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Abstract

In this study, some inequalities of Hermite-Hadamard type for integrals arising in con-
formable fractional calculus are presented. In fact, the obtained inequalities are not only
valid for those integrals arising in conformable fractional calculus, but for more general in-
tegrals as well. Numerous known versions are recovered as special cases. We also illustrate
our findings via applications to modified Bessel functions, special means, and midpoint
approximations.
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1. Introduction

In [1], a so-called conformable fractional integral of the form

” fa)don = /p 2 () e (1.1)

Pr1 1
(if it exists and is finite) was introduced for w € (0,1]. In view of recent results in the
theories of differential, integral, and fractional differential equations, it becomes clear that
certain integral inequalities are very useful in determining bounds of unknown functions;
see, e.g., [2,6-9,11,14,15,19,25,29]. Also, there are various integral inequalities in the
literature, and research in this area is very active. One main inequality is the Hermite—
Hadamard integral inequality, due to Hadamard (1893), which says that for convex func-

tions f, we have
f(pl—;pz> < p;pl //:2 f)de < f(m);rf(pz)_ (1.2)

Inequality (1.2) has been extended and applied to time scales [4,5] and to many models
of fractional calculus, such as Riemann-Liouville [18, 21, 26], ¢-Riemann-Liouville [17],
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conformable fractional [20], generalized fractional [22,24], time scales fractional [3, 28],
and tempered fractional [23].

In this article, after proving some auxiliary results in Section 2, we devote Section 3
to obtain three distinct inequalities of Hermite-Hadamard type for integrals of the form
(1.1). In each case, by choosing w = 1, we recover known results from the literature. In
Section 4, we apply our results to integer values of w, and in Section 4, we demonstrate
the usefulness of our inequalities by offering three different applications. We emphasize
that our Hermite-Hadamard inequalities for conformable integrals (1.1) collapse to known
Hermite-Hadamard inequalities for integrals when w = 1.

2. Auxiliary results

At first, we recall the definition of convexity. We say that f : I — R is convex on the
interval [ if

fnz+ (1 —=n)y) <nf(z)+(1-n)fy) forall =x,yel and nel0,1].

In the first auxiliary result, we collect some formulas that will be needed in the proofs
of our main results.

Lemma 2.1. Let w > 0 and z1 # z3. Denote

. 21 + 22
* T 2 bl
Zx
G(z1,22) == / (¥ — 2Y) dz,
z
s
Fi(z1,29) := / (¥ — 2%) (x — z1) du,
Z2 — 21 zZ1
1 [
Fy(z1,22) = / (2% —27) (22 — x) dz.
22 — 21 Jxn

Then we have

20 el W (2 — 21)

1
= - 2.1
G(Zla'z?) w1 9 ) ( )
22
/ (25 — a¥) dz = G(22, 1), (2.2)
Zx
Zw-‘r? . Zw+2 Zw+1 29 — 21
F = v : G 2.3
11,22 (w+ 1) (w+2) (22 — 21) +2(w+1) AR (2.3)
w—+1
Zw+2 _ Zw+2 Za _ Zw+1 20 — 21
E = - : 213 2.4
h(21,22) @+ (@ +2) (22 —21) + ] z] g (2.4)
1 22
/ (25 —2%) (x — 2z1) do = Fa(22, 21), (2.5)
22 — 21 Jz,
1 %2
/ (23 —2%) (22 — z) do = Fi(22, 21). (2.6)
22 — 21 Jz,

Proof. A simple integration verifies (2.1). The definition of G shows (2.2). Now we
verify the second equal sign in (2.3). We use (2.1) three times (with replacements of w by
w+ 1,w, 1) as well as twice the formula
zZ9 — 21
2

(2.7)

Ze — Rl =
to find

1
Fi(z1,22) =

22— 2

Zx
/ [me — T (Y — ) — Y (x— zl)} dz
21
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zf” _ z(lu+2 Ziu+1 ( Z:z+1 _ Ziu+1 fo> " ( Zf B z% Zl)
-z _ — 2 _

(w+2) (22 —21) 2 Ww+1)(2—21) 2 2(z2—21) 2
- 292 w42 | (4 9) (zggﬂ B Z;J+2) et . <z* ta 21>
W+ 1)(w+2) (22 — 21) (W+1) (220 —21) 4 2
Since Fy + F> = G, (2.4) is just a simple calculation using (2.1) and (2.3). Finally, (2.5)
and (2.6) follow from the definitions of F» and Fj, respectively. O

Remark 2.2. If we let w =1 in Lemma 2.1 and use (2.7) several times, then we have

(2 —21)°  (2—2)°

G(z1,22)=/z* (x —2)de = — :

. 2 8
1 o 2 (2 —21)° _ (m—2)°
F = — d = =
1(217 22) zZ9 — 21 /271 (x Zl) v 3 <22 — 2’1) 24 ’
2
Zo — Z
Fyfer,2) = Glen, ) — Fi(en,z) = 220

Now, the following lemma is a key to obtain our main results. In the sequel, we assume
(Hy) w>0,0<p1 < p2,and f: [p1, p2] — R is such that

ore= [ @ o) e and = [T (o = a) £ o)

1

are well defined. Recall p, = (p1 + p2)/2.
Lemma 2.3. If (H,) holds, then

w

P2 P2 — o1
= = f(x)dwzr — f(ps) = = o 2.8
P2 —P1 J; (@) (p2) P2 — P1 (28)

Proof. Using integration by parts and (1.1), we get
Px
o= [ @ = o) @)
P1
P L
— / wz? " f(x)dx
p1 p1

= (0 — %) Fpa) —w f(@)do.

Px

= (2% = p7) f ()

Similarly,

Altogether, we have

P2
Sp— / F@)dor — (5 — p) F(pa),

1

from which we obtain the desired identity (2.8). This completes the proof. ([l

Remark 2.4. If we take absolute values in (2.8), then we obtain the inequality

w P2 +
[ e - (o] < 212 (29)
P2 —P1 Ip; Py — P1
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3. Main results
Now we present the three main results of this paper.

Theorem 3.1. If (H,) holds and |f'| is convez, then

w & F(py, p2) |[f'(p1)| + F(p2, p1) | (p2)]
W W f(x)dwx_f(p*) S W W ’
P3 —P7 JIp; P2 = P
where
2zw+2 _ Zw+2 _ Zw+2 Zw-i—l _ Zerl 20 — 2
F(z1,29) := —= 1 2 = L (28 —329) 221 o £

@+ )@+2) (2 —2) | wel g

Proof. By the convexity of |f'|, we get

—x T — P2 — T —
@] = |1 (E o+ 2 )| < 222 )]+ 22 ().
p2 — p1 p2 — p1 p2 — p1 p2 — p1
and thus
P
ol < [ @ = ) 17/ (@)] d
p1
P w ) p2 — X / r—p1 / :|
< ¥ — + dx
_/pl ( pl)[p2_p1 |f'(p1)] po— |f'(p2)]
=Fo(p1, p2) | f'(p1)| + Filpr, p2) | f'(p2)] -
Similarly,

o2l < [ (65 = 0|1 (@)] da

Pz wy | P2 =T o L= P1 g
< [ =) [2= 10 o)+ ) s
=Fi(p2, 1) |f'(p1)| + Fa(p2, p1) [ /' (p2)]
where we have also used (2.5) and (2.6). From (2.3) and (2.4), it is easy to see that
Fl(ZQ,Zl)—l-FQ(Zl,ZQ) :F(Zl,ZQ). (31)

Employing now (2.9) completes the proof. O

When we choose w = 1 in Theorem 3.1, we get the following result.

Corollary 3.2. If (H;y) holds and |f'| is convez, then we have

02 1 o /pfz f(x)dx - f(p*) < P2 ; P1 (’f/([)l)’ + ‘f/(pz)‘) .

Proof. If w = 1, then, due to (3.1) and Remark 2.2, we get

F(z Z):F(Z Z)+F(Z 2)2(22_21)2+(Z2_21)2:(22—21)2
1,22 1(22, 21 2(21, 22 51 T . ,

and thus the statement follows from Theorem 3.1. O

Remark 3.3. Note that Corollary 3.2 was proved first in [13, Theorem 2.1]. Hence, our
Theorem 3.1 is a generalization of [13, Theorem 2.1].

Theorem 3.4. If (H,) holds and |f'|? is convex for some q > 1, then

w P2
55— Iy T
(G(p1, p2)' "1

i (Fap1, p2) | £ (p)|" + Filpa, p2) | ' (p2)]%)
P2 — P1

Q=

<
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1—1
LGP (g, 00) | 1) + Falpn, 1) | /(02|
P2 — P

where F1, Fs, and G are given in Lemma 2.1.
7,

Q|

Proof. By the convexity of |f'|?, we get
p2 —T r—pP
< |f'(p0)|" + [f'(p2)|" (3:2)

p2 —x x — p1 a
|f' ()" = f’( p1+ ,02)
P2 — P1 P2 — pP1 P2 P2 — P1

and thus, with the help of the power-mean inequality,
Px
ol < [ @ =) | )] da
P

1

< (/ (2 —p‘f)dw)lé (/ (2 - %) |f’<x>|qu);

= (G(p1,p2) 7 </pp (@ — p7) ‘ff(x)\ng;);

1

Q=

< (Glp1, p2)) 7 (Balp, o) £/ (o) + Filpr, p2) | £ (p2)]%)
Similarly,

o] < / P — ) | F (@) da

< </pp2 (3 — x“’)dx>1—§ (/pz (0% 2 |f,(x)|qu)é
= (G(p2. 1)) (/p2 (5 — a*) !f/(:c)]quf

< (G(Pmpl))lﬁ (F1(p2, p1) | (p1)|* + Falp2, p1) |f’(02)|q)é ;

where we have also used (2.2), (2.5), and (2.6). Employing now (2.9) completes the
proof. O

Remark 3.5. Theorem 3.4 with ¢ = 1 becomes Theorem 3.1.
When we choose w = 1 in Theorem 3.4, we get the following result.
Corollary 3.6. If (Hy) holds and |f'|? is convex for some q > 1, then

1 P2 d
prsirnll IO LERR L0

— 1 1

<2 @10+ £ (e2l)F + (7o)l + 217 (o))
- 3a

Proof. This follows directly from Theorem 3.4 and Remark 2.2. g

Remark 3.7. Note that Corollary 3.6 was proved first in [10, Proof of Corollary 1]. Hence,
our Theorem 3.4 is a generalization of [10, Corollary 1].

Theorem 3.8. If (H,) holds and |f'|? is convex for some q > 1, then

w

Q=

2 _ (pQ—pl)% - / q ' q
gy (e = 10| <L (@olonopn) Gl + 11 )

Q=

+ (Gplp2. p1))7 (| (o1)]" + 31 (p2)]%)

Zx
/ |z¥ — 27|V dx| .

21

where

p=—— and Gp(z1,2) =
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Proof. By the convexity of | f|?, we get (3.2), and thus, with the help of Hélder’s inequal-
ity,

jon| < / (2 — g | /()] do
<( / "y dm); ( / |f,(x)’qu);

= (Gplp1.p2))¥ (/: |f/(x)|qu)3

1

1
—x Px x— q
<(Gp(p1,p2))» (’f p1)|? dz + \f’(m)\q/ dw)
P2 — pP1 p1 P2 — P1

Q=

_ (mgm>q (Gp(p1, p2)) %(3|f (p)|* + |/ (p2)|") 7 -

Similarly,
p2
|2 </ z)| dz
Px
P2 - P2 %
</ (p5 — ¥ pdx) (/ |f’(x)|qdw>
Px Px
1 Pz, q %
= Gyloan))? ([ 170 )
1
1 -z P2 g q
<(Gp(p2,p1))” (\f p1) |q/ P2 % e+ \f’(ﬁz)\q/ i dfﬁ)q
« P2 —P1 px P
1
P2 — p1\« l 1
:<281)Q<Gp<p27m )7 (£ )" +31f (p2)[") 7
Employing now (2.9) completes the proof. O

When we choose w = 1 in Theorem 3.8, we get the following result.

Corollary 3.9. If (Hy) holds and |f'|? is convex for some ¢ > 1, and p=q/(q—1), then

1 P2 d
P2 — P1 Jpy flo)dz = flp.)
<S5 <pi1> (7o) |7+ 317 () )T+ (1 0l + 17 (p2)| )

Proof. For w =1, we use (2.7) to calculate

P (o — P’ (p2—p)P"
— _ pd — — = .
Gp(p1,p2) /p1 (@ —p1)’ dz 1 (p+ 1)2v+1 Gp(p2, p1)

Noting 1/p + 1/q = 1 and simplifying

1 1
p2—p1\a ((p2—p1)" "'\ P 1 1
(281)q((p+1)2p+1) _ (p2 — p1)4r :pz—pl( 4 )p
P2 =P (p+D)p2idi2 rar 16 \p+1
and using Theorem 3.8 completes the proof. ]

Remark 3.10. Note that Corollary 3.9 was proved first in [13, Theorem 2.3]. Hence, our
Theorem 3.8 is a generalization of [13, Theorem 2.3].
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Table 4.1. F(z1,22)

w o) F(z1,22)
11
2 || 1 (521 + 322)

3| 3 (22 + 2122+ 23)
4 | & (412 + 21232 + 152123 + 1923)
5 % (93% + 52329 + 32222 + 32125 + 4z§)

6 ﬁlg (2572{) + 15521122 + 902%,2% + 70z%zz + 857;1251 + 111z§)

7 || 555 (11629 + 752929 + 452123 + 30252023 + 302723 + 392125 + 4928)

Table 4.2. Fi(z1,22)

Fi(z1,22)

(22—21)°

11
2 || 1 (1321 4 322)

3 4% (2722 + 112129 + 223)

4 | 45 (18323 + 992929 + 332123 + 523)

5 || 5 (27621 + 1772329 + 812222 + 232123 + 323)

6 || o5 (154527 4+ 11072125 + 6182723 + 2462729 + 612125 + 723)

7 || =t5 (205328 + 1587272 + 10142123 + 502232025 + 1772325 + 392125 + 429)

4. Integer values of w

Although the conformable integral mentioned in Section 1 is defined only for w € (0, 1],
the results presented in this paper hold for any w > 0. By plugging the special values
w € N, we can get some special cases of our presented inequalities. In Tables 4.1, 4.2, 4.3,
and 4.4, we give the functions F, Fy, Fb, and G for the values w € {1,2,3,4,5,6,7}.

5. Examples and applications

In this final section, we give three distinct applications of our presented inequalities:
First, inequalities involving the modified Bessel function of the first kind (for related
inequalities, see [16, Section 4.3.1]). Second, inequalities involving the arithmetic mean and
the (w,r)th generalized logarithmic mean, and third, inequalities involving the midpoint
formula (for related inequalities, see [12, Section 3]).
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Table 4.3. F5(21, 22)

w ﬁ]’g(zl,zg)

11

2 || & (2721 + 522)

3 83—0 (582% + 192122 + 323)

4 || 135 (40528 + 177232 + 512123 + 723)

5 ﬁ (62721 + 3272320 + 1292223 + 332125 + 423)

6 || 3057 (359127 4 2109212 + 10142723 + 362272 + 832123 + 923)

T || 155 (486828 + 31112929 + 17132123 + 758232023 + 2462725 + 512125 + 525)

Table 4.4. G(Zl722)

e G(z1, 22)
1|1
2 % (521 + 22)

3 % (1723 + 62122 + 23)
4| 55 (492 + 23220 + T2123 + 23)
5 || & (12921 + 722820 + 302223 + 82123 + 23)

6 || 1y (32120 + 2012t2p + 1022523 + 382325 + 92124 + 23)

T || 555 (76929 + 5222725 + 3032123 + 140232025 + 472325 + 102125 + 25)

5.1. Bessel functions
Consider the function B, : (0,00) — [1,00) defined by
Bo(z) = 2T (0 + 1) By(x),

where Bé is the modified Bessel function of the first kind defined by (see [27, (2) on page

77)) »
RSN C)
By(@) _nz::onlf(;—i-l—i—n)’

In [27, (6) on page 79], the first derivative of B, is given by

By(x) =

z € R.

2Boy1()
20+ 1)
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and the second derivative can easily be calculated from (5.1) to be

$239+2($> Bor1(z)
4o+ 1)(e+2) 2(0+1)

Example 5.1. Let 0 < p; < p2 and ¢ > —1. Then, by applying Corollary 3.2 with f = B’g
(note that all assumptions are satisfied) and the identities (5.1) and (5.2), we have

Bolr2) = Bolpr) _ prtprg <p1 + ,02)‘
p2 — p1 4o+1)""" 2
c P2 [P%Bg—ﬂ(pl) +p8Boralpa) | Bora(pn) + B@“(m)] - (5.3)

= 16 20+ 1)(0+2) 0o+1

BY(x) = (5.2)

Example 5.2. Let 0 < p1 < p2, 0 > —1, and ¢ > 1. Then, by applying Corollary 3.6 with
f = B, (note that all assumptions are satisfied) and the identities (5.1) and (5.2), we get

Bolp2) = Bolpr) _ p1tpag <p1 - Pz)‘
p2 — p1 Alo+1)" " 2

P2~ P1 PiBo+2(p1) CBByia(ps) q
“loe+ 1t { 2 (et e meton) + (e i) |

(/m n BQH(m)) 2 (M + 3g+1(P2)> ] } -

Q=

_|_

Example 5.3. Let 0 < p1 < p2, 0 > —1, ¢ > 1, and p = ¢/(q¢ — 1). Then, by applying
Corollary 3.9 with f = B/, (note that all assumptions are satisfied) and the identities (5.1)
and (5.2), we obtain

‘Bg(pz) ~Bolp) _mtprg (m + Pz)‘
p2 — p1 A o+1)" " 2

<p%§;’f(2p)1) + Bg+1(P1)> +3 (lm + Bg+1(,02)> ]

Let r € R\ {—w,0}, w € (0,1], and p1, p2 € R with 0 < p; < p3. Then we consider the
arithmetic mean and the (w,r)th generalized logarithmic mean defined by

w (p’z"“’ - p’fw) ] "

QI

p2 — p1 4
“ 320+ \o+1

3 (w + Bg+1(P1)>q * (P%%H(P?) ' Bg+1(p2)> ql

Q=

+ 200 1 2) 2(0 +2)

5.2. Special means

_ p1+p2

Alpr, p2) = = and L, (p1,p2) =

(5.4)

(r+w) (hg — p?)

Example 5.4. Let » > 1 and f(x) = 2" for all x > 0. It is easy to see that |f’| is convex
on [p1, p2). Then, by applying Theorem 3.1, the rth powers of the two means in (5.4) differ
from each other at most by

r — _
p‘é) — p“l‘) (IOg 1F(p1,p2) +p£ 1F<p27p1)) )

where F' is given in Theorem 3.1.
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Example 5.5. Let ¢ > 1,7 > 1, and f(x) = 2" for all x > 0. Then, by applying Theorem
3.4, the rth powers of the two means in (5.4) differ from each other at most by

b

Example 5.6. Let ¢ > 1,7 > 1, and f(x) = 2" for all z > 0. Then, by applying Theorem
3.8, the rth powers of the two means in (5.4) differ from each other at most by

r P2 — pP1 1 q(r—1) ar—1) %
P — p¥ (/T{( p(p1.p2)) (pl + 31 )
1 re . 1
+ (Glpa, pr))? (3170 + 1))(]}’

where p = ¢/(¢ — 1) and G), is given in Theorem 3.8.

1

r -1 r— r— q
5 w{<G<pl,p2>>1 “ (61" Balpr, p2) + o8V Fi(p, )
P2 — P1

Qe

_1 — r—
+ (G2, o)1 (P17 Fi(pa, 1) + o8 Falpo, p))

where F}, F», and G are given in Lemma 2.1.

5.3. Midpoint approximations

Let P be the partition p1 = zg < 21 < ... < x,, = p2 of the interval [p1, p2]. We consider
the quadrature formula

/p " Fa)dor = My(f,P) + Eu(f.),

1

where

n—1 w w
T+ Xip1\ Tigp1 — %
ML(£9) = 3 f (FE) B
i=0

is the midpoint approximation and E,(f,P) denotes the corresponding approximation
error.

Example 5.7. If (H,) holds and |f’| is convex, then, by applying Theorem 3.1 on the
subintervals [z, zi+1], 9 = 0,...,n — 1, of the partition P, we have

‘f (l“z +2$i+1> B w ZJ/:Hl f(z)dyz

w
fi 1~ X
; (xi7$i+1) |f/($2)’ ; (xi+17$i) |f/(xi+1)’

w w
Tit1 — T4

i

<

)

where F' is given in Theorem 3.1, and then by adding, we get

|
—

|Eu(f,P)] <

% ‘ [F(zi, xipa) | f/(22)| + Figr, z0) | f(@i)]] -

Il
o

)

Example 5.8. If (H,) holds and | f'|? is convex for some g > 1, then, by applying Theorem

3.4 on the subintervals [z;,x;41], 7 =0,...,n — 1, of the partition P, and then adding, we
have
iy 1 1
B (£, P =~ > {(G(iﬂi’%‘iﬂ))l @ (Fa(wi, wi) | £/ ()" + Fu(ws, i) | (i) ) @
i=0

S

+(Glisy, i) [Fr(ign, o) [f1(2a)| + Fal@ipr, @) | (@i1)|]

b

where I}, Fs, and G are given in Lemma 2.1.
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Example 5.9. If (H,,) holds and | f|? is convex for some g > 1, then, by applying Theorem
3.8 on the subintervals [z;, z;+1], i = 0,...,n — 1, of the partition P, and then adding, we
obtain

n—1 1 1
|Eu(f,P)] < ! > Vwi — {(Gp(ffz',ﬂciﬂ))p [/ (@) + 3] f (wir1)|] 0

w\q/gio

Qe

+ (Gplaipn, @) B @]+ |/ (@is1)]]

where p = q/(¢ — 1) and G, is given in Theorem 3.8.
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