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Abstract
Our concern in the present work is a Timoshenko laminated beam system with nonlinear
delay and nonlinear structural damping acting in the equation describing the dynamics of
slip. The aim is to establish an explicit and general energy decay rates of the solution under
suitable assumptions on the weight of delay and speeds of wave propagation. To achieve
our desired stability results, we exploit some properties of convex functions, coupled with
the multiplier technique, which involves constructing an appropriate Lyapunov functional
equivalent to the energy of the system.
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1. Introduction
In this paper, we consider a Timoshenko laminated beam system with nonlinear struc-

tural damping and an internal nonlinear delay feedback acting in the kinetics of slip
equation 

ρwtt +G(ψ − wx)x = 0,
Iρ(3stt − ψtt) −D(3sxx − ψxx) −G(ψ − wx) = 0,
3Iρstt − 3Dsxx + 3G(ψ − wx) + 4γs

+ βg1(st(x, t)) + µg2(st(x, t− τ)) = 0,

(1.1)

where (x, t) ∈ (0, 1) × (0,∞). w = w(x, t) is the transverse displacement, ψ = ψ(x, t) is
the angle of rotation, s = s(x, t) is proportional to the magnitude of slip at the interface
and, 3s−ψ denotes the effective rotation angle. The positive coefficients ρ, Iρ, G,D, γ and
β, represent the density, mass moment of inertia, shear stiffness, flexural rigidity, adhesive
stiffness and, adhesive damping weight respectively. τ > 0 is the time delay and the

∗Corresponding Author.
Email addresses: mpungu@graduate.utm.my (K. Mpungu), tijani@uhb.edu.sa (T. A. Apalara)
Received: 02.06.2021; Accepted: 25.05.2022

https://orcid.org/0000-0002-8669-6621
https://orcid.org/0000-0003-1813-6646


1518 K. Mpungu, T. A. Apalara

positive coefficient µ is the delay weight. System (1.1) is subject to the following initial
and boundary conditions

w(x, 0) = w0, s(x, 0) = s0, ψ(x, 0) = ψ0, x ∈ (0, 1),
wt(x, 0) = w1, st(x, 0) = s1, ψt(x, 0) = ψ1, x ∈ (0, 1),
w(0, t) = sx(0, t) = ψx(0, t) = 0, t ⩾ 0,
wx(1, t) = s(1, t) = ψ(1, t) = 0, t ⩾ 0,
st(x, t− τ) = f0(x, t− τ), (x, t) ∈ (0, 1) × [0, τ).

(1.2)

The initial data (w0, s0, ψ0, w1, s1, ψ1, f0) belongs to a suitable function space.
The interface connection property in composite layered structures possesses a significant

impact on deformation, as well as stress in form of internal structural damping depending
on the material of the connector [45]. This renders laminated beam structures more
preferred to single beam structures in application. In structural engineering, adhesives
are among the most used type of connectors of these layered beam structures. To this
effect, Hansen and Spies [18] introduced a differential model describing vibrations in a
structure set up by a pair of equal rods with uniform thickness, conjoined with help of
an adhesive of negligible mass and thickness, in a manner that interfacial slip is possible
while in continuous contact with each other. Precisely, the model comprises of three closely
related differential equations. The first two equations are derived on the assumptions of
Timoshenko beam theory. These are coupled with the third equation which describes the
dynamics of slip. In absence of any external force, the system takes the form

ρwtt +G(ψ − wx)x = 0,
Iρ(3stt − ψtt) −D(3sxx − ψxx) −G(ψ − wx) = 0,
3Iρstt − 3Dsxx + 3G(ψ − wx) + 4γs+ 4βst = 0,

(1.3)

where (x, t) ∈ (0, 1) × (0,∞). Clearly, if s is identically zero, then the standard Timo-
shenko system is recovered. Furthermore, in the presence of structural damping (β ̸= 0),
the adhesion at the interface produces a restorative comparable force to counteract the
interfacial slip. Otherwise, the third equation of (1.3) describes the slip dynamics of the
coupled laminated beam system without structural damping.

Composite beam structures are highly applicable especially in structural engineering
[36, 40], and like in any other control system, it is crucial that the designed systems are
stable. Thus, by exploring different energy dissipating mechanisms introduced to the
system, researchers have considerably investigated and presented fascinating energy decay
results of (1.3), we summarize some of them below.

The asymptotic properties (1.3) with boundary feedback controls{
w(0, t) = ψ(0, t) = s(0, t), (ψ − wx)(1, t) = k1wt(1, t)
(3sx − ψx)(1, t) = −k2(3st − ψt)(1, t),

(1.4)

were first investigated by Wang et al. [44]. The authors established an exponential stability
of the system provided that r1 =

√
ρ/G ̸=

√
Iρ/D = r2, ki ̸= ri(i = 1, 2). Later, Tatar

[43] and Mustafa [33] obtained improved the results in [44] by establishing decay results
under weaker conditions on the system parameters. Raposo [38] introduced additional
linear frictional damping terms in the first two equations of (1.3) in addition to structural
damping, and proved exponential decay with no other restrictions. Similarly, Apalara
et al. [9] and [6] respectively established exponential stability results on a single linear
frictional damping in the effective rotation angle and structural damping in case of equal
wave speeds. Alves and Monteiro [2] further investigated system (1.3) with boundary
feedback controls acting through complementary displacements and prove that in presence
of structural damping(β ̸= 0), no further dissipation or restrictions on parameters are
required for exponential stability, otherwise the equal wave speeds assumption must hold.
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On stabilization through thermal effect, Apalara [5] studied a thermoelastic laminated
beam without structural damping, and proved that the dissipation through thermoelas-
ticity is sufficient for exponential decay in case of equal wave speeds. For more results on
thermal effect, we refer the reader to [4,17] for second sound and, [22] for thermoelasticity
of type III. In these works, authors established both exponential and polynomial decay
results with some restrictions on the system parameters.

In a considerable number of mechanical systems, the mechanism of dissipating energy
is nonlinear, for instance, automotive, rotor, bridges and marine applications [1]. For the
Timoshenko laminated beam system (1.3), viscoelastic damping is among the well studied
nonlinear form of energy dissipation. For instance, we mention the work of Lo and Tatar
[24] in which viscoelastic damping acting the effective rotation angle

∫ t

0
g(t− r)(3sxx − ψxx)(r)dr,

was considered. The authors proved that this coupled with structural damping is sufficient
for uniform decay with several conditions on the relaxation function g and the system co-
efficients. Mustafa [34] further investigated the system introduced in [24]. With a simpler
assumption of equal wave propagation speeds, the author improved the decay results by
exploiting the minimal and general conditions on g and, he established the optimal an-
ticipated decay rates in respect to the presented degree of generality. Other results on
viscoelastic damping can be found [13,25] and [21] for laminated beam system with infin-
ity memory. Liu and Zhao [23] on the other hand, investigated a thermoelastic laminated
beam with past history, and proved that in presence of structural damping, the solution
decays exponentially and polynomially without any restrictions on the parameters. The
authors further established that, for a system without structural damping, exponential
and polynomial decay of the solution are possible in case of equal wave speeds, otherwise,
the system lacks exponential stability. Other results in which authors employ both vis-
coelastic and thermoelastic damping mechanisms can be found in [31,32]. The asymptotic
behaviour a laminated beam system due to nonlinear structural damping was investigated
by Apalara et al. [8] and they established an explicit and general decay results.

In systems where propagation and transmission of information or material are involved,
time delays are intrinsic. Time delay may be exhibited in form of lags between the in-
put and output processing, or lags in equipoise attainment or stability restoration of a
system after perturbations resulting from internal or external forces, among others. To
comprehensively investigate the delay effect on the properties of instantaneous systems, it
is preferred that they are explicitly represented by control differential models with delay.
Even though there are isolated scenarios in which introduction of delay may aid energy
decay [42], time lags are often diagnosed as a cause of instability to the extent that an
arbitrarily small delay may drive an asymptotically stable system into chaos [15]. In some
cases, additional feedback or conditions may help to retain stability. For instance, Nicaise
and Pignotti [35] investigated a wave equation whose stability has long been established
with linear damping in absence of delay, on inclusion of the delay term, the system be-
comes chaotic and stability is only attainable if the delay weight is less than the damping
coefficient.

The amplitude of vibrations in a single or laminated Timoshenko beam vanishes due
to feedback. Time delay amplifies the phase lag thus increasing the early time response,
which is seen to cause frequency dispersion in displacements [26]. This necessitate stronger
damping to match up the increase in energy decay time. For example, we mention the
work of Benaissa and Bahlil [12], in which a nonlinear Timoshenko system with nonlinear
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delay {
ρ1φtt −K(φx + ψ)x = 0,
ρ2ψtt − bψxx +K(φx + ψ) + µ1g1(ψt(x, t)) + µ2g2(ψt(x, t− τ)) = 0,

in ]0, 1[×]0,+∞[, was investigated. The authors established the global existence of the
system’s solutions by exploiting the Faedo-Galerkin strategy. Additionally, by employing
the multiplier method and some convexity arguments, the authors proved the general decay
rate estimates provided ρ1

K = ρ2
b . For more works regarding constant time delay effect on

stability of a single Timoshenko beam, we refer the reader to [3, 7, 39], and references
therein.

In a classical laminated beam setting (1.3), the dissipation through structural damping
is sufficient for exponential stability in absence of delay on assumption of equal wave
speeds [6,8]. In application, structures are exposed to external factors such as ultra violet
radiation, high temperatures, moisture, etc. This affects the adhesive stiffness, and being
the dominant source of energy dissipation, the effect often translates into time lag in
attaining system stability. Owing to the level of complexity in structural damping and
delay feedback, we find a general (nonlinear setting) representation g1 and g2 respectively,
imperative for a more inclusive analysis of this delay effect on the general energy decay.

Investigating delay effect on stability of Timoshenko laminated beam system is gaining
interest especially among mathematicians. Below is a summary of what has been done so
far. Feng [16] studied a laminated beam with three internal constant delay feedbacks

ρwtt +G(3s− ξ − wx)x + a1wt(x, t− τ) = 0,
Iρξtt −Dξxx −G(3s− ξ − wx) + a2ξt(x, t− τ) = 0,
Iρstt −Dsxx +G(3s− ξ − wx) + a3st(x, t− τ) = 0,

(1.5)

where ξ = 3s − ψ and (x, t) ∈ (0, L) × (0,∞). With help of three boundary controls to
create necessary damping, the author proved wellposedness and exponential decay of the
solution provided 4GL2

π2 ⩽ D and, delay weights satisfying 0 ⩽ ai < a0
i , i = 1, 2, 3 where a0

i

depends on the parameters of the system. Seghour et al. [41] investigated a thermoelastic
laminated beam with neutral delay in dynamics of slip equation. In addition to the
dissipation through thermal effect, the authors introduced a linear frictional damping
term in the transverse displacement to establish exponential stability for ρ = GIρ and,
polynomial decay otherwise. In a similar development, Choucha et al. [14], considered
a thermoelastic laminated Timoshenko beam with distributed delay term in the third
equation ∫ τ2

τ1
|µ2(ϱ)|st(x, t− ϱ)dϱ.

Using dissipation through structural and thermoelastic damping, the authors established
exponential and polynomial decay results with some restriction of the parameters pro-
vided that β >

∫ τ2
τ1

|µ2(ϱ)|dϱ. Lastly, Nonato et al. [37] recently studied a thermoelastic
laminated beam with nonlinear weights and time-varying delay. With help of the dissi-
pation through thermal effect and nonlinear frictional damping, the authors established
exponential decay with and without the structural damping with suitable relationship
between friction damping and delay weight, provided the condition of equal wave speeds
holds. For more recent results on constant, distributed, and neutral delay effect on decay
of vibrations in a laminated beam subject to structural and/or linear frictional damping,
we refer the reader to [27–30].

From the above results, it is evident that for Timoshenko laminated beam with delay
so far, authors have exploited boundary controls or dissipation through thermal effect,
coupled with either structural or linear frictional damping in addition to restrictions on
delay weight and system parameters, to establish asymptotic behavior of the solution.
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Taking into account all that, a natural question arises, is energy decay of (1.3) with
nonlinear delay feedback possible with the intrinsic nonlinear structural damping as the
only source of dissipation? To affirmatively answer this question, we consider the system
(1.1)−(1.2) and establish general decay of the solution with appropriate assumptions on
functions g1 and g2, the delay weight, and equal wave speeds.

The rest of the manuscript is organized as follows. In section 2, we present some prelim-
inaries which include a necessary transformation and the required hypotheses. Technical
lemmas are given in section 3. Finally, in section 4, we state and prove our stability results.

2. Preliminaries
Like in [12], we proceed by assuming the following hypotheses:

(H1) g1 : R → R is a non-decreasing C0− function such that there exist positive constants
c1, c2, ϵ, and a strictly increasing function H ∈ C1 ([0,+∞)), with H(0) = 0, and H is
linear on [0, ϵ] or strictly convex C2− function on (0, ϵ] such that{

r2 + g2
1(r) ⩽ H−1(rg1(r)), for all |r| ⩽ ϵ,

c1 |r| ⩽ |g1(r)| ⩽ c2 |r| , for all |r| ⩾ ϵ.
(2.1)

(H2) g2 : R → R is an odd non-decreasing function of the class C1(R) such that there
exist α1, α2 > 0,

α1rg2(r) ⩽ ζ(r) ⩽ α2rg1(r), (2.2)
where

ζ(r) =
∫ r

0
g2(y)dy,

and
α2µ < α1β. (2.3)

Remark 2.1. Hypothesis (H1) implies that rg1(r) > 0, for all r ̸= 0. Furthermore
Lasiecka and Tataru in [20] exploited the monotonicity and continuity properties of g1 to
prove the existence of H defined in (H1).

Remark 2.2. Using the mean value Theorem for integrals and the monotonicity of g2,
we conclude that

ζ(r) =
∫ r

0
g2(y)dy ⩽ rg2(r), (2.4)

and in what follows
α1 ⩽ α2 ⩽ 1.

To cater for the nonlinear delay, we introduce a positive constant η satisfying
µ (1 − α1)

α1
< η <

β − α2µ

α2
. (2.5)

Example 2.3. Here we give example of functions g1 and g2 to illustrate (2.1)–(2.5). Let
the function g1(r) = rκ, r ∈ (0, 1] (ϵ = 1), and κ ⩾ 1. g′

1(r) = κrκ−1 which is strictly
positive. In the neighborhood of 0, the function H is defined by

H(r) = cκr
κ+1

2 ,

where cκ = (2κ)− κ+1
2 . Clearly, for κ = 1, H is linear on [0, 1], otherwise strictly convex on

(0, 1] (H ′(0) = 0 and H ′′ > 0 on (0, 1]). Next, observe that

H−1(r) = 2κr
2

κ+1 ,

and in what follows, with r near 0, (2.1) can be deduced from fact that rκ + r2κ ⩽ 2κr2.
Next, suppose we set the non-decreasing odd function g2(r) = 3−κr3 (g′

2 ⩾ 0), then
rg2(r) ⩽ rg1(r) on (0, 1]. Furthermore, (2.4) follows automatically, that is ζ(r) = 3−κ

4 r4 ⩽
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rg2(r) = 3−κr4, moreover, from the fact that ζ(r) ⩽ rg1(r), choosing α1 ⩽ 1
4 and α2 ⩾ α1,

(2.2) can be easily deduced. Once α1, α2, are fixed, relations (2.3) and (2.5) are achievable
provided µ is sufficiently small in comparison to β. Lastly, the physical interpretation is
illustrated in Example 4.2, in terms of energy decay rates of the solution under assumptions
(H1) and (H2).

Similar to [35], we introduce a new variable

z(x, σ, t) = st(x, t− τσ) in (0, 1) × (0, 1) × (0,∞). (2.6)

It is easy to show that z satisfies

τzt(x, σ, t) + zσ(x, σ, t) = 0, in (0, 1) × (0, 1) × (0,∞). (2.7)

As a result, the system (1.1) is equivalent to

ρwtt +G(ψ − wx)x = 0,
Iρ(3stt − ψtt) −D(3sxx − ψxx) −G(ψ − wx) = 0,
3Iρstt − 3Dsxx + 3G(ψ − wx) + 4γs

+ βg1(st(x, t)) + µg2(z(x, 1, t)) = 0,
τzt(x, σ, t) + zσ(x, σ, t) = 0,

(2.8)

where (x, σ, t) ∈ (0, 1) × (0, 1) × [0,∞), with the following initial and boundary data

w(x, 0) = w0, s(x, 0) = s0, ψ(x, 0) = ψ0, x ∈ (0, 1),
wt(x, 0) = w1, st(x, 0) = s1, ψt(x, 0) = ψ1, x ∈ (0, 1),
w(0, t) = sx(0, t) = ψx(0, t) = 0, t ⩾ 0,
wx(1, t) = s(1, t) = ψ(1, t) = 0, t ⩾ 0,
z(x, 0, t) = st(x, t), x ∈ (0, 1), t ⩾ 0,
z(x, σ, 0) = f0(x,−τσ), (x, σ) ∈ (0, 1) × (0, 1).

(2.9)

Henceforth, we consider (2.8)−(2.9) instead of (1.1)−(1.2) and z(σ) to represent z(x, σ, t).
We define the energy of the solution of the system (2.8)−(2.9) as follows

E(t) = 1
2

∫ 1

0

[
ρw2

t + Iρ(3st − ψt)2 +D(3sx − ψx)2 + 3Iρs
2
t + 3Ds2

x

]
dx

+ 1
2

∫ 1

0

[
4γs2 +G(ψ − wx)2 + τη

∫ 1

0
ζ(z(σ))dσ

]
dx.

(2.10)

The existence, uniqueness, and smoothness of solution of problem (2.8)−(2.9), can be
established by continuing the arguments of the FaedoGalerkin method as in [10, 12] in
which a single Timoshenko beam and nonlinear damped porous systems were investigated
respectively.

3. Technical lemmas
This section concentrates on statement and proof of technical lemmas required in es-

tablishing our energy decay result.

Lemma 3.1. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the energy functional (2.10)
satisfies

E′(t) ⩽ −m0

∫ 1

0
stg1(st)dx−m1

∫ 1

0
z(1)g2(z(1))dx, ∀t ≥ 0, (3.1)

where m0 and m1 are positive constants given by

m0 = β − α2(η + µ) and m1 = α1η − µ(1 − α1).
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Proof. We begin by multiplying the first equations of (2.8), by wt, (3st − ψt) and, st

respectively, followed by integrating by parts over (0, 1) using the boundary conditions
(2.9), to obtain

1
2
d

dt

∫ 1

0

[
ρw2

t + Iρ(3st − ψt)2 +D(3sx − ψx)2 + 3Iρs
2
t + 3Ds2

x

]
dx

+ 1
2
d

dt

∫ 1

0

[
4γs2 +G(ψ − wx)2

]
dx

= −β
∫ 1

0
stg1(st)dx− µ

∫ 1

0
stg2(z(1))dx.

(3.2)

Next, multiplying the last equation of (2.8), by ηg2(z(σ)), then integrating over (0, 1) ×
(0, 1) to get

τη

∫ 1

0

∫ 1

0
g2(z(σ))zt(σ)dσdx = −η

∫ 1

0

∫ 1

0

∂

∂σ
ζ(z(σ))dσdx

= −η
∫ 1

0
ζ(z(1))dx+ η

∫ 1

0
ζ(z(0))dx.

(3.3)

Using z(0) = st, we observe that

τη
d

dt

∫ 1

0

∫ 1

0
ζ(z(σ))dσdx = −η

∫ 1

0
ζ(z(1))dx+ η

∫ 1

0
ζ(st)dx. (3.4)

Combining (3.2) and (3.4), and using (2.2), we note that the energy derivative satisfies

E′(t) ⩽ − (β − α2η)
∫ 1

0
stg1(st)dx− η

∫ 1

0
ζ(z(1))dx− µ

∫ 1

0
stg2(z(1))dx. (3.5)

If ζ∗ is the conjugate function of the convex function ζ, that is, ζ∗(r) = supυ∈R+ (υr − ζ(r)),
then ζ∗ is the Legendre transform of ζ, defined by

ζ∗(r) = r
(
ζ ′)−1(r) − ζ

[(
ζ ′)−1(r)

]
, ∀r ⩾ 0, (3.6)

and satisfies the relation

υr ⩽ ζ∗(r) + ζ(υ), ∀υ, r ⩾ 0, (3.7)

(see Arnol’d [11, pg. 61–62], Benaissa and Bahlil [12]). Going by the definition of ζ and
(3.6), we deduce that

ζ∗(r) = rg−1
2 (r) − ζ

(
g−1

2 (r)
)
. (3.8)

Making use of (3.8) and (2.2), we note that

ζ∗(g2(z(1))) = z(1)g2(z(1)) − ζ(z(1))
⩽ (1 − α1)z(1)g2(z(1)).

(3.9)

Next, from (3.7), (3.9) and (2.2), we estimate the last term of (3.5) as follows

−µ
∫ 1

0
stg2(z(1))dx ⩽ µ

∫ 1

0
ζ(st)dx+ µ

∫ 1

0
ζ∗(g2(z(1)))dx

⩽ µ

∫ 1

0
ζ(st)dx+ µ(1 − α1)

∫ 1

0
z(1)g2(z(1))dx

⩽ α2µ

∫ 1

0
stg1(st)dx+ µ(1 − α1)

∫ 1

0
z(1)g2(z(1))dx,

(3.10)

and substituting (3.10) in (3.5), and exploiting (2.5) and (2.3) completes our proof. □
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Lemma 3.2. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the functional F1, defined by

F1(t) := −ρ
∫ 1

0
wwtdx

satisfies, for any ε1, ε2 > 0, the estimate
d

dt
F1(t) ⩽ − ρ

∫ 1

0
w2

t dx+ ε1

∫ 1

0
s2

xdx+ ε2

∫ 1

0
(3sx − ψx)2dx

+
(
G+ 9G2

4ε1
+ G2

4ε2

)∫ 1

0
(ψ − wx)2dx.

(3.11)

Proof. Differentiate F1 and make use the first equation in (2.8), to get
d

dt
F1(t) = − ρ

∫ 1

0
w2

t dx+G

∫ 1

0
(ψ − wx)2dx− 3G

∫ 1

0
(ψ − wx)sdx

+G

∫ 1

0
(3s− ψ)(ψ − wx)dx.

(3.12)

The last two terms of (3.12) are estimated as

−3G
∫ 1

0
(ψ − wx)sdx ⩽ ε1

∫ 1

0
s2dx+ 9G2

4ε1

∫ 1

0
(ψ − wx)2dx

⩽ ε1

∫ 1

0
s2

xdx+ 9G2

4ε1

∫ 1

0
(ψ − wx)2dx

and

G

∫ 1

0
(3s− ψ)(ψ − wx)dx ⩽ ε2

∫ 1

0
(3s− ψ)2dx+ G2

4ε2

∫ 1

0
(ψ − wx)2dx

⩽ ε2

∫ 1

0
(3sx − ψx)2dx+ G2

4ε2

∫ 1

0
(ψ − wx)2dx

for ε1, ε2 > 0, thanks Young’s and Poincaré’s inequalities. Thus, (3.11) follows by substi-
tuting the above two estimates in (3.12). □
Lemma 3.3. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the functional F2, defined by

F2(t) := −Iρ

∫ 1

0
(3st − ψt)(3s− ψ)dx

satisfies the estimate
d

dt
F2(t) ⩽ − Iρ

∫ 1

0
(3st − ψt)2dx+ 3D

2

∫ 1

0
(3sx − ψx)2dx

+ G2

2D

∫ 1

0
(ψ − wx)2dx.

(3.13)

Proof. Direct computations and using the second equation of (2.8) gives
d

dt
F2(t) = − Iρ

∫ 1

0
(3st − ψt)2dx+D

∫ 1

0
(3sx − ψx)2dx

−G

∫ 1

0
(ψ − wx)(3s− ψ)dx.

(3.14)

Exploiting Young’s and Poincaré’s inequalities, we have

−G
∫ 1

0
(ψ − wx)(3s− ψ)dx ⩽ G2

2D

∫ 1

0
(ψ − wx)2dx+ D

2

∫ 1

0
(3s− ψ)2dx

⩽ G2

2D

∫ 1

0
(ψ − wx)2dx+ D

2

∫ 1

0
(3sx − ψx)2dx,

and substituting the above in (3.14) completes the proof. □
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Establishing the next two lemmas necessitates the estimate

g2
2(z(1)) ⩽ 2z(1)g2(z(1)),

which a is consequence of (3.7), (3.9) and (2.4). Furthermore, Lemmas 3.5 and 3.6 require
the assumption of equal wave speeds G

ρ = D
Iρ
.

Lemma 3.4. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the functional F3, defined by

F3(t) := 3Iρ

∫ 1

0
stsdx+ 3ρ

∫ 1

0
wt

∫ x

0
s(y)dydx

for any ε3 > 0, satisfies the estimate
d

dt
F3(t) ⩽ − 3D

∫ 1

0
s2

xdx− 2γ
∫ 1

0
s2dx+ ε3

∫ 1

0
w2

t dx+ 4β2

γ

∫ 1

0
g2

1(st)dx

+ µ2

2γ

∫ 1

0
z(1)g2(z(1))dx+

(
3Iρ + 9ρ2

4ε3

)∫ 1

0
s2

tdx.

(3.15)

Proof. Differentiating F3, and using the first and third equations of (2.8) followed by
integrating by parts that term with (ψ − wx)x, we obtain

d

dt
F3(t) = 3Iρ

∫ 1

0
s2

tdx− 3D
∫ 1

0
s2

xdx− 4γ
∫ 1

0
s2dx− 4β

∫ 1

0
sg1(st)dx

− µ

∫ 1

0
sg2(z(1))dx+ 3ρ

∫ 1

0
wt

∫ x

0
st(y)dydx.

(3.16)

Exploiting Young’s and Poincaré’s inequalities, we estimate the last three terms of (3.16)
as follows

−4β
∫ 1

0
sg1(st)dx ⩽ γ

∫ 1

0
s2dx+ 4β2

γ

∫ 1

0
g2

1(st)dx, (3.17)

−µ
∫ 1

0
sg2(z(1))dx ⩽ γ

∫ 1

0
s2dx+ µ2

4γ

∫ 1

0
g2

2(z(1))dx

⩽ γ

∫ 1

0
s2dx+ µ2

2γ

∫ 1

0
z(1)g2(z(1))dx,

(3.18)

and for any ε3 > 0,

3ρ
∫ 1

0
wt

∫ x

0
st(y)dydx ⩽ ε3

∫ 1

0
w2

t dx+ 9ρ2

4ε3

∫ 1

0

(∫ x

0
st(y)dy

)2
dx

⩽ ε3

∫ 1

0
w2

t dx+ 9ρ2

4ε3

∫ 1

0
s2

tdx.

(3.19)

Substituting (3.17)–(3.19) into (3.16) completes the proof. □

Lemma 3.5. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the functional F4, defined by

F4(t) :=
∫ 1

0
(ψ − wx)stdx−

∫ 1

0
wtsxdx

for any ε4 > 0, satisfies the estimate
d

dt
F4(t) ⩽ − G

2Iρ

∫ 1

0
(ψ − wx)2dx+ 8γ2

3Iρ

∫ 1

0
s2

xdx+ ε4

∫ 1

0
(3st − ψt)2dx

+ 8β2

3Iρ

∫ 1

0
g2

1(st)dx+ µ2

3Iρ

∫ 1

0
z(1)g2(z(1))dx

+
(

3 + 1
4ε4

)∫ 1

0
s2

tdx.

(3.20)
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Proof. Differentiate F4, integrating by parts that term with sxt and using the transfor-
mation ψt = 3st − (3st − ψt). Using the first and third equations of (2.8), we observe
that

d

dt
F4(t) = − G

Iρ

∫ 1

0
(ψ − wx)2dx− 4γ

3Iρ

∫ 1

0
s(ψ − wx)dx+ 3

∫ 1

0
s2

tdx

−
∫ 1

0
(3st − ψt)stdx− 4β

3Iρ

∫ 1

0
g1(st)(ψ − wx)dx

− µ

3Iρ

∫ 1

0
(ψ − wx)g2(z(1))dx.

(3.21)

Exploiting Young’s, Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we estimate the
non square terms of (3.21) as follows

− 4γ
3Iρ

∫ 1

0
s(ψ − wx)dx ⩽ G

6Iρ

∫ 1

0
(ψ − wx)2dx+ 8γ2

3Iρ

∫ 1

0
s2dx

⩽ G

6Iρ

∫ 1

0
(ψ − wx)2dx+ 8γ2

3Iρ

∫ 1

0
s2

xdx,

(3.22)

− 4β
3Iρ

∫ 1

0
(ψ − wx)stdx ⩽ G

6Iρ

∫ 1

0
(ψ − wx)2dx+ 8β2

3Iρ

∫ 1

0
g2

1(st)dx, (3.23)

− µ

3Iρ

∫ 1

0
(ψ − wx)g2(z(1))dx ⩽ G

6Iρ

∫ 1

0
(ψ − wx)2dx+ µ2

6Iρ

∫ 1

0
g2

2(z(1))dx

⩽ G

6Iρ

∫ 1

0
(ψ − wx)2dx+ µ2

3Iρ

∫ 1

0
z(1)g2(z(1))dx,

(3.24)

and for any ε4 > 0,

−
∫ 1

0
(3st − ψt)stdx ⩽ ε4

∫ 1

0
(3st − ψt)2dx+ 1

4ε4

∫ 1

0
s2

tdx. (3.25)

Relation (3.20) follows by substitution of (3.22)–(3.25) into (3.21). □

Lemma 3.6. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the functional F5, defined by

F5(t) := −
∫ 1

0
(3st − ψt)wxdx−

∫ 1

0
(3sx − ψx)wtdx+ 3

∫ 1

0
(3st − ψt)sdx

for any ε5 > 0, satisfies the estimate

d

dt
F5(t) ⩽ − D

2Iρ

∫ 1

0
(3sx − ψx)2dx+ ε5

∫ 1

0
(3st − ψt)2dx

+ 9
ε5

∫ 1

0
s2

tdx+
(

G2

2DIρ
+ G

Iρ

)∫ 1

0
(ψ − wx)2dx.

(3.26)

Proof. Differentiating F5 followed by integrating by parts the term containing wxt. Simi-
larly, using the first two equations of (2.8), and further integrating by parts term containing
3sxx − ψxx, we arrive at

d

dt
F5(t) = − D

Iρ

∫ 1

0
(3sx − ψx)2dx+ G

Iρ

∫ 1

0
(ψ − wx)2dx

+ 3
∫ 1

0
(3st − ψt)stdx+ G

Iρ

∫ 1

0
(3s− ψ)(ψ − wx)dx.

(3.27)
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Exploiting Young’s and Poincaré’s inequalities, we have the following estimates
G

Iρ

∫ 1

0
(ψ − wx)(3s− ψ)dx ⩽ G2

2DIρ

∫ 1

0
(ψ − wx)2dx+ D

2Iρ

∫ 1

0
(3s− ψ)2dx

⩽ G2

2DIρ

∫ 1

0
(ψ − wx)2dx+ D

2Iρ

∫ 1

0
(3sx − ψx)2dx,

(3.28)

and, for any ε5 > 0

3
∫ 1

0
(3st − ψt)stdx ⩽ ε5

∫ 1

0
(3st − ψt)2dx+ 9

ε5

∫ 1

0
s2

tdx. (3.29)

The estimate (3.26) follows by substituting (3.28) and (3.29) in (3.27). □

Lemma 3.7. If (w,ψ, s, z) is a solution of (2.8)−(2.9), then the functional F6, defined by

F6(t) := τ

∫ 1

0

∫ 1

0
e−2στζ(z(σ))dσdx

satisfies the estimate
d

dt
F6(t) ⩽ − α1e

−τ
∫ 1

0
z(1)g2(z(1))dx+ α2

∫ 1

0
stg1(st)dx

− τe−τ
∫ 1

0

∫ 1

0
ζ(z(σ))dσdx.

(3.30)

Proof. We proceed by differentiating F6 and using the fact that z(0) = st as follows
d

dt
F6(t) = τ

∫ 1

0

∫ 1

0
e−τσzt(σ)g2(z(σ))dσdx

= −
∫ 1

0

∫ 1

0
e−τσzσ(σ)g2(z(σ))dσdx

= −
∫ 1

0

∫ 1

0
e−τσ ∂

∂σ
ζ(z(σ))dσdx

= −
∫ 1

0

∫ 1

0

∂

∂σ

[
e−τσζ(z(σ))

]
dσdx− τ

∫ 1

0

∫ 1

0
e−τσζ(z(σ))dσdx

= −e−τ
∫ 1

0
ζ(z(1))dx+

∫ 1

0
ζ(st)dx− τ

∫ 1

0

∫ 1

0
e−τσζ(z(σ))dσdx.

The relation (3.30) follows by virtue of (2.2) and the fact that e−τ ⩽ e−στ ⩽ 1 for all
σ ∈ (0, 1). □

Lemma 3.8. Let N,Nk, k = 1 · · · 6, be positive constants. The functional defined by

L(t) := NE(t) +
6∑

k=1
NkFk(t), ∀t ⩾ 0, (3.31)

for some positive constants b1, b2, α3 and α4, satisfies the relations

b1E(t) ⩽ L(t) ⩽ b2E(t), ∀ t ⩾ 0, (3.32)

and
L′(t) ⩽ −α3E(t) + α4

∫ 1

0

(
s2

t + g2
1(st)

)
dx ∀ t ⩾ 0. (3.33)

Proof. Regarding relation (3.32), it easy to deduce that for some b > 0,

|L(t) −NE(t)| ⩽ bE(t).

Consequently,
(N − b)E(t) ⩽ L(t) ⩽ (N + b)E(t),
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and choosing N large enough concludes the proof of (3.32).

To establish relation (3.33), we proceed by differentiating (3.31), and then substitute
for the derivatives of F1 to F6 using estimates (3.11), (3.13), (3.15), (3.20), (3.26) and
(3.26) respectively. Setting

N1 = N2 = N6 = 1, ε3 = ρ

2N3
, ε1 = ε2 = G

4
, ε4 = Iρ

4N4
, ε5 = Iρ

4N5
,

for c4 > 0, we have

L′(t) ⩽ −
[
m1N + e−τα1 − c4N3 − c4N4

] ∫ 1

0
z(1)g2(z(1))dx− ρ

2

∫ 1

0
w2

t dx

− [m0N − α2]
∫ 1

0
stg1(st)dx−

[
DN5
2Iρ

− c4

] ∫ 1

0
(3sx − ψx)2dx

− [3DN3 − c4N4 − c4]
∫ 1

0
s2

xdx+
[

4β2N3
γ

+ c4N4

] ∫ 1

0
g2

1(st)dx

−
[
GN4
2Iρ

− c4N5 − c4

] ∫ 1

0
(ψ − wx)2dx− Iρ

2

∫ 1

0
(3st − ψt)2dx

− 2γN3

∫ 1

0
s2dx− τe−τ

∫ 1

0

∫ 1

0
ζ(z(σ))dσdxdx

+
[
c4N4 (1 + c4N4) + c4N

2
5 + c4N3 (1 + c4N3)

] ∫ 1

0
s2

tdx.

Next, choose N5 large enough such that
DN5
2Iρ

− c4 > 0.

We then pick N4 large enough so that
GN4
2Iρ

− c4N5 − c4 > 0.

Fixing N4 allows us to choose N3 sufficiently large such that
3DN3 − cN4 − c4 > 0.

Finally, choose N large enough such
m1N + e−τα1 − c4N3 − c4N4 > 0 and m0N − α2 > 0,

while maintaining the validity of (3.32). To this end, the energy estimate (3.33) follows
automatically for some α3, α4 > 0. □

4. Asymptotic behavior
In this section, we state and prove our stability result.

Theorem 4.1. Let (w,ψ, s, z) be the solution of system (2.8) and assume (H1) and (H2)
and G

ρ = D
Iρ

hold. Then there exist positive constants k0, k1, k2, and ϵ0 such that this
solution satisfies

E(t) ⩽ k0H
−1
1 (k1t+ k2) , t ⩾ 0, (4.1)

where
H1(t) =

∫ 1

t

1
H0(r)

dr

and

H0(t) =
{
t if H is linear on [0, ϵ],
tH ′(ϵ0t) if H ′(0) = 0 and H ′′ > 0 on (0, ϵ].
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Example 4.2. We illustrate some energy decay rates given by Theorem 4.1 corresponding
to the functions defined in Example 2.3. Observe that, for H(r) = cκr

κ+1
2 , we have

H ′(r) = κ+ 1
2

cκr
κ−1

2

thus for c = cκ(ϵ0)
κ−1

2 ,

H0(r) = κ+ 1
2

cr
κ+1

2 ,

and

H1(t) = 2
c (κ+ 1)

∫ 1

t
r− κ+1

2 dr.

Therefore, in neighborhood of 0

H1(t) =


− 1
c

ln t; κ = 1,
4

c (κ2 − 1)

(
t−

κ−1
2 − 1

)
; κ > 1,

and as t → +∞

H−1
1 (t) =


e−ct; κ = 1,(1

4
c(κ2 − 1)t+ 1

)− 2
κ−1

; κ > 1.

To this end, the energy decay rates are given as

E(t) ⩽


k0e

−c(k1t+k2); κ = 1,

k0

(1
4
c(κ2 − 1)(k1t+ k2) + 1

)− 2
κ−1

; κ > 1.

We now proceed to the proof of Theorem 4.1 as follows.

Proof. In consideration of (3.33), we consider the following two cases.
Case I: H is linear on [0, ϵ]. Observe that from (H1)

c1r
2 ⩽ rg1(r) ⩽ c2r

2 and c1rg1(r) ⩽ g2
1(r) ⩽ c2rg1(r), ∀r ∈ R,

consequently from (3.33), and for some α̃4 > 0, we have

L′(t) ⩽ −α3E(t) + α̃4

∫ 1

0
stg1(st)dx, ∀t ⩾ 0. (4.2)

Clearly, using (3.1) and (4.2), for some α5 > 0,

L′(t) ⩽ −α3E(t) − α5E
′(t), ∀t ⩾ 0. (4.3)

Next, if we define L as
L(t) := L(t) + α5E(t), ∀t ⩾ 0, (4.4)

then from (3.32), is easy to show that for some b̃1, b̃2 > 0

b̃1E(t) ⩽ L(t) ⩽ b̃2E(t), ∀t ⩾ 0, (4.5)
thus, using (4.4) with (4.5), for k1 = α3

b̃2
, we note that

L′(t) ⩽ −k1L(t), ∀t ⩾ 0. (4.6)

A simple integration of (4.6) and using (4.5), for k0 = b̃2E(0)
b̃1

, yields

E(t) ⩽ k0e
−k1t, ∀t ⩾ 0. (4.7)
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Case II: For H nonlinear on (0, ϵ], as in [20], we choose 0 < ϵ1 ⩽ ϵ such that

rg1(r) ⩽ min {ϵ,H(ϵ)} , ∀ |r| ⩽ ϵ1.

Using (H1) and continuity of g1 together with the fact that |g1(r)| > 0, for r ̸= 0, we
deduce that {

r2 + g2
1(r) ⩽ H−1(rg1(r)), for all |r| ⩽ ϵ1,

c1 |r| ⩽ |g1(r)| ⩽ c2 |r| , for all |r| ⩾ ϵ1.
(4.8)

We now concentrate on the last term of (3.33)∫ 1

0

(
s2

t + g2
1(t)

)
dx.

To estimate this integral, similar to [19], we introduce the following partitions

J1 = {x ∈ (0, 1) : |st| ⩽ ϵ1} , J2 = {x ∈ (0, 1) : |st| > ϵ1} .

Hence, for J defined as

J(t) =
∫

J1
stg1(t)dx,

it follows by Jensen inequality and the concavity of H−1 that

H−1 (J(t)) ⩾ c5

∫
J1
H−1 (stg1(st)) dx, (4.9)

for some c5 > 0. By virtue of (4.8), (4.9) and (3.1), we note that∫ 1

0

(
s2

t + g2
1(t)

)
dx =

∫
J1

(
s2

t + g2
1(t)

)
dx+

∫
J2

(
s2

t + g2
1(t)

)
dx

⩽
∫

J1
H−1(stg1(st))dx+ c6

∫
J2

(stg1(st)) dx

⩽ c6H
−1 (J(t)) − c6E

′(t),

(4.10)

for some c6 > 0. Next, for c7 > 0, we define the functional L0 as

L0(t) := L(t) + c7E(t), ∀t ⩾ 0. (4.11)

Using (3.32), it is easy to deduce that for some b1, b2 > 0, L0 ∼ E, that is

b1E(t) ⩽ L0(t) ⩽ b2E(t), ∀t ⩾ 0. (4.12)

Similarly, substituting (4.10) in (3.33) and using (4.11) we observe that

L′
0(t) ⩽ −α3E(t) + c7H

−1 (J(t)) , ∀t ⩾ 0. (4.13)

For ϵ0 < ϵ and δ0 > 0, using (4.12) and the following properties of E and H:

E′ ⩽ 0, H ′ > 0, H ′′ > 0 on (0, ϵ],

the functional L1 defined as

L1(t) := H ′
(
ϵ0
E(t)
E(0)

)
L0(t) + δ0E(t), ∀ ⩾ 0, (4.14)

is equivalent to E, that is, for some b̃1, b̃2 > 0,

b̃1E(t) ⩽ L1(t) ⩽ b̃2E(t), ∀t ⩾ 0. (4.15)
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Furthermore, using (4.13), we deduce that

L′
1(t) = ϵ0

E′(t)
E(0)

H ′′
(
ϵ0
E(t)
E(0)

)
L0(t) +H ′

(
ϵ0
E(t)
E(0)

)
L′

0(t) + δ0E
′(t)

⩽ −α3H
′
(
ϵ0
E(t)
E(0)

)
E(t) + c7H

′
(
ϵ0
E(t)
E(0)

)
H−1 (J(t))︸ ︷︷ ︸

Y

+δ0E
′(t). (4.16)

Like in (3.6), to estimate Y we let H∗ be the convex conjugate of H defined by

H∗(r) = r
(
H ′)−1(r) −H

[(
H ′)−1(r)

]
⩽ r

(
H ′)−1(r), for r ∈

(
0,H ′(ϵ)

)
, (4.17)

Furthermore, exploiting the general Youngs inequality we observe that

rυ ⩽ H∗(r) +H(υ), for r ∈
(
0,H ′(ϵ)

)
, υ ∈ (0, ϵ] (4.18)

Setting

r = H ′
(
ϵ0
E(t)
E(0)

)
and υ = H−1 (J(t)) ,

and using (4.17), (4.18), coupled with fact that

J(t) =
∫

J1
stg1(t)dx ⩽

∫ 1

0
stg1(st)dx ⩽ −m−1

0 E′(t),

for some c8 > 0, we deduce

c7H
′
(
ϵ0
E(t)
E(0)

)
H−1 (J(t)) ⩽ c7ϵ0

E(t)
E(0)

H ′
(
ϵ0
E(t)
E(0)

)
− c8E

′(t). (4.19)

Substituting (4.19) in (4.16), we observe that

L′
1(t) ⩽ − [α3E(0) − c7ϵ0] E(t)

E(0)
H ′
(
ϵ0
E(t)
E(0)

)
+ (δ0 − c8)E′(t). (4.20)

At this point, we choose ϵ0 = α3E(0)
2c7

and δ0 = 2c8 to obtain,

L′
1(t) ⩽ −α̃3

E(t)
E(0)

H ′
(
ϵ0
E(t)
E(0)

)
+ c8E

′(t); α̃3 = α3E(0)
2

.

Moreover, using the fact that E′(t) ⩽ 0, we deduce that

L′
1(t) ⩽ −α̃3

E(t)
E(0)

H ′
(
ϵ0
E(t)
E(0)

)
= −α̃3H0

(
E(t)
E(0)

)
, (4.21)

were H0(r) = rH ′(ϵ0r). Going by the fact that H is strictly convex on (0, ϵ], we observe
that H0(r), H ′

0(r) > 0 on (0, 1]. Thus, if we let

L̃1(t) := b̃1L1(t)
E(0)

, (4.22)

then from (4.15), it is clear that

b̄1E(t) ⩽ L̃1(t) ⩽ b̄2E(t), ∀t ⩾ 0, (4.23)

and, (4.21) implies that

L̃′
1(t) ⩽ − b̃1α̃3

E(0)
H0

(
E(t)
E(0)

)
Furthermore, by putting into consideration the fact that H0 is increasing together with
(4.23), for some k1 > 0, we obtain

L̃′
1(t) ⩽ −k1H0

(
L̃1(t)

)
, ∀t ⩾ 0. (4.24)
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The consequence of (4.24) is [
H1
(
L̃1(t)

)]′
⩾ k1, ∀t ⩾ 0, (4.25)

where
H1(t) =

∫ 1

t

1
H0(r)

dr.

Integrating (4.25) over (0, t), we obtain

H1
(
L̃1(t)

)
⩾ k1t+ k2, k2 = H1

(
L̃1(0)

)
. (4.26)

By virtue of H−1
1 being a decreasing function, it follows that

L̃1(t) ⩽ H−1
1 (k1t+ k2) , ∀t ⩾ 0. (4.27)

Lastly, from the relation (4.23), we note that for k0 = 1
b̄1
,

E(t) ⩽ k0H
−1
1 (k1t+ k2) , ∀t ⩾ 0. (4.28)

which completes the proof of Theorem 4.1. □
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