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Abstract 

The design of the mobile robot path is important when obstacles are present in the environment. 

In the present study, the theory of optimal control for path design and obstacle avoidance via 

simultaneous minimization of the time and kinetic energy is proposed. Nonlinear equations of 

robot motion without simplification are considered in optimum control problems, and in order to 

prevent collisions, the potential functions are utilized. In the next phase, the cost function is 

proposed that includes velocity inputs, time, and the potential function for obstacle avoidance, in 

which the nonlinear equation of the motion of the mobile robot is deemed as a constraint. The 

final equations are numerically solved, and the capability and effectiveness of the presented 

method will be presented via different simulations on the mobile robot. 
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1. INTRODUCTION 

 

In the past two decades, wheeled mobile robots (WMRs) have been extensively used in various fields, 

including factories, military, transportation, and space. During the past decades, the control problem of 

autonomous WMRs has been investigated. However, recent years have seen an increasing trend toward the 

design and development of autonomous WMRs using various soft computing techniques. In this regard, 

the global navigation of the robot, in which the prior awareness of the surrounding spaces should be 

available, seems to be an essential issue to search for an optimal pathway from the starting point toward the 

destined point in the presence of fixed obstacles [1]. An important control problem in the WMRs is the 

presence of nonholonomic constraints as follows [2]: 

 

• In rolling without slipping constraints. 

• In systems in which the angular momentum is conserved. 

 

Cui et al. applied adaptive tracking and obstacle avoidance with unknown sliding to control a mobile robot. 

They are a sliding mode observer, and obstacle avoidance control law is presented to determine the sliding 

parameters online for nonholonomic systems to compensate for the unknown sliding effects [3]. 

Furthermore, Nazemzadeh et al. presented an optimum control strategy to plan the optimal trajectory for 

mobile robots. Through the indirect solution of the optimal control technique, they introduced the trajectory 

planning of mobile robots [4]. Yen and Cheng introduced an algorithm (fuzzy control with ant colony) that 

discovers the shortest pathway, distinguishes the entire obstacles found ahead of the robot via ultrasonic 

transducers, and modifies the mobile robot’s turning angles to avoid obstacles [5]. Moreover, they presented 

an enhanced ant colony algorithm used for WMRs path planning [6]. nazemzadeh et al developed dynamic 

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0002-9030-7051
https://orcid.org/0000-0001-5826-893X


431  Masoud MOSAYEBI, Pouya MALLAHI KOLAHI / GU J Sci, 36(1): 430-439 (2023) 

 
 
 
equation a mobile robot on slope surface and used nonlinear controllers to track specific paths [7]. Korayem 

et al. Developed a dynamic model by consider uncertainties and longitudinal and lateral slippage. 

Considering nonlinear parameters as well as non-holonomic constraints will complicate the process of 

controlling the moving robot. In order to control a robot, sliding mode control has been used using a Riccati 

equation to reduce the consumption torque and increase the accuracy of the optimal system [8]. Also in [9] 

a open-loop controller for the dynamics of industrial robots in order to design the optimal path in order to 

select the optimal engine in construction presented. Korayem et al. investigated optimal path planning and 

dynamic modeling of a nonholonomic mobile robot used in complex environments [10]. They did not 

consider the time parameter in their optimal control problem. Wu et al. introduced an optimum control 

technique on the basis of the Lyapunov function that is capable of solving a limited input affine nonlinear 

system for WMRs [11]. In this paper, the global navigation method and the artificial potential field approach 

are used to fix obstacle avoidance. The time and the kinetic energy quantities will be minimized to generate 

an optimized trajectory in the presence of a multi-fixed obstacle. Generally, the optimal control problems 

act on the basis of open-loop control theory. A kinematic equation  served as the limitation of the optimal 

control problem. In section 2, the kinematic equations are derived, and constraints are discussed. In section 

3, the potential function is defined, and then the optimal control problem is determined along with the 

kinematic constraints. Section 3 presents the problem of optimal control, and a new definition for the 

Hamiltonian function and the control law is obtained. In Section 4, the simulation and the results are 

presented. In the following, Figure 1 shows the simulation diagram. 

 

 
Figure 1. Simulation process 

According to Figure 1, by specifying the start and end point, the kinematic equations and the potential 

function are selected as the input of the Hamilton function, and then by applying mathematical relations, 

the control law will be obtained. 
 

2. Kinematics Model for a WMR 

 

In this paper, a nonholonomic robot model will be considered, which is not equipped with instantaneous 

motion components in the lateral direction. At moderate speeds of robots, typically, idealized rolling wheel 

models are employed in which the wheel can only rotate, while no slip is considered in the lateral direction 

and driving. Consider the WMR, which is shown in Figure 2. Its position and orientation are represented 

by [ , ]T T=q r , in which [ , ]Tx y=r  is the position of the WMR’s center of mass, and   is the heading 

angle of the robot. Virtual input [ , ]Tv  represents the angular and linear velocities of the robots. The 

WMR’s kinematics model considering the non-slipping, nonholonomic constraints, and pure rolling is 

presented as follows: 
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It can be shown in a general form as the following:  
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( )=x f x,u   (2) 

 

where u  and ( )J  are velocity vector and the full rank velocity transformation matrix, respectively. Also, 

the radius of each driving wheel and the distance between the centers of the two wheels are shown via r  

and b , respectively. Let us consider that the coordinates of the robot’s center of mass are amid the driving 

wheels, where all the velocity and position variables are time-dependent, and in Equation (1), u  and x   
are the control signal and the state of the system, respectively. It is noteworthy that the mobile robot is 

subject to nonholonomic constraints [12] in which the driving wheels roll exclusively with no slipping, that 

is: 

 

cos( ) sin( ) 0y x − =  . (3) 

 

For the robot to start moving from the initial condition to the target, finding a suitable control signal is a 

must to prevent collisions with obstacles and minimize the required energy and time. 

 

 
Figure 2. Schematic of wheeled mobile robot 

Also, the relationship between torque and the optimal input signal is as follows [12]: 
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(4) 

 

3. THE PROBLEM OF OPTIMAL CONTROL WITH THE OBSTACLE AVOIDANCE 

 

When planning the nonholonomic mobile robots’ optimum motion, the system's kinematic equations are 

assumed as limitations of the optimal control problem, which involves minimization of time and kinetic 

energy and prevents collisions with obstacles along the trajectory. In the present investigation, a potential 

field is used to prevent collisions with obstacles. A mobile robot in the presence of multiple obstacles is 

shown in Figure 3. One can express a potential field as the sum of the attractive field given the goal point 

( )attrU r  and a repulsive field ( )repU r  caused by obstacles [12]: 

 

( ) ( ) ( )attr repU U U= +r r r  . (5) 

 

Attractive potential ( )attrU r  can be defined as proportional to the squared Euclidean distance to the goal 

point 2 2( , ) ( ) ( )goal goal goal goalx x y y = − = − + −r r r r , as follows: 
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(6) 

 

where attrk  stands for a positive constant. One can express the repulsive field potential as follows: 
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(7) 

 

where repk  is a positive constant.  

 
Figure 3. A WMR faced with obstacles 

Equation (5) should be considered in the cost function for minimization to prevent collisions with obstacles. 

The final equation is as follows: 
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(8) 

 

where iZ  stands for the weighting coefficient associated with the obstacle avoidance, while ir  reflects an 

enclosed circle radius to the mobile robot. The velocities are squared via basic classical mechanic equations, 

and the kinetic energy is proportional to some constants. As a result, the parameters to be optimized are   

and  , respectively. In the present study, the principle expressed by Lev Semenovich Pontryagin is used, 

which is a specific case of the Euler-Lagrange equation [13]. Here, the objective is to detect optimal control 

vector u and an optimal state vector x for the system constraints equations, and also, the objective function 

is as follows: 
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(9) 

 

where    is the final state penalty expressed as follows: 

 

( )f ft t =  (10) 

 

where   is a weighting parameter and ( ( ))L tu  is associated with the kinetic energy of the mobile robot: 
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( ( )) ( ) ( )TL t t t=u u u  . (11) 

 

It is noteworthy that the appropriate mode of the last state  function   in Equation (10) is very important; 

  is the weighting coefficient. On the other hand, as   is increased, ft  becomes more important regarding 

the integral containing L, which is deemed as the increased significance of minimizing ft  more than the 

remaining terms, and as   declines, minimizing the energy rather than the total time becomes more 

important. By combining the potential field to prevent collisions with obstacles and kinetic energy and time 

to the function, a new cost function is introduced as the following: 
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(12) 

 
4. SOLUTION AND CONDITIONS OF PROBLEM OF THE OPTIMAL CONTROL 

 

Here, the mathematical details employed for solving the optimal control problem are presented via a 

numerical technique. By applying the calculus of variations and the Pontryagin minimum principle, the 

Hamiltonian function is represented as follows: 
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1 2 3( ) ( ) ( ) cos sinT
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in which P  stands for the co-state vector, ( )f x,u  is determined through Equation (1) and Equation (11) 

gives the ( )L u . The optimality conditions are extracted as a set of differential equations as follows [13]: 
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and 
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in which the superscript star refers to as the optimal value of the variables 
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(16) 

 

From Equation (16) of the optimal control law that includes optimal linear and angular velocities, Equation 

(16) is obtained as follows: 
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To solve the free final time ft  , the problem of optimal control must be transformed into a standard form 

suggested in [14]. 

 

5. SIMULATION 

 

The generated path for the case where the starting point is (5,1,0)sq =  and the target point is 

(10,8, 2.5)tq =  without obstacle is presented in Figure 4. 

 

 
Figure 4. The generated path without Obstalce 

The generated path is presented for the case, where the starting point is (5,1,0)sq =  and the target point 

is (10,8, 2.5)tq = , and there is a constant obstacle with a radius of 0.5, and the coordinates 1 (8,4)obsx =  

is presented in Figure 5. 

 

 
Figure 5. The generated path with one obstacle 

The generated path is presented for the case where the starting point is (5,1,0)sq = , and the target point 

is (10,8, 2.5)tq = , and there are two constant obstacles with a radius of 0.5, and the coordinates 

1 (8.5,6)obsx =  and 2 (9,3)obsx =  is presented in Figure 6. 
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Figure 6. The generated path with multi obstacle 

 

The time is equal to 14.25s, 14.73s, 12.78s for states where the path is unobstructed, the path with one 

obstacle, the path with two obstacles, respectively. Figure 7 shows the position and orientation as a function 

of time for motions are shown in. 

 

 
Figure 7. (a) Position X,Y of the robot (b) Orientation of the studied robot as a function of time 

Figure 8 presents the angular and linear velocities as a function of time for motion 

 

 
Figure 8. The angular and linear velocity as a function of time 

 

The effect of the   on time and cost function is presented in Figure 9 below. 
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Figure 9. (a) The value of the cost function in terms of time for different   (b) the effect of   on time 

The lower and upper limits of the torques for Dc actuators of the mobile robot are obtained as: 
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(18) 

In the simulations, the actuator constants are considered as: 
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Figure 10 depicts the optimum torque values for the wheel actuators. 

 

 
Figure 10. Optimal torques of wheeled (a) right wheeled (b) left wheeled 

 

6. RESULTS 

 

In the present research, the path design with obstacle avoidance was investigated for a mobile robot 

simultaneously by optimizing time and kinetic energy in the presence of fixed obstacles on the basis of 

open-loop optimal control theory. Also, in many studies, only optimal path design or optimal path design 

with considered obstacle avoidance have been investigated without paying attention to time and kinetic 

energy. First, the robot's nonlinear equations were expressed. Then the appropriate cost function was 

presented for optimum motion control of the system and obstacle avoidance. Cost function includes the 

time and inputs of velocity and the potential field for obstacle avoidance formulated in optimal control 

problems. To solve the optimal control problem, the minimum Pontryagin principle has been utilized. In 

the proposed method, the selection of the   parameter is important because it directly affects the time 
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optimization, and the effect of the parameter values on time has been determined. At last, a simulation study 

has been carried out on a mobile robot, and the optimum path without collision in minimum time has been 

generated, suggesting that the proposed method can be used in practical applications. 
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