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Abstract
We have given some results regarding the behavior of solutions for first order linear impulsive neutral delay
differential equations with constant coefficients. These results were obtained using two different real roots of the
corresponding characteristic equation. Finally, two examples are given for solutions of impulsive neutral delay
differential equations.
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1. Introduction and Preliminaries
The author [1] has recently obtained some results regarding asymptotic behavior and stability for solutions of first order linear
impulsive neutral delay differential equations with constant coefficient and constant delay. These results are obtained using a
real root of the corresponding characteristic equations. Our aim in this article is to obtain different results from the article in [1]
by using two different real roots of the corresponding characteristic equation.

Consider the linear impulsive neutral delay differential equation

[x(t)+ cx(t−σ)]′ = ax(t)+bx(t− τ) , t 6= tk , t ≥ 0, (1.1)

4x(tk) = `k , k ∈ Z+ = {1,2, · · ·}, (1.2)

where σ and τ are positive constants, a,b,c and `k are real constants, x(t) ∈ R and4x(tk) = x(t+k )− x(t−k ). The impulse points
tk satisfy 0 < t1 < · · ·< tk < tk+1 < · · · and limk→∞ tk = ∞ and also tk−σ be not impulsive points for all k ∈ Z+.

Let’s introduce the positive constant h defined by h = max{σ ,τ}. Together with (1.1), an initial condition is indicated, i.e.

x(t) = φ(t) , −h≤ t ≤ 0, (1.3)

where the initial function φ is any given continuous real-valued function on the interval [−h,0].
With the equation (1.1) we associate its characteristic equation

λ

(
1+ ce−λσ

)
= a+be−λτ . (1.4)
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Equation (1.4) is obtained from (1.1) by looking for solutions of the form x(t) = eλ t for t ∈ R.
The authors in [2]-[6] obtained interesting results for the solutions of linear impulsive neutral delay differential equations

in the form of (1.1). The authors in [2] examined some classes of integro-functional inequalities of the Gronwall type for
piecewise continuous functions, and through the results obtained from them, they made estimates for the solutions of impulsive
functional differential equations. As an application, they have proven the existence of solutions of certain nonlinear equations
with arbitrarily long lifespan for sufficiently small initial functions. Later on, in the article [3] made by the same authors,
the problem of stability under persistent disturbances of an impulsive systems of differential-difference equations of neutral
type is investigated. An as application the existence of a global solutions of a systems with quadratic nonlinearities is proved
for sufficiently small initial data. In [4], by means of Lyapunov’s direct method sufficient conditions for uniform asymptotic
stability of the zero solution of impulsive systems of differential-difference equations of neutral type are found. In [5], the
authors examined the asymptotic behavior of positive solutions of first-order neutral impulsive differential equations with
constant coefficients and constant delays, and established the necessary and sufficient conditions for the existence of such
solutions. Finally, the authors in [6] established some criteria for the asymptotic stability of a neutral delay control system
by applying the Lyapunov functions and Razumikhin technique, which combine with impulsive feedback control. They also
showed that the stability behavior of the system can be controlled by appropriate impulsive perturbations.

In this paper, we construct estimates for (1.1)-(1.3) solutions using two different real roots of the corresponding characteristic
equation. We obtained the results using the methods in [1, 7, 8]. Sufficient information about the delay or neutral impulsive
differential equations and initial value problem (1.1)-(1.3) is given in [1]. For more results regarding delay or neutral impulsive
differential equations, we refer the reader to [9]-[16] and references therein.

2. The Main Result
In this section, before going to the main result, we will give an lemma about two different real roots of the characteristic
equation (1.4) by Philos and Purnaras [8]. In the following lemma, only the first part of the lemma in [8] is considered.

Lemma 2.1. ( [8], Lemma 3.1) Suppose that c ≤ 0 and b < 0. Let λ0 be a nonpositive real root of the characteristic
equation (1.4) and let β (λ0) = bτe−λ0τ + ce−λ0σ (1−λ0σ). Then

1+β (λ0)> 0

if (1.4) has another real root less than λ0, and

1+β (λ0)< 0

if (1.4) has another nonpositive real root greater than λ0.

Now, our main conclusion in this article is that we can give the following theorem.

Theorem 2.2. Suppose that

c≤ 0 and b < 0.

Let λ0 be a nonpositive real root of the characteristic equation (1.4) with 1+β (λ0) 6= 0 where β (λ0) is defined as in Lemma
2.1, and let

L(λ0;φ) =φ(0)+ cφ(−σ)+be−λ0τ

∫ 0

−τ

e−λ0s
φ(s)ds− cλ0e−λ0σ

∫ 0

−σ

e−λ0s
φ(s)ds.

Let also λ1 be a nonpositive real root of (1.4) with λ0 6= λ1.

(I) Assume that λ0 > λ1 and `i > 0 for i ∈ Z+. Also let there be a number d1 > 0 such that it is provided

1+β (λ0)≥
1
d1

∞

∑
i=1

`ie−λ0ti , (2.1)

then, for any φ ∈C
(
[−h,0],R

)
such that

φ(t)≤ eλ0t
[

d1 +
L(λ0;φ)

1+β (λ0)

]
f or t ∈ [−h,0], (2.2)
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the solution x of (1.1)-(1.3) satisfies

D1 (λ0,λ1;φ)≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ d1e(λ0−λ1)t f or all t ≥ 0, (2.3)

where

D1 (λ0,λ1;φ) = min
−h≤t≤0

{
e−λ1t

[
φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]}

.

Note: Since λ0 > λ1, according to the Lemma 2.1 is 1+β (λ0)> 0.

(II) Assume that λ0 < λ1 and `i < 0 for i ∈ Z+. Also let there be a number d2 > 0 such that it is provided

1+β (λ0)≤
1
d2

∞

∑
i=1

`ie−λ0ti , (2.4)

then, for any φ ∈C
(
[−h,0],R

)
such that

eλ0t
[

d2 +
L(λ0;φ)

1+β (λ0)

]
≤ φ(t) f or t ∈ [−h,0], (2.5)

the solution x of (1.1)-(1.3) satisfies

d2e(λ0−λ1)t ≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ D2 (λ0,λ1;φ) f or all t ≥ 0, (2.6)

where

D2 (λ0,λ1;φ) = max
−h≤t≤0

{
e−λ1t

[
φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]}

.

Note: Since λ0 < λ1, according to the Lemma 2.1 is 1+β (λ0)< 0.

Proof. (Proof of Part (I) of the Theorem 2.2): We will show that the double inequality (2.3) is first

D1 (λ0,λ1;φ)≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for all t ≥ 0,

and

e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ d1e(λ0−λ1)t for all t ≥ 0,

respectively. Let φ ∈C
(
[−h,0],R

)
such that satisfies (2.2) and x be the solution of (1.1)-(1.3). Furthermore, let y(t) = e−λ0tx(t)

for t ≥−h. As it has been shown ( [1], Lemma 1.1), the fact that x satisfies (1.1)-(1.3) for t ≥ 0 is equivalent to the fact that y
satisfies

y(t)+ce−λ0σ y(t−σ) = L(λ0;φ)+
n(t)

∑
i=1

`ie−λ0ti

+(a−λ0)
∫ t

0
y(s)ds+be−λ0τ

∫ t−τ

0
y(s)ds− cλ0e−λ0σ

∫ t−σ

0
y(s)ds

(2.7)

where

n(t) = max{k ∈ Z+ : tk ≤ t} and n(t) = 0 if t < t1.

In addition, the initial condition (1.3) can be made equivalent to

y(t) = e−λ0t
φ(t) for t ∈ [−h,0].

Later on, by using the fact that λ0 is root of (1.4) and by using z(t) = y(t)− L(λ0;φ)
1+β (λ0)

for t ≥−h, then (2.7) becomes

z(t)+ ce−λ0σ z(t−σ) =
n(t)

∑
i=1

`ie−λ0ti −be−λ0τ

∫ t

t−τ

z(s)ds+ cλ0e−λ0σ

∫ t

t−σ

z(s)ds for t ≥ 0 (2.8)
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and we immediately see that the initial condition (1.3) becomes

z(t) = e−λ0t
φ(t)− L(λ0;φ)

1+β (λ0)
for t ∈ [−h,0]. (2.9)

Next, let us define

w(t) = e(λ0−λ1)tz(t) for t ≥−h.

By the use of the function w, (2.8) becomes

w(t)+ ce−λ1σ w(t−σ) = e(λ0−λ1)t
n(t)

∑
i=1

`ie−λ0ti

−be−λ0τ

∫ t

t−τ

e(λ0−λ1)(t−s)w(s)ds+ cλ0e−λ0σ

∫ t

t−σ

e(λ0−λ1)(t−s)w(s)ds for t ≥ 0.

(2.10)

Also, (2.9) takes the following equivalent form

w(t) = e−λ1t
[

φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for t ∈ [−h,0].

By way of the definitions of y, z and w, we have

w(t) = e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for t ≥−h. (2.11)

Thus, from the definition of the constant D1 (λ0,λ1;φ), it follows that the double inequality (2.3) in the conclusion of our
theorem can equivalently be written as follows

min
−h≤s≤0

w(s)≤ w(t)≤ d1e(λ0−λ1)t for all t ≥ 0. (2.12)

The proof of the theorem will be accomplished by proving the double inequality (2.12). First, let’s prove the following inequality
of the double inequality (2.12)

min
−h≤s≤0

w(s)≤ w(t) for all t ≥ 0. (2.13)

To prove (2.13), we consider an arbitrary real number A such that A < min−h≤s≤0 w(s). Clearly,

A < w(t) for −h≤ t ≤ 0. (2.14)

We will show that

A < w(t) for all t ≥ 0. (2.15)

To this end, let us assume that (2.15) fails to hold. Then, because of (2.14), there exists a point t∗ > 0 so that

A < w(t) for −h≤ t < t∗, and w(t∗) = A.

Thus, by using the hypothesis that c≤ 0, b < 0, `i > 0 for i ∈ Z+ and taking into account the fact that λ0 ≤ 0, from (2.10) we
obtain



Results on the Behavior of the Solutions for Linear Impulsive Neutral Delay Differential Equations with Constant
Coefficients — 184/189

A = w(t∗) =−ce−λ1σ w(t∗−σ)+ e(λ0−λ1)t∗
n(t∗)

∑
i=1

`ie−λ0ti

−be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)w(s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)w(s)ds

> A
{
−ce−λ1σ −be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)ds
}
+ e(λ0−λ1)t∗

n(t∗)

∑
i=1

`ie−λ0ti

> A
{
−ce−λ1σ −be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)ds
}

= A
{
−ce−λ1σ −be−λ0τ

(
1

λ1−λ0

)[
1− e(λ0−λ1)τ

]
+ cλ0e−λ0σ

(
1

λ1−λ0

)[
1− e(λ0−λ1)σ

]}
=

A
λ1−λ0

{
−cλ1e−λ1σ +be−λ1τ + cλ0e−λ0σ −be−λ0τ

}
=

A
λ1−λ0

{(λ1−a)+(a−λ0)}= A.

This is a contradiction and hence (2.15) is always satisfied. We have thus proved that (2.15) holds true for all real numbers A
with A < min−h≤s≤0 w(s). This guarantees that (2.13) is fulfilled and so, the first part of the double inequality (2.12) (or, (2.3))
is proved.

Now, let’s prove the second part of the double inequality (2.3). Property (2.2) implies φ(t)− L(λ0;φ)
1+β (λ0)

eλ0t ≤ d1eλ0t . So, if

both sides of this inequality are multiplied by e−λ1t , using the definition (2.11), it follows that

e−λ1t
[

φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ d1e(λ0−λ1)t for t ∈ [−h,0]

or by way of the definition of w, we have

w(t)≤ d1e(λ0−λ1)t for t ∈ [−h,0]. (2.16)

We will show that d1e(λ0−λ1)t is a bound of w on the whole interval [−h,∞], namely that

w(t)≤ d1e(λ0−λ1)t for all t ≥−h. (2.17)

For the sake of contradiction suppose that there exists a t̄ > 0 such that w(t̄)> d1e(λ0−λ1)t̄ . Let

t∗ = inf
{

t̄ : w(t̄)> d1e(λ0−λ1)t̄
}
.

Now, by right continuity, either w(t∗) = d1e(λ0−λ1)t∗ if there is no impulsive point at t∗, or w(t∗) ≥ d1e(λ0−λ1)t∗ as
a consequence of a t∗. Whatever the case, using right continuity, we thus have w(t) ≤ d1e(λ0−λ1)t for t ∈ [−h, t∗), where
w(t∗) = d1e(λ0−λ1)t∗ if this occors at a non-impulsive point. Then, by using the hypothesis that c≤ 0, b < 0, `i > 0 for i ∈ Z+

and taking into account the fact that λ0 ≤ 0, and also using (2.1), from (2.10) we have that
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d1e(λ0−λ1)t∗ = w(t∗) =−ce−λ1σ w(t∗−σ)+ e(λ0−λ1)t∗
n(t∗)

∑
i=1

`ie−λ0ti

−be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)w(s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)w(s)ds

≤−cd1e−λ1σ e(λ0−λ1)(t∗−σ)+ e(λ0−λ1)t∗
n(t∗)

∑
i=1

`ie−λ0ti

−bd1e−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)e(λ0−λ1)sds+ cd1λ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)e(λ0−λ1)sds

< d1e(λ0−λ1)t∗

{
−ce−λ0σ −be−λ0τ

τ + cλ0e−λ0σ
σ +

1
d1

∞

∑
i=1

`ie−λ0ti

}

= d1e(λ0−λ1)t∗

{
−β (λ0)+

1
d1

∞

∑
i=1

`ie−λ0ti

}
≤ d1e(λ0−λ1)t∗ .

This gives us the desired contradiction, since we proved w(t∗) < d1e(λ0−λ1)t∗ , and we assumed w(t∗) = d1e(λ0−λ1)t∗ if t∗ is
a continuity point, or w(t∗) ≥ d1e(λ0−λ1)t∗ if t∗ is a discontinuity point. So (2.17) is true and the second part of the double
inequality (2.12) (or, (2.3)) is proved. As a result, the Part (I) of Theorem 2.2 has been proven.

(Proof of Part (II) of the Theorem 2.2): As in Part (I), the double inequality (2.6) can be shown to be

e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ D2 (λ0,λ1;φ) for all t ≥ 0,

and

d2e(λ0−λ1)t ≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for all t ≥ 0

respectively. So, from the definition (2.11), it follows that the double inequality (2.6) in the conclusion of our theorem can
equivalently be written as follows

w(t)≤ max
−h≤t≤0

w(t) for all t ≥ 0,

and

d2e(λ0−λ1)t ≤ w(t) for all t ≥ 0,

respectively. Thus, using the hypothesis in the Part (II), it can be proved similarly as in the Part (I). As a result, the proof of the
Part (II) of Theorem 2.2 here is omitted.

It is immediately clear that the following corollary of double inequalities ((2.3) and (2.6)) in Theorem 2.2 can be written as
equivalent.

Corollary 2.3. Assume that the conditions in Theorem 2.2 are provided. Then the solution of (1.1)-(1.3) satisfies
(I) for λ1 < λ0

D1 (λ0,λ1;φ)eλ1t +
L(λ0;φ)

1+β (λ0)
eλ0t ≤ x(t)≤ eλ0t

(
d1 +

L(λ0;φ)

1+β (λ0)

)
for all t ≥ 0,

(II) for λ0 < λ1

eλ0t
(

d2 +
L(λ0;φ)

1+β (λ0)

)
≤ x(t)≤ D2 (λ0,λ1;φ)eλ1t +

L(λ0;φ)

1+β (λ0)
eλ0t for all t ≥ 0.

Also, if λ0,λ1 < 0, then from (I) and (II) the solution of (1.1)-(1.3) satisfies

lim
t→∞

x(t) = 0.
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Example 2.4. Consider

[x(t)− 1
3

x(t− 1
4
)]′ =

1
2

x(t)− 1
2

x(t− 1
2
) , t 6= tk , t ≥ 0, (2.18)

4x(tk) =
(

1
4

)k

, k ∈ Z+, (2.19)

x(t) = φ(t) , −1
2
≤ t ≤ 0,

where φ ∈C
(
[− 1

2 ,0],R
)

and tk are arbitrary impulsive points, such that tk− 1
4 are not impulsive points for all k ∈ Z+.

The characteristic equation of (2.18) is

2λ

(
3− e−

λ
4

)
= 3

(
1− e−

λ
2

)
. (2.20)

We see that λ = 0 and λ ≈−2.08 are real roots of (2.20). Let λ0 = 0 and λ1 =−2.08. Let’s choose the number d1 = 1. We
have λ0 > λ1, `i =

( 1
4

)i
> 0 i ∈ Z+ and from (2.1)

1+β (0) = 1− 1
4
− 1

3
=

5
12

>
∞

∑
i=1

(
1
4

)i

=
1
3
.

Thus, by applying Theorem 2.2-(I) and Corollary 2.3-(I), we obtain the following results:
According to (2.2), for any φ ∈C

(
[− 1

2 ,0],R
)

such that

φ(t)≤
[

1+
L(0;φ)

5/12

]
, for t ∈

[
−1

2
,0
]
, (2.21)

the solution x of (2.18)-(2.19) satisfies

D1 (0,−2.08;φ)≤ e2.08t
[

x(t)− L(0;φ)

5/12

]
≤ e2.08t for all t ≥ 0,

or equivalent

D1 (0,−2.08;φ)e−2.08t +
L(0;φ)

5/12
≤ x(t)≤ 1+

L(0;φ)

5/12
for all t ≥ 0,

where

L(0;φ) = φ(0)− 1
3

φ

(
−1

4

)
− 1

2

∫ 0

− 1
2

φ(s)ds

and

D1 (0,−2.08;φ) = min
− 1

2≤t≤0

{
e2.08t

[
φ(t)− L(0;φ)

5/12

]}
.

Now let’s take the special case of φ(t) = 1. Then

L(0;1) = 1− 1
3
− 1

2

∫ 0

− 1
2

ds =
5

12
and D1 (0,−2.08;1) = min

− 1
2≤t≤0

{
e2.08t

[
1− L(0;1)

5/12

]}
= 0.

Thus, for φ(t) = 1 the inequality (2.21) is provided and the solution x of (2.18)-(2.19) satisfies

0≤ e2.08t [x(t)−1]≤ e2.08t for all t ≥ 0,

or equivalent

1≤ x(t)≤ 2 for all t ≥ 0.
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Example 2.5. Consider

[x(t)− e−
1
4 x(t− 1

2
)]′ =−x(t)+ e−

1
4 x(t− 1

2
) , t 6= tk = k , t ≥ 0, (2.22)

4x(tk) =−
(

1
e2

)k

, k ∈ Z+, (2.23)

x(t) = φ(t) , −1
2
≤ t ≤ 0,

where φ ∈C
(
[− 1

2 ,0],R
)
.

The characteristic equation of (2.22) is

λ

(
1− e−

1
4 e−

λ
2

)
=−1+ e−

1
4 e−

λ
2

or

λ − (λ +1)e−
1
4 (2λ+1)+1 = 0. (2.24)

We see that λ =−1 and λ =− 1
2 are real roots of (2.24). Let λ0 =−1 and λ1 =− 1

2 . Let’s choose the number d2 =
5
4 . We have

λ0 < λ1, `i =− 1
2

(
1
e2

)i
< 0 i ∈ Z+ and from (2.4)

1+β (−1) = 1− e
1
4 ≈−0.284

<−4
5

∞

∑
i=1

1
2

(
1
e2

)i

ei =−2
5

∞

∑
i=1

1
ei ≈−0.232.

Thus, by applying Theorem 2.2-(II) and Corollary 2.3-(II), we obtain the following results:
According to (2.5), for any φ ∈C

(
[− 1

2 ,0],R
)

such that

e−t
[

5
4
+

L(−1;φ)

1− e
1
4

]
≤ φ(s) for t ∈

[
−1

2
,0
]
, (2.25)

the solution x of (2.22)-(2.23) satisfies

5
4

e−
t
2 ≤ e

t
2

[
x(t)+

L(−1;φ)

1− e
1
4

e−t
]
≤ D2

(
−1,−1

2
;φ

)
for all t ≥ 0, where

L(−1;φ) = φ(0)− e−
1
4 φ

(
−1

2

)
+ e

1
4

∫ 0

− 1
2

es
φ(s)ds− e

1
4

∫ 0

− 1
2

es
φ(s)ds

= φ(0)− e−
1
4 φ

(
−1

2

)
and

D2

(
−1,−1

2
;φ

)
= max
− 1

2≤t≤0

{
e

t
2

[
φ(t)+

L(−1;φ)

1− e
1
4

e−t
]}

.

Now let’s take the special case of φ(t) = 1. Then L(−1;1) = 1− e−
1
4 and

D2

(
−1,−1

2
;φ

)
= max
− 1

2≤t≤0

{
e

t
2

[
1+

1− e−
1
4

1− e
1
4

e−t

]}
= max
− 1

2≤t≤0

{
e

t
2

[
1+ e−(t+ 1

4 )
]}

= 1+ e−
1
4 .

Thus, for φ(t) = 1 the inequality (2.25) is provided, i.e.

e−t
[

5
4
− e−

1
4

]
≤ 1 for t ∈

[
−1

2
,0
]
,
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and for φ(t) = 1 the solution x of (2.22)-(2.23) satisfies

5
4

e−
t
2 ≤ e

t
2

[
x(t)+ e−(t+ 1

4 )
]
≤ 1+ e−

1
4 for all t ≥ 0

or from Corollary 2.3-(II) it follows that

e−t
(

d2 +
L(−1;φ)

1+β (−1)

)
≤ x(t)≤ D2

(
−1,−1

2
;φ

)
e−

t
2 +

L(−1;φ)

1+β (−1)
e−t ,

e−t

(
5
4
+

1− e−
1
4

1− e
1
4

)
≤ x(t)≤

(
1+ e−

1
4

)
e−

t
2 +

1− e−
1
4

1− e
1
4

e−t ,

e−t
(

5
4
− e−

1
4

)
≤ x(t)≤

(
1+ e−

1
4

)
e−

t
2 − e−(t+ 1

4 ) for all t ≥ 0.

Also, from the last double inequality we get

lim
t→∞

x(t) = 0.

3. Conclusion
In this paper, an important result is obtained for the behavior of the solutions by making use of two appropriate real roots of the
characteristic equation and two examples were given. The real roots used in this paper play an important role in determining
the results.
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