π1

)
∧ dρ+ i dκ ∧ κ− i κ ∧ dκ

=
(
dπ1 + dπ1

)
∧ ρ−

(
π1 + π1

)
∧
((
π1 + π1

◦
)
∧ ρ+ i κ ∧ κ

)
+ i
(
π2 ∧ ρ+ π1 ∧ ρ+ ζ ∧ κ◦

)
∧ κ− i κ ∧

(
π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ◦

)
.

Afer simplification, this becomes

0 =
(
dπ1 − i κ ∧ π2

)
∧ ρ+

(
dπ1 + i κ ∧ π2

)
∧ ρ,

and after insertion of twice −ζ ∧ ζ which is purely imaginary — hence disappears —, we ob-
tain (14.2)

0 =
(
dπ1 − i κ ∧ π2 − ζ ∧ ζ

)
∧ ρ+

(
dπ1 + i κ ∧ π2 − ζ ∧ ζ

)
∧ ρ

= Ω1 ∧ ρ+ Ω1 ∧ ρ.
For (14.3), we proceed analogously, starting from the second structure equation of Theorem 13.1

0 = d ◦ dκ
= dπ2 ∧ ρ− π2 ∧ dρ+ dπ1 ∧ κ− π1 ∧ dκ+ dζ ∧ κ− ζ ∧ dκ

= dπ2 ∧ ρ− π2 ∧
((
π1 + π1

)
∧ ρ+ i κ ∧ κ

)
+ dπ1 ∧ κ− π1 ∧

(
π2 ∧ ρ+ ζ ∧ κ

)
+
((
π1 − π1

)
∧ ζ + i π2 ∧ κ+Rρ ∧ ζ +W κ ∧ ζ

)
∧ κ− ζ ∧

(
π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ

)
.

After four annihilations by pairs and a reorganization, this becomes

0 = dπ2 ∧ ρ− π2 ∧ π1 ∧ ρ
1
− π2 ∧ π1 ∧ ρ− i π2 ∧ κ ∧ κ2 + dπ1 ∧ κ− π1 ∧ π2 ∧ ρ

1
− π1 ∧ ζ ∧ κ

3

+ π1 ∧ ζ ∧ κ
3
− π1 ∧ ζ ∧ κ

4
+ i π2 ∧ κ ∧ κ2 +Rρ ∧ ζ ∧ κ+W κ ∧ ζ ∧ κ− ζ ∧ π2 ∧ ρ

− ζ ∧ π1 ∧ κ
4
− ζ ∧ ζ ∧ κ

=
(
dπ2 − π2 ∧ π1 − ζ ∧ π2

)
∧ ρ+

(
dπ1 − ζ ∧ ζ

)
∧ κ

+Rρ ∧ ζ ∧ κ+W κ ∧ ζ ∧ κ,
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which is (14.3), since we can insert
(
− i κ ∧ π2

)
∧ κ = 0. Lastly

0 = d ◦ dζ
= i dπ2 ∧ κ− i π2 ∧ dκ+ dπ1 ∧ ζ − π1 ∧ dζ − dπ1 ∧ ζ + π1 ∧ dζ

+ dR ∧ ρ ∧ ζ +Rdρ ∧ ζ −Rρ ∧ dζ
+ dJ ∧ ρ ∧ κ+ J dρ ∧ κ− J ρ ∧ dκ
+ dW ∧ κ ∧ ζ +W dκ ∧ ζ −W κ ∧ dζ,

whence by replacements

0 = i dπ2 ∧ κ− i π2 ∧
(
π1 ∧ κ+ ζ ∧ κ

)
+ dπ1 ∧ ζ − π1 ∧

(
i π2 ∧ κ− π1 ∧ ζ +Rρ ∧ ζ

+ J ρ ∧ κ+W κ ∧ ζ
)
− dπ1 ∧ ζ + π1 ∧

(
i π2 ∧ κ+ π1 ∧ ζ +Rρ ∧ ζ + J ρ ∧ κ+W κ ∧ ζ

)
+ dR ∧ ρ ∧ ζ +R

((
π1 + π1

)
∧ ρ+ i κ ∧ κ

)
∧ ζ −Rρ ∧

(
i π2 ∧ κ+

(
π1 − π1

)
∧ ζ +W κ ∧ ζ

)
+ dJ ∧ ρ ∧ κ+ J

(
π1 + π1

)
∧ ρ ∧ κ− J ρ ∧

(
π1 ∧ κ+ ζ ∧ κ

)
+ dW ∧ κ ∧ ζ +W

(
π2 ∧ ρ+ π1 ∧ κ

)
∧ ζ −W κ ∧

((
π1 − π1

)
∧ ζ +Rρ ∧ ζ + J ρ ∧ κ

)
.

Let us expand this and underline the eight annihilating pairs

0 = i dπ2 ∧ κ− i π2 ∧ π1 ∧ κ1 − i π2 ∧ ζ ∧ κ+ dπ1 ∧ ζ − i π1 ∧ π2 ∧ κ1 + π1 ∧ π1 ∧ ζ
2

−Rπ1 ∧ ρ ∧ ζ
3
− J π1 ∧ ρ ∧ κ

6
−W π1 ∧ κ ∧ ζ

7
− dπ1 ∧ ζ + i π1 ∧ π2 ∧ κ+ π1 ∧ π1 ∧ ζ

2

+Rπ1 ∧ ρ ∧ ζ
4

+ J π1 ∧ ρ ∧ κ+W π1 ∧ κ ∧ ζ
8

+ dR ∧ ρ ∧ ζ +Rπ1 ∧ ρ ∧ ζ
3

+Rπ1 ∧ ρ ∧ ζ

+ i R κ ∧ κ ∧ ζ − i R ρ ∧ π2 ∧ κ−Rρ ∧ π1 ∧ ζ +Rρ ∧ π1 ∧ ζ
4
−RW ρ ∧ κ ∧ ζ

5

+ dJ ∧ ρ ∧ κ+ J π1 ∧ ρ ∧ κ
6

+ J π1 ∧ ρ ∧ κ− J ρ ∧ π1 ∧ κ− J ρ ∧ ζ ∧ κ+ dW ∧ κ ∧ ζ

+W π2 ∧ ρ ∧ ζ +W π1 ∧ κ ∧ ζ
7
−W κ ∧ π1 ∧ ζ +W κ ∧ π1 ∧ ζ

8
−WRκ ∧ ρ ∧ ζ

5

−WJ κ ∧ ρ ∧ κ.

After simplification and reorganization

0 = i
(
dπ2 − π2 ∧ π1

)
∧ κ+

(
dπ1 − dπ1 − i κ ∧ π2

)
∧ ζ

+ dR ∧ ρ ∧ ζ +Rπ1 ∧ ρ ∧ ζ − i R κ ∧ ζ ∧ κ+ i R π2 ∧ ρ ∧ κ+Rπ1 ∧ ρ ∧ ζ
+ dJ ∧ ρ ∧ κ+ 3 J π1 ∧ ρ ∧ κ+ J ρ ∧ κ ∧ ζ
+ dW ∧ κ ∧ ζ +W π2 ∧ ρ ∧ ζ +W π1 ∧ κ ∧ ζ +WJ ρ ∧ κ ∧ κ.

To reach (14.4) completely, only the first line must yet be transformed, and it suffices to insert
into it two terms which cancel together

i
(
dπ2 − π2 ∧ π1 − ζ ∧ π2

◦

)
∧ κ+

(
dπ1 − i κ ∧ π2

◦ − dπ1 − i κ ∧ π2
)
∧ ζ. �

Remind that all present considerations hold on the 9-dimensional manifoldM5×G4 equipped
with the coordinates (

z1, z2, z1, z2, v
)
×
(
c, e, c, e

)
,

the supplementary real variable t ∈ R being considered as a parameter until it becomes a
variable at the very end of the process for an {e}-structure on the 10-dimensional manifold
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M5×G4×R. In order to build up such an {e}-structure, the goal now is to fully determine the
two 2-forms Ω1, Ω2, and precisely, to determine how they express in terms of the coframe{

π1, π2, π1, π2, ρ, κ, ζ, κ, ζ
}
.

To begin with, suppose that there are two ways of solving for
{

Ω1,Ω2

}
the structure equations

of Proposition 14.1, leading to another set of solutions
{

Ω′1,Ω
′
2

}
. Then their differences Γ1 :=

Ω′1 − Ω1 and Γ2 := Ω′2 − Ω2 must necessarily satisfy the homogeneous equations(
Γ1 + Γ1

)
∧ ρ = 0,

Γ2 ∧ ρ+ Γ1 ∧ κ = 0,

iΓ2 ∧ κ+
(
Γ1 − Γ1

)
∧ ζ = 0.

The addendum to the article [18] provides a detailed proof of the elementary

Proposition 14.5. The general solution
{

Γ1,Γ2

}
to these homogeneous equations is given by

Γ1 := Λ ∧ ρ, Γ2 := Λ ∧ κ+ h ρ ∧ κ,
where Λ is a real 1-form and h is purely imaginary function. �

This means that the two sets of solutions are related to each other by

Ω′1 = Ω1 + Λ ∧ ρ, Ω′2 = Ω2 + Λ ∧ κ+ h ρ ∧ κ.
Due to this flexibility represented by Λ, h, it will be necessary to prolong the structure equa-

tions by adding this real 1-form:
Λ = dt + · · · ,

the remainder terms being very complicated, while the function h could be some new invariant.
However, it will be later shown that h expresses in terms of the 3rd-order jets of W and J , thus
eliminating the possibility of appearance of new primary CR invariants. On the other hand,
the existence of Λ can be explained by an application (not detailed here) of Cartan’s test, due to
the fact that there is one degree of real-valued indeterminancy during the fourth absorption.

It therefore suffices to find a particular set of solution Ω1 and Ω2, and then to parametrize the
solution space by means of Λ, h. We will adopt the following strategy. First, we will find the
simplest forms for Ω1 and Ω2 restrained by the first two equations (14.2), (14.3) of the starting
Proposition 14.1. Then we will simplify these 2-forms by means of Cartan’s lemma to eliminate
as many unknown variables as possible using the third, more subtle, equation (14.4). At the
end of the elimination, those remaining unknowns which cannot be computed due to the lack
of information turn out to behave like Λ and h, and hence we will terminate the process of
solving for solutions.

In M5 ×G4, it will be useful to adopt the following notations for the covariant derivatives

dR = Rπ1 π1 +Rπ2 π2 +Rπ1 π1 +Rπ2 π2 +Rρ ρ+Rκ κ+Rζ ζ +Rκ κ+Rζ ζ,

dJ = Jπ1 π1 + Jπ2 π2 + Jπ1 π1 + Jπ2 π2 + Jρ ρ+ Jκ κ+ Jζ ζ + Jκ κ+ Jζ ζ,(14.6)

dW = Wπ1 π1 +Wπ2 π2 +Wπ1 π1 +Wπ2 π2 +Wρ ρ+Wκ κ+Wζ ζ +Wκ κ+Wζ ζ.

Some of these coefficients will be revealed during the course of solving the structure equa-
tions. We first turn ourselves to finding the simplest form of Ω1, Ω2 satisfying only the first two
equations (14.2), (14.3).

Proposition 14.7. There exists a real-valued function p and two differential 1-forms Π, Ψ such that

Ω1 = Π ∧ ρ+ p κ ∧ κ−W κ ∧ ζ −W ζ ∧ κ,
Ω2 = Ψ ∧ ρ+ Π ∧ κ−Rζ ∧ κ.
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Proof. We can rearrange the terms in (14.3)

0 =
(
Ω1 +W ζ ∧ κ

)
∧ κ+

(
Ω2 +Rζ ∧ κ

)
∧ ρ,(14.8)

in order that an application of the Cartan Lemma yield functions ∆, Θ, Π′′, Ψ so that

Ω1 +W ζ ∧ κ = ∆ ∧ κ+ Θ ∧ ρ,
Ω2 +Rζ ∧ κ = Π′′ ∧ κ+ Ψ ∧ ρ,

with a double prime on Π′′ meaning that we will soon modify it two times.
In fact, substituting these representations back into (14.8), we see that there are constraints

on Θ and Π′′

0 =
(
∆ ∧ κ◦ + Θ ∧ ρ

)
∧ κ+

(
Π′′ ∧ κ+ Ψ ∧ ρ◦

)
∧ ρ

=
(
Θ−Π′′

)
∧ ρ ∧ κ.

By the Cartan Lemma again, this implies the existence of two functions a, b so that Θ and Π′′

are related to each other by
Θ = Π′′ + a ρ+ b κ.

Next, putting this into the expression of Ω1, while letting Π′ := Π′′ + b κ, it follows that

Ω1 = ∆ ∧ κ+ Θ ∧ ρ−W ζ ∧ κ
= ∆ ∧ κ+

(
Π′′ + a ρ◦ + b κ

)
∧ ρ−W ζ ∧ κ

= ∆ ∧ κ+ Π′ ∧ ρ−W ζ ∧ κ,

while Ω2 becomes
Ω2 = Π′′ ∧ κ+ Ψ ∧ ρ−Rζ ∧ κ

=
(
Π′′ + b κ

)
∧ κ+ Ψ ∧ ρ−Rζ ∧ κ

= Π′ ∧ κ+ Ψ ∧ ρ−Rζ ∧ κ.
The next observation is that ∆ can be further simplified. Indeed, let us replace Ω1 in (14.2)

0 =
(
Ω1 + Ω1

)
∧ ρ

= ∆ ∧ κ ∧ ρ−W ζ ∧ κ ∧ ρ+ ∆ ∧ κ ∧ ρ−W ζ ∧ κ ∧ ρ.

Then decomposing ∆ as a linear combination along the coframe

∆ = d1 π
1 + d2 π

2 + d3 π
1 + d4 π

2 + d5 ρ+ d6 κ+ d7 ζ + d8 κ+ d9 ζ,

we obtain the following values for these coefficients

d1 = d2 = d3 = d4 = 0, d8 = d8, d9 = W,

except for d5 and d6 which on which no constraint is deduced so, and hence

∆ = d5 ρ+ d6 κ+ d8 κ+W ζ.

Finally, if we write p := − d8 and if we set Π := Π′ − d5 κ, we obtain by reorganization

Ω1 = ∆ ∧ κ+ Π′ ∧ ρ−W ζ ∧ κ

=
(
d5 ρ+ d6 κ◦ + d8 κ+W ζ

)
∧ κ+ Π′ ∧ ρ−W ζ ∧ κ

= − d8 κ ∧ κ+
(
Π′ − d5 κ

)
∧ ρ−W κ ∧ ζ −W ζ ∧ κ

= p κ ∧ κ+ Π ∧ ρ−W κ ∧ ζ −W ζ ∧ κ,
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and moreover

Ω2 = Ψ ∧ ρ+ Π′ ∧ κ−Rζ ∧ κ
= Ψ ∧ ρ+

(
Π′ − d5 κ

)
∧ κ−Rζ ∧ κ

= Ψ ∧ ρ+ Π ∧ κ−Rζ ∧ κ. �

Now, using the representations of Ω1 and of Ω2 offered by this Proposition 14.7, we can
therefore rewrite the third (still not taken account of) equation (14.4) as

iΨ ∧ ρ ∧ κ− i R ζ ∧ κ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ + 2 p κ ∧ κ ∧ ζ − 2W κ ∧ ζ ∧ ζ

= − dR ∧ ρ ∧ ζ −R
(
π1 + π1

)
∧ ρ ∧ ζ − i R π2 ∧ ρ ∧ κ+ i R κ ∧ ζ ∧ κ(14.9)

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ− J ρ ∧ κ ∧ ζ
− dW ∧ κ ∧ ζ −W π2 ∧ ρ ∧ ζ −W π1 ∧ κ ∧ ζ −WJ ρ ∧ κ ∧ κ.

But before we commence with analyzing this equation (a long task), we make a side remark.
As we can rewrite

Ω1 = 1
2

(
Π + Π

)
∧ ρ+ 1

2

(
Π−Π

)
∧ ρ+ p κ ∧ κ−W κ ∧ ζ −W ζ ∧ κ,

Ω2 = Ψ ∧ ρ+ 1
2

(
Π + Π

)
∧ κ+ 1

2

(
Π−Π

)
∧ κ−Rζ ∧ κ,

we remark that Proposition 14.5 already tells us that the real part 1
2

(
Π + Π

)
of Π is a priori not

fully determined, as can be formulated by an

Observation 14.10. For an arbitrary real 1-form Λ, the 2-forms

Ω′1 := Ω1 + Λ ∧ ρ and Ω′2 := Ω2 + Λ ∧ κ
still satisfy the structure equations of Proposition 14.1.

Proof. For the sake of completeness, let us detail the arguments. The first equation (14.2) is
clear (

Ω′1 + Ω
′
1

)
∧ ρ =

(
Ω1 + Λ ∧ ρ◦ + Ω1 + Λ ∧ ρ◦

)
∧ ρ =

(
Ω1 + Ω1

)
∧ ρ.

The second equation (14.3) also

Ω′2 ∧ ρ+ Ω′1 ∧ κ =
(
Ω2 + Λ ∧ κ

)
∧ ρ+

(
Ω1 + Λ ∧ ρ

)
∧ κ

= Ω2 ∧ ρ+ Λ ∧ κ ∧ ρ◦ + Ω1 ∧ κ+ Λ ∧ ρ ∧ κ◦
= Ω2 ∧ ρ+ Ω1 ∧ κ,

and the third one as well

iΩ′2 ∧ κ+
(
Ω′1 − Ω

′
1

)
∧ ζ = i

(
Ω2 + Λ ∧ κ◦

)
∧ κ+

(
Ω1 + Λ ∧ ρ◦ − Ω1 − Λ ∧ ρ◦

)
∧ ζ

= iΩ2 ∧ κ+
(
Ω1 − Ω1

)
∧ ζ. �

Now, coming back to (14.9), we remember that we should insert the covariant derivatives dR,
dJ , dW from (14.6), and we will do this in a progressive way, not in one stroke.
Indeed, by wedging (•) ∧ ρ both sides of (14.9), we get rid of dJ , dR and it remains only

− i R ζ ∧ κ ∧ κ ∧ ρ+ 2p κ ∧ κ ∧ ζ ∧ ρ− 2W κ ∧ ζ ∧ ζ ∧ ρ
= i R κ ∧ ζ ∧ κ ∧ ρ− dW ∧ κ ∧ ζ ∧ ρ−W π1 ∧ κ ∧ ζ ∧ ρ,

that is to say after putting everything to the right

0 = − dW ∧ ρ ∧ κ ∧ ζ −
(
2 p+ 2 i R

)
ρ ∧ κ ∧ ζ ∧ κ+ 2W p ∧ κ ∧ ζ ∧ ζ −W π1 ∧ ρ ∧ κ ∧ ζ.
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Thus, inserting the expansion of dW from (14.6)

− dW ∧ ρ ∧ κ ∧ ζ = −Wπ1 π1 ∧ ρ ∧ κ ∧ ζ −Wπ2 π2 ∧ ρ ∧ κ ∧ ζ −Wπ1 π1 ∧ ρ ∧ κ ∧ ζ
−Wπ2 π2 ∧ ρ ∧ κ ∧ ζ −Wκ κ ∧ ρ ∧ κ ∧ ζ −Wζ ζ ∧ ρ ∧ κ ∧ ζ,

we get

0 = −
(
Wπ1 +W

)
π1 ∧ ρ ∧ κ ∧ ζ −Wπ2 π2 ∧ ρ ∧ κ ∧ ζ −Wπ1 π1 ∧ ρ ∧ κ ∧ ζ −Wπ2 π2 ∧ ρ ∧ κ ∧ ζ

−
(
2 p+ 2 i R−Wκ

)
ρ ∧ κ ∧ ζ ∧ κ−

(
2W +Wζ

)
ρ ∧ κ ∧ ζ ∧ ζ,

whence by identification of coefficients of these independent 4-forms

Wπ1 = −W, Wπ2 = 0, Wπ1 = 0, Wπ2 = 0,

Wκ = 2 p+ 2 i R, Wζ = − 2W,

while no condition is imposed so on Wρ, Wκ, Wζ , and thus

dW = −W π1 +Wρ ρ+Wκ κ+Wζ ζ +
(
2 p+ 2 i R

)
κ− 2W ζ.

Next, putting this expression of dW back into (14.9) allows us to eliminate p so that we can
focus only on Π−Π and Ψ, which we place on the left

iΨ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = i R ζ ∧ κ ∧ κ

1
− 2 p κ ∧ κ ∧ ζ

2
− 2W κ ∧ ζ ∧ ζ

3
− dR ∧ ρ ∧ ζ

−R
(
π1 + π1

)
∧ ρ ∧ ζ − i R π2 ∧ ρ ∧ κ+ i R κ ∧ ζ ∧ κ

1

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ− J ρ ∧ κ ∧ ζ
+W π1 ∧ κ ∧ ζ

4
−Wρ ρ ∧ κ ∧ ζ −

(
2 p

2
+ 2 i R1

)
κ ∧ κ ∧ ζ

+ 2W ζ ∧ κ ∧ ζ
3
− W π2 ∧ ρ ∧ ζ −W π1 ∧ κ ∧ ζ

4
−WJ ρ ∧ κ ∧ κ.

Here, four simplifications by pairs are underlined, in which we observe that p eliminates itself,
and if we collect at first the terms divisible by ρ ∧ κ, we get

iΨ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ =

(
− i R π2 − J ζ −Wρ ζ −WJ κ

)
∧ ρ ∧ κ

− dR ∧ ρ ∧ ζ −R
(
π1 + π1

)
∧ ρ ∧ ζ

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ−W π2 ∧ ρ ∧ ζ.
By introducing the modified 1-form

Ψ′ := Ψ− i
(
i R π2 + J ζ +Wρ ζ +WJ κ

)
,

the equation becomes

iΨ′ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ−W π2 ∧ ρ ∧ ζ.(14.11)

Now, let us wedge (•)∧κ∧ ζ all this to make Ψ and Π−Π disappear, replacing simultaneously

dJ = Jπ1 π1 + Jπ2 π2 + Jπ1 π1 + Jπ2 π2 + Jρ ρ+ Jκ κ+ Jζ ζ + Jκ κ+ Jζ ζ,

to obtain
0 = − Jπ1 π1 ∧ ρ ∧ κ ∧ κ ∧ ζ − Jπ2 π2 ∧ ρ ∧ κ ∧ κ ∧ ζ − Jπ1 π1 ∧ ρ ∧ κ ∧ κ ∧ ζ − Jπ2 π2 ∧ ρ ∧ κ ∧ κ ∧ ζ

− Jζ ζ ∧ ρ ∧ κ ∧ κ ∧ ζ − 3J π1 ∧ ρ ∧ κ ∧ κ ∧ ζ

= − Jπ1 π1 ∧ ρ ∧ κ ∧ ζ ∧ κ− Jπ2 π2 ∧ ρ ∧ κ ∧ ζ ∧ κ−
(
Jπ1 + 3 J

)
π1 ∧ ρ ∧ κ ∧ ζ ∧ κ− Jπ2 π2 ∧ ρ ∧ κ ∧ ζ ∧ κ

− Jζ ρ ∧ κ ∧ ζ ∧ κ ∧ ζ,
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and since these 5-forms are linearly independent, we get by identification

Jπ1 = 0, Jπ2 = 0, Jπ1 = − 3J, Jπ2 = 0, Jζ = 0,

while no condition is imposed in this way on Jρ, Jκ, Jζ , Jκ. Consequently, the 1-form dJ
contracts as

dJ = − 3J π1 + Jρ ρ+ Jκ κ+ Jζ ζ + Jκ κ,

hence putting this expression back into (14.11), we obtain

iΨ′ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1) ∧ ρ ∧ ζ

+ 3J π1 ∧ ρ ∧ κ
◦
− Jκ κ ∧ ρ ∧ κ− Jζ ζ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ

◦
−W π2 ∧ ρ ∧ ζ.

We can yet absorb in Ψ′ one term from the right-hand side by introducing

Ψ′′ := Ψ′ + i Jκ κ,

so that our equation becomes

iΨ′′ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ

+ Jζ ρ ∧ ζ ∧ κ−W π2 ∧ ρ ∧ ζ.
Now, observe that all terms except the first one iΨ′′ ∧ ρ∧κ are multiple of ρ∧ ζ. Consequently,
wedging on both sides by (•) ∧ ζ, we annihilate everything except

iΨ′′ ∧ ρ ∧ κ ∧ ζ = 0.

Thanks to the Cartan Lemma, there exist function e, f , g so that

Ψ′′ = e ρ+ f κ+ g ζ.

For later use, we also observe in passing that

Ψ = Ψ′ + iWρ ζ + iWJ κ−Rπ2 + i J ζ(14.12)

= Ψ′′ − i Jκ κ+ iWρ ζ + iWJ κ−Rπ2 + i J ζ

= −Rπ2 + e ρ+ f κ+
(
iWρ + g

)
ζ + i

(
WJ − Jκ

)
κ+ i J ζ.

Inserting this just above conducts to an identity

i g ρ ∧ κ ∧ ζ +
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ

+ Jζ ρ ∧ ζ ∧ κ−W π2 ∧ ρ ∧ ζ,
in which all terms are now multiples of ρ ∧ ζ. Consequently, the Cartan Lemma implies the
existence of functions r and s such that

Π−Π = i g κ− dR−Rπ1 −Rπ1 + Jζ κ−W π2 + r ρ+ s ζ.

But here, we can take advantage of the fact that Π − Π is purely imaginary to obtain some
information about g, r, s. Indeed, conjugating

Π−Π = − i g κ− dR−Rπ1 −Rπ1 − Jζ κ−W π2 + r ρ+ s ζ,

and summing, we eliminate Π−Π, hence we are left after reorganization with

0 = − 2 dR− 2Rπ1 −W π2 − 2Rπ1 −W π2

+ (r + r) ρ+
(
i g + Jζ

)
κ+ s ζ +

(
− i g + Jζ

)
κ+ s ζ.

Naturally, one has to use the expansion of dR from (14.6) to continue the computation

0 = −
(
2Rπ1 + 2R

)
π1 −

(
2Rπ2 +W

)
π2 −

(
2Rπ1 + 2R

)
π1 −

(
2Rπ2 +W

)
π2

−
(
2Rρ − r − r

)
ρ−

(
2Rκ − i g − Jζ

)
κ−

(
2Rζ − s

)
ζ −

(
2Rκ + i g − Jζ

)
κ−

(
2Rζ − s

)
ζ.
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An identification to zero of all the nine coefficients of π1, π2, π1, π2, ρ, κ, ζ, κ, ζ gives

Rπ1 = −R, Rπ2 = − 1
2
W, Rπ1 = −R, Rπ2 = − 1

2
W,

Rρ = 1
2

(
r + r

)
, Rκ = 1

2

(
i g + Jζ

)
, Rζ = 1

2
s, Rκ = 1

2

(
− i g + Jζ

)
, Rζ = 1

2
s,

and so:

dR = −Rπ1 − 1
2 W π2 −Rπ1 − 1

2 W π2 +Rρ ρ+Rκ κ+Rζ ζ +Rκ κ+Rζ ζ.

Inserting this back into what precedes, we can therefore obtain both

Π−Π = − 1
2Wπ2 + 1

2Wπ2 +Rζζ −Rζζ + (Rκ − Jζ)κ− (Rκ − Jζ)κ+ 1
2 (gρ − gρ)ρ,

and replacing g = − 2i Rκ + i Jζ in (14.12)

Ψ = −Rπ2 + eρ+ fκ+ i(Wρ − 2Rκ + Jζ)ζ + i(WJ − Jκ)κ+ iJζ.

Thus

Ω1 = pκ ∧ κ+ Π ∧ ρ+Wζ ∧ κ−Wζ ∧ κ
= pκ ∧ κ+ 1

2 (Π−Π) ∧ ρ+Wζ ∧ κ−Wζ ∧ κ+ 1
2 (Π + Π) ∧ ρ

= − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ + 1
2 (Rκ − Jζ)ρ ∧ κ

+ 1
2Rζρ ∧ ζ + ( 1

2Wκ − iR)κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ+ 1
2 (Π + Π) ∧ ρ,

and

Ω2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ

−Rζ ∧ κ+ 1
2 (Π + Π) ∧ κ+ ( 1

2 (r − r)− f)ρ ∧ κ.

If we define

Λ := 1
2 (Π + Π) + real part of

(
1
2 (gρ − gρ)− dκ

)
ρ

and

h := imaginary part of
(
1
2 (gρ − gρ)− dκ

)
,

we conclude that

Ω1 = − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ + 1
2 (Rκ − Jζ)ρ ∧ κ

+ 1
2Rζρ ∧ ζ +

(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ+ Λ ∧ ρ,

Ω2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ
−Rζ ∧ κ+ Λ ∧ κ+ hρ ∧ κ.

Notice that all coefficients of 2-forms — except only h — depend onR, J ,W and their coframe
derivatives.
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We are now close to the termination towards an {e}-structure. In summary, we have ob-
tained the following structure equations

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ +Wκ ∧ ζ +Rρ ∧ ζ + Jρ ∧ κ,
dπ1 = Λ ∧ ρ− 1

4Wπ2 ∧ ρ+ 1
4Wπ2 ∧ ρ− iπ2 ∧ κ

− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ + 1
2 (Rκ − Jζ)ρ ∧ κ+ 1

2Rζρ ∧ ζ

+
(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ+ ζ ∧ ζ,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ
+ hρ ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ − i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ
− 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ −Rζ ∧ κ.

But at this stage, we cannot directly deduce from these equations an appropriate expression
for h. For example, any attempt to isolate h by wedging the equation dπ2 = · · · with any
appropriate differential form will include a component of Maurer-Cartan type. This is to be
expected, because h will soon be shown below to depend on higher order jets of R, J , W ,
while the torsions above only depend up to the 2nd-order jets of these invariants. Therefore,
an application of the exterior differentiation on both sides of the equation dπ2 = · · · appears
necessary to reach an expression for h from the Poincaré relation d ◦ d = 0.

To facilitate the discussion, we set

Ω̂1 = − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ

+ 1
2 (Rκ − Jζ)ρ ∧ κ+ 1

2Rζρ ∧ ζ +

(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ,

Ω̂2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ
−Rζ ∧ κ,

so that

dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ + Ω̂1,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ + Ω̂2 + hρ ∧ κ.

Proposition 14.13. The function h is a function of the 3rd-order jets of W and J .

Proof. By applying exterior differentiation d to the equation of dπ2, while wedging on both
sides with κ ∧ π1 ∧ π1 ∧ π2 ∧ π2, we obtain

2h ρ ∧ κ ∧ κ ∧ ζ ∧ π1 ∧ π1 ∧ π2 ∧ π2 = −Ω̂2 ∧ κ ∧ ζ ∧ π1 ∧ π1 ∧ π2 ∧ π2

− dΩ̂2 ∧ κ ∧ π1 ∧ π1 ∧ π2 ∧ π2. �

At this point, let Φ be the auxiliary real 2-form

Φ := dΛ− Λ ∧ π1 − Λ ∧ π1 − iπ2 ∧ π2.
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Again this comes from the consideration of the model case. The structure equations therefore
become

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ +Wκ ∧ ζ +Rρ ∧ ζ + Jρ ∧ κ,

dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ + Ω̂1,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ + Ω̂2 + hρ ∧ κ,
dΛ = Λ ∧ π1 + Λ ∧ π1 + iπ2 ∧ π2 + Φ.

Proposition 14.14. The real 2-form Φ is a function of the 4th-order jets of W and J .

Proof. By taking exterior derivative of dπ1 and dπ2 again, this time using the expression of dΛ,
we have

Φ ∧ ρ = iΩ̂2 ∧ κ+ ihρ ∧ κ ∧ κ−Wκ ∧ ζ ∧ ζ +Wζ ∧ κ ∧ ζ − 2Rρ ∧ ζ ∧ ζ

− Jρ ∧ κ ∧ ζ + Jρ ∧ κ ∧ ζ − dΩ̂1,

Φ ∧ κ = −Ω̂2 ∧ π1 − hρ ∧ κ ∧ π1 + π2 ∧ Ω̂1 + Ω̂2 ∧ ζ − hρ ∧ κ ∧ ζ −Wπ2 ∧ κ ∧ ζ

−Rπ2 ∧ ρ ∧ ζ − Jπ2 ∧ ρ ∧ κ− dΩ̂2 − d(hρ ∧ κ).

Writing Φ as
Φ = Ω̂3 + uρ ∧ κ,

where Ω̂3 is the 2-form not containing ρ ∧ κ, then each of the coefficients in Ω̂3 is a function of
the 4th-order jet of W and J . Since Φ is real, taking conjugate on both sides, we must have

Ω̂3 + uρ ∧ κ = Ω̂3 + uρ ∧ κ.
Therefore by inspection, u is also a function of the 4th-order jets of W and J , and therefore so is
u. This finishes the proof. �

With this proposition, we have therefore fully constructed an {e}-structure.
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