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Abstract
In the present article, the numerical solution of the two-dimensional coupled Burgers equation has
been sought by finite difference method based on Rubin-Graves type linearization. Three models with
appropriate initial and boundary conditions are applied to the problem. In order to show the accuracy of
the method, the error norms L2, L∞ are computed. The error norms L2, L∞ of the obtained numerical
solutions are compared with the error norms of some of the numerical solutions in the literature.
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1. Introduction
In nature, some of the pysical phenomena such as gas dynamics, traffic flow, Brusselator chemical reaction-

diffusion and shock waves are modelled by nonlinear partial differential equation systems among others such as
the two-dimensional coupled Burgers equation (2D-CBE). There are many theoretical and numerical studies about
the 2D-CBE equation in the literature. Fletcher [1] has found its analytical solution by applying the two-dimensional
Hopf-Cole transform to the two-dimensional coupled Burgers equation. 2D-CBE has been solved numerically
by several scholars by means of various methods and techniques. Among others, Fletcher [2] have conducted
a work for comparing finite difference and finite element methods. Goyon [3] applied multi level alternating
direction implicit methods. Ali et al. [4] have used the collation method via the radial base functions. Jain and
Holla [5] have implemented two algorithms using the cubic spline function technique. Bahadır [6] has dealt with
the problem by a fully implicit finite difference method. Khater et al. [7] have found out the numerical solution
of some Burgers type nonlinear partial differential equations by Chebyshev spectral collocation method.Mittal
and Jiwari [8] have applied the differential quadrature method using the Chebyshev-Gauss-Lobatto nodal points.
Liao [9] obtained the numerical solution of the two-dimensional coupled Burgers equation by solving the two-
dimensional linear heat equation obtained by applying the two-dimensional Hopf-Cole transformation to the
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two-dimensional coupled Burgers equation using the fourth-dimensional finite difference method. Zhu et al. [10]
applied the discrete Adomian decomposition method. Srivastava et al. have applied [11] Crank-Nicolson finite
difference method, Tamsir and Srivastava [12] have used semi-implicit finite difference method, Srivastava and
Tamsir [13] have utilized Crank-Nicolson semi-implicit finite difference method, Thakar and Wani [14] have used
linear finite difference method, Srivastava et al. [15] have applied implicit logarithmic finite difference method,
Srivastava et al. [16] have used implicit exponential finite difference method, Srivastava and Singh [17] have used
explicit-implicit finite difference method, Zhang et al. [18] have used full finite difference and non-standard finite
difference methods, Mittal and Tripathi [19] have applied modified bi-cubic B-spline collocation method, Tamsir et
al. [20] have used exponential modified cubic-B-spline differential quadrature method, Zhanlav et al. [21] have
applied high order explicit finite difference method and Ngondiep [22] has utilized three-level explicit time-split
MacCormack algorithm. Saqib et al. [23] have dealt with numerical solutions of 2-dimensional time dependent
coupled non-linear systems. Wubs and Goede [24], in their article, considered the fully explicit method resulting
from the truncation in the solution process and chosen one of the test problems as the 2-dimensional coupled
Burgers’ equation. Chai and Ouyang [25] have used proper stabilized Galerkin methods.

The rest of this article is organized as follows: In the first section , the method based on Rubin-Graves type
linearization together with finite difference method and used for the numerical solution of two dimensional coupled
Burgers equation is presented . Then to see the performance accuracy of the method, the numerical solution of
three test model problems has been made and presented in tables by calculating the pointwise values and the error
norms L2 and L∞ of the model problems of which the analytical solution are known. In addition, comparisons
have been made with the error norms of the numerical solutions obtained by various methods available in the
literature. In the last section, a brief conclusion is given.

2. Application of the Method

In this article, we consider the the two-dimensional coupled Burgers equation of the general form given as

ut + uux + vuy = ε(uxx + uyy), (x, y) ε Ω, t > 0 (2.1)

vt + uvx + vvy = ε(vxx + vyy), (x, y) ε Ω, t > 0 (2.2)

together with the initial

u(x, y, 0) = ψ1(x, y); (x, y) ε Ω

v(x, y, 0) = ψ2(x, y); (x, y) ε Ω

and the boundary conditions

u(x, y, t) = ξ(x, y, t); (x, y) ε ∂Ω

v(x, y, t) = ζ(x, y, t); (x, y) ε ∂Ω

where u (x, y, t) and v (x, y, t) denote velocity components. Over the solution domain Ω={(x, y) :a6x6b, c6y6d}
together with its boundary ∂Ω. ψ1, ψ2, ξ and ζ are known smooth functions. Re denotes the Reynold number. As it
is widely known, at the large values of the Reynold number, a shock wave having a cusp results in and numerical
stability near this shock wave is nearly always difficult to obtain.

For the solution process, the domain of the problem in x−direction [a, b] is divided into Nx parts having equal
length hx, and in y−direction [c, d] is divided into Ny parts having equal length hy, xi = a + ihx, i = 0(1)Nx;
yj = c + jhy, j = 0(1)Ny; a smooth grid is created in the solution domain of the problem with the help of nodal
points (xi, yj). The step length ∆t is taken in the direction of the time variable for tn = n∆t, n = 0(1)N ,. Then,
all the numerical calculations to be made in each time step tn are obtained at the nodes of this smooth grid. The
numerical solution of u (x, y, t) and v (x, y, t) at any node (xi, yj , tn) is shown by U n

i,j and V n
i,j , respectively.

When the finite difference method based on Rubin-Graves type linearization technique is applied, a linear
algebraic equation system results in since the related finite difference approaches are written in place of the
derivatives in the equation. In the proposed method, the nonlinear partial differential equation is written in the
appropriate form and after applying the finite difference method, an iterative relationship between the (n+ 1)th and
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(n)th time level steps of the dependent variables is obtained. This newly obtained iterative relationship resulted in a
linear algebraic equation system, which can be easily solved by a symbolic programming language such as MatLab.

Now, for 2D-CBE

ut + uux + vuy = ε(uxx + uyy)

vt + uvx + vvy = ε(vxx + vyy)

in place of non-linear terms uux, vuy , uvx and vvy Rubin-Graves type [26] linearization technique are used.
In place of ut an approximation as ut ∼= (Un+1

i,j − Un
i,j)/k and in place of vt an approximation as vt ∼= (V n+1

i,j −
V n
i,j)/k and in places of the terms uux, vuy , uvx and vvy the following Rubin-Graves type approximations

uux ∼= Un+1
i,j

[
Un
i+1,j − Un

i−1,j

2hx

]
+ Un

i,j

[
Un+1
i+1,j − U

n+1
i−1,j

2hx

]
− Un

i,j

[
Un
i+1,j − Un

i−1,j

2hx

]

vuy ∼= V n+1
i,j
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Un
i+1,j − Un

i−1,j

2hy

]
+ V n

i,j
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uvx ∼= Un+1
i,j
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]
are written. Then in place of the derivatives uxx, uyy, vxx and vyy their central finite difference approximations

uxx ∼=
Un+1
i−1,j − 2Un+1

i,j + Un+1
i+1,j

h2x

uyy ∼=
Un+1
i,j−1 − 2Un+1

i,j + Un+1
i,j+1

h2y

vxx ∼=
V n+1
i−1,j − 2V n+1

i,j + V n+1
i+1,j

h2x

vyy ∼=
V n+1
i,j−1 − 2V n+1

i,j + V n+1
i,j+1

h2y

are written. Finally, the terms on the (n+ 1)th time level are taken on the left hand side and (n)th time level terms
are taken on the right hand side. After some simpliciation process, the following
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k
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and
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]
linearized schemes are obtained, where i, j = 1(1)M − 1. In these schemes hx = hy, εk/h2x = εk/h2y = a,
k/2hx = k/2hy = b and ε = 1/Re are taken as some simplifications are carried out. Finally, the following
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schemes are obtained. Using the known Un and V n values in the finite difference diagrams obtained as a result
of this linearization, the unknown values of Un+1 and V n+1 at the desired time t are obtained for all three model
problems.

3. Numerical Results
In this section, the numerical solution of the two-dimensional coupled Burgers equation given by the equations

(2.1)-(2.2), for three problems with appropriate initial and boundary conditions using the finite difference method
based on Rubin-Graves type linearization has been obtained. In order to show the accuracy of the obtained
numerical solutions, the following error norms L2 and L∞ are calculated

L2 =

√√√√Nx−1∑
i=1

Ny−1∑
j=1

|Uij − (uexact)ij |2

and

L∞ = max
i,j
|Ui,j − (uexact)i,j |

where unij are analytical solutions and U n
ij are approximate solutions at the nodal points (xi, yj , tn) [27].

Problem I: As the first problem, finite difference method has been applied to 2D-CBE having the following exact
solution over the region Ω = [0, 1]× [0, 1] [6]

u(x, y, t) =
3

4
− 1

4 [1 + exp((−4x+ 4y − t)Re/32]
(3.1)

v(x, y, t) =
3

4
+

1

4 [1 + exp((−4x+ 4y − t)Re/32]
. (3.2)

The initial and boundary conditions required for the application of the method are obtained from the analytical
solution given by the equations (3.1)-(3.2). Table (1) presents the numerical solutions of Problem I for u for values
of hx = hy = 0.05, Re= 10, ∆t = 10−4 at times t = 0.01, 0.5 and 1.0. From the table it is clearly seen that both the
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Table 1. Numerical solutions of Problem I for u for values of hx = hy = 0.05, Re= 10, ∆t = 10−4 at times t = 0.01,
0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 1.0
Approx. Exact Approx. Exact Approx. Exact

(0.1, 0.1) 0.624805 0.624805 0.615254 0.615254 0.605626 0.605626
(0.5, 0.1) 0.594202 0.594202 0.585396 0.585396 0.576840 0.576840
(0.9, 0.1) 0.567082 0.567082 0.559837 0.559837 0.553017 0.553017
(0.3, 0.3) 0.624805 0.624805 0.615255 0.615254 0.605627 0.605626
(0.7, 0.3) 0.594202 0.594202 0.585396 0.585396 0.576840 0.576840
(0.1, 0.5) 0.655431 0.655431 0.646276 0.646275 0.636685 0.636685
(0.5, 0.5) 0.624805 0.624805 0.615256 0.615254 0.605628 0.605626
(0.9, 0.5) 0.594202 0.594202 0.585396 0.585396 0.576840 0.576840
(0.3, 0.7) 0.655431 0.655431 0.646277 0.646275 0.636687 0.636685
(0.7, 0.7) 0.624805 0.624805 0.615256 0.615254 0.605629 0.605626
(0.1, 0.9) 0.682611 0.682611 0.674814 0.674814 0.666353 0.666353
(0.5, 0.9) 0.655431 0.655431 0.646277 0.646275 0.636687 0.636685
(0.9, 0.9) 0.624805 0.624805 0.615255 0.615254 0.605627 0.605626

L2 8.419211× 10−8 2.169158× 10−6 2.354379× 10−6

L∞ 6.693449× 10−8 2.451640× 10−6 2.804863× 10−6
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Figure 1. (a) Exact and (b) numerical solutions for u of Problem 1 for values of hx = hy = 0.05, Re= 100, ∆t = 10−4

at t = 0.5.

numerical and analytical solutions at selected points for each time level are very close to each other. Moreover, it
is also seen that the computed error norms L2 and L∞ are small enough to be acceptable. Table (2) presents the
numerical solutions of Problem I for v for values of hx = hy = 0.05, Re = 10, ∆t = 10−4 at times t = 0.01, 0.5 and
1.0. Again from the table it can be observed that the numerical results are very close to their exact counterparts and
computed error norms are small enough. Tables (3-4) show also pointwise values and the error norms L2 and L∞
of u and v but now for a larger value of Reynold number Re = 100, respectively. As it is seen from the tables, both
of the error norms increase as the Reynold number increases. Figures (1-2) show first exact and then numerical
solutions for u and v of Problem 1 for values of hx = hy = 0.05, Re= 100, ∆t = 10−4 at t = 0.0, respectively.

Problem II: Rubin-Graves type linearization finite difference method has been applied to 2D-CBE on the solution
domain Ω = [0, 0.5]× [0, 0.5] with the following initial

u (x, y, 0) = sinπx+ cosπy, v (x, y, 0) = x+ y (3.3)

and boundary conditions

u(0, y, t) = cos(πy), u(0.5, y, t) = 1 + cos(πy)
v(0, y, t) = y, v(0.5, y, t) = 0.5 + y

}
0 ≤ y ≤ 0.5, t ≥ 0 (3.4)

u(x, 0, t) = 1 + sin(πx) u(x, 0.5, t) = sin(πx)
v(x, 0, t) = x v(x, 0.5, t) = x+ 0.5

}
0 ≤ x ≤ 0.5, t ≥ 0 (3.5)
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Table 2. Numerical solutions of Problem I for v for values of hx = hy = 0.05, Re= 10, ∆t = 10−4 at times t = 0.01,
0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 1.0
Approx. Exact Approx. Exact Approx. Exact

(0.1, 0.1) 0.875195 0.875195 0.884746 0.884746 0.894374 0.894374
(0.5, 0.1) 0.905798 0.905798 0.914604 0.914604 0.923160 0.923160
(0.9, 0.1) 0.932918 0.932918 0.940163 0.940163 0.946983 0.946983
(0.3, 0.3) 0.875195 0.875195 0.884745 0.884746 0.894373 0.894374
(0.7, 0.3) 0.905798 0.905798 0.914604 0.914604 0.923160 0.923160
(0.1, 0.5) 0.844569 0.844569 0.853724 0.853725 0.863315 0.863315
(0.5, 0.5) 0.875195 0.875195 0.884744 0.884746 0.894372 0.894374
(0.9, 0.5) 0.905798 0.905798 0.914604 0.914604 0.923160 0.923160
(0.3, 0.7) 0.844569 0.844569 0.853723 0.853725 0.863313 0.863315
(0.7, 0.7) 0.875195 0.875195 0.884744 0.884746 0.894371 0.894374
(0.1, 0.9) 0.817389 0.817389 0.825186 0.825186 0.833647 0.833647
(0.5, 0.9) 0.844569 0.844569 0.853723 0.853725 0.863313 0.863315
(0.9, 0.9) 0.875195 0.875195 0.884145 0.884146 0.894373 0.894374

L2 6.013832× 10−8 1.511454× 10−6 1.599711× 10−6

L∞ 6.693447× 10−8 2.451640× 10−6 2.804862× 10−6

Table 3. Numerical solutions of Problem I for u for values of hx = hy = 0.05, Re= 100, ∆t = 10−4 at times t = 0.01,
0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 2.0
Approx. Exact Approx. Exact Approx. Exact

(0.1, 0.1) 0.623106 0.623047 0.543002 0.543322 0.500470 0.500482
(0.5, 0.1) 0.501617 0.501622 0.500341 0.500353 0.500003 0.500003
(0.9, 0.1) 0.500011 0.500011 0.500002 0.500002 0.500000 0.500000
(0.3, 0.3) 0.623106 0.623047 0.642692 0.543322 0.500441 0.500482
(0.7, 0.3) 0.501617 0.501622 0.500317 0.500353 0.500003 0.500003
(0.1, 0.5) 0.748272 0.748274 0.742150 0.742214 0.555153 0.555675
(0.5, 0.5) 0.623106 0.623047 0.542509 0.543322 0.500414 0.500482
(0.9, 0.5) 0.501617 0.501622 0.500304 0.500353 0.500003 0.500003
(0.3, 0.7) 0.748272 0.748274 0.742114 0.742214 0.554816 0.555675
(0.7, 0.7) 0.623106 0.623047 0.542463 0.543322 0.500384 0.500482
(0.1, 0.9) 0.749988 0.749988 0.749945 0.749946 0.744196 0.744256
(0.5, 0.9) 0.748272 0.748274 0.742103 0.742214 0.554504 0.555675
(0.9, 0.9) 0.623106 0.623047 0.542282 0.543322 0.500525 0.500482

L2 3.811712× 10−5 1.070747× 10−3 1.097702× 10−3

L∞ 6.071263× 10−5 2.031654× 10−3 2.240898× 10−3

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0.75

0.8

0.85

0.9

0.95

1

xy

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0.75

0.8

0.85

0.9

0.95

1

xy

(b)
Figure 2. (a) Exact and (b) numerical solutions for v of Problem 1 for values of hx = hy = 0.05, Re= 100, ∆t = 10−4

at t = 0.5.
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Table 4. Numerical solutions of Problem I for v for values of hx = hy = 0.05, Re= 100, ∆t = 10−4 at times t = 0.01,
0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 2.0
Approx. Exact Approx. Exact Approx. Exact

(0.1, 0.1) 0.876894 0.876953 0.956998 0.956678 0.999530 0.999518
(0.5, 0.1) 0.998383 0.998378 0.999659 0.999647 0.999997 0.999997
(0.9, 0.1) 0.999989 0.999989 0.999998 0.999998 1.000000 1.000000
(0.3, 0.3) 0.876894 0.876953 0.957308 0.956678 0.999559 0.999518
(0.7, 0.3) 0.998383 0.998378 0.999683 0.999647 0.999997 0.999997
(0.1, 0.5) 0.751728 0.751726 0.757850 0.757786 0.944847 0.944325
(0.5, 0.5) 0.876894 0.876953 0.957491 0.956678 0.999586 0.999518
(0.9, 0.5) 0.998383 0.998378 0.999696 0.999647 0.999997 0.999997
(0.3, 0.7) 0.751728 0.751726 0.757886 0.757786 0.945184 0.944325
(0.7, 0.7) 0.876894 0.876953 0957537 0.956678 0.999616 0.999518
(0.1, 0.9) 0.750012 0.750012 0.750055 0.750054 0.755804 0.755744
(0.5, 0.9) 0.751728 0.751726 0.757897 0.757786 0.945496 0.944325
(0.9, 0.9) 0.876894 0.876953 0.957718 0.956678 0.999475 0.999518

L2 2.736786× 10−5 7.126002× 10−4 6.043011× 10−4

L∞ 6.071263× 10−5 2.031654× 10−3 2.240898× 10−3

Table 5. A comparison of numerical solutions for u of Problem 2 for values of hx = hy = 0.025, Re= 500, ∆t = 10−4

at time t = 0.625, N = 40 with those in Refs. [5, 6, 12].
(x, y) u

Present [5] [5] N=40 [6] [12]
(0.15, 0.1) 0.96870 0.95691 0.96066 0.96650 0.96870
(0.3, 0.1) 1.03204 0.95616 0.96852 1.02970 1.03200
(0.1, 0.2) 0.84618 0.84257 0.84104 0.84449 0.86178
(0.2, 0.2) 0.87813 0.86399 0.86866 0.87631 0.87813
(0.1, 0.3) 0.67920 0.67667 0.67792 0.67809 0.67920
(0.3, 0.3) 0.79944 0.76876 0.77254 0.79792 0.79945
(0.15, 0.4) 0.54675 0.54408 0.54543 0.54601 0.66039
(0.2, 0.4) 0.58958 0.58778 0.58564 0.58874 0.58958

[12]. There is no analytical solution to this problem. Since Problem II has not analytical solution in Table (5), a
comparison of numerical solutions for u of Problem 2 for values of hx = hy = 0.025, Re = 500, ∆t = 10−4 at time
t = 0.625, N = 40 with those in Refs. [5, 6, 12] is presented. Again, due to the same reason, Table (6) presents a
comparison of numerical solutions for v of Problem 2 for values of hx = hy = 0.025, Re = 500, ∆t = 10−4 at time
t = 0.625 with those in Refs. [5, 6, 12]. Tables (7-8) show also pointwise values of u and v but now for a smaller
value of Reynold number Re = 50, respectively. Figures (3) shows numerical solutions of u and v of Problem 2 for
values of hx = hy = 0.025, Re= 50, ∆t = 10−4 at time t = 0.625, respectively.

Problem III: The solution domain of the third problem is Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and its analytical
solution is of the form [12]

u(x, y, t) = − 4πe−
5π2t

Re cos(2πx) sin(πy)

Re(2 + e−
5π2t

Re sin(2πx) sin(πy)

v(x, y, t) = − 2πe−
5π2t

Re sin(2πx) cos(πy)

Re(2 + e−
5π2t

Re sin(2πx) sin(πy)

Table (9) presents numerical solutions of u of Problem 3 for values of hx = hy = 0.05, Re = 1000, ∆t = 10−3 at
times t = 0.01, 0.5 and 1.0. From the table one can easily see that the approximate and exact solutions are very close
to each other and calculated error norms L2 and L∞ are small enough. In a similar manner, Table (10) presents
numerical solutions of v of Problem 3 for values of hx = hy = 0.05, Re = 1000, ∆t = 10−3 at times t = 0.01, 0.5
and 1.0. Again, one can see from this table that both of the approximate and exact pointwise values are in good
agreement. Th error norms L2 and L∞ show the general consistency between the approximate and exact solutions
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Table 6. A comparison of numerical solutions for v of Problem 2 for values of hx = hy = 0.025, Re= 500, ∆t = 10−4

at time t = 0.625, N = 40 with those in Refs. [5, 6, 12].
(x, y) v

Present [5] [5] N=40 [6] [12]
(0.15, 0.1) 0.09044 0.10177 0.08612 0.09020 0.09043
(0.3, 0.1) 0.10730 0.13287 0.07712 0.10690 0.10728
(0.1, 0.2) 0.18010 0.18503 0.17828 0.17972 0.17295
(0.2, 0.2) 0.16816 0.18169 0.16202 0.16777 0.16816
(0.1, 0.3) 0.26268 0.26560 0.26094 0.26222 0.26268
(0.3, 0.3) 0.23550 0.25142 0.21542 0.23497 0.23550
(0.15, 0.4) 0.31799 0.32084 0.31360 0.31753 0.29022
(0.2, 0.4) 0.30418 0.30927 0.29776 0.30371 0.30418

Table 7. A comparison of numerical solutions for u of Problem 2 for values of hx = hy = 0.025, Re= 50, ∆t = 10−4

at time t = 0.625 with those in Refs. [5, 6, 12].
(x, y) u

Present [5] [6] [12]
(0.1, 0.1) 0.97146 0.97258 0.96688 0.97146
(0.3, 0.1) 1.15282 1.16214 1.14827 1.15280
(0.2, 0.2) 0.86308 0.86281 0.85911 0.86308
(0.4, 0.2) 0.97984 0.96483 0.97637 0.97984
(0.1, 0.3) 0.66316 0.66318 0.66019 0.66316
(0.3, 0.3) 0.77232 0.77030 0.76932 0.77232
(0.2, 0.4) 0.58181 0.58070 0.57966 0.58181
(0.4, 0.4) 0.75861 0.74435 0.75678 0.75860

Table 8. A comparison of numerical solutions for v of Problem 2 for values of hx = hy = 0.025, Re= 50, ∆t = 10−4

at time t = 0.625 with those in Refs. [5, 6, 12].
(x, y) v

Present [5] [6] [12]
(0.1, 0.1) 0.09869 0.09773 0.09824 0.09869
(0.3, 0.1) 0.14158 0.14039 0.14112 0.14158
(0.2, 0.2) 0.16754 0.16660 0.16681 0.16754
(0.4, 0.2) 0.17110 0.17397 0.17065 0.17110
(0.1, 0.3) 0.26378 0.26294 0.26261 0.26378
(0.3, 0.3) 0.22654 0.22463 0.22576 0.22655
(0.2, 0.4) 0.32851 0.32402 0.32745 0.32851
(0.4, 0.4) 0.32500 0.31822 0.32441 0.32501
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Figure 3. Numerical solutions of (a) u and (b) v of Problem 2 for values of hx = hy = 0.025, Re= 50, ∆t = 10−4 at
time t = 0.625.
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Table 9. Numerical solutions of u of Problem 3 for values of hx = hy = 0.05, Re= 1000, ∆t = 10−3 at times t = 0.01,
0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 1.0
Approx. Exact Approx. Exact Approx. Exact

(0.1, 0.1) −0.001439 −0.001439 −0.001408 −0.001408 −0.001376 −0.001376
(0.5, 0.1) 0.001941 0.001941 0.001895 0.001894 0.001849 0.001848
(0.9, 0.1) −0.001727 −0.001727 −0.001682 −0.001682 −0.001638 −0.001637
(0.3, 0.3) 0.001134 0.001134 0.001114 0.001114 0.001094 0.001094
(0.7, 0.3) 0.002551 0.002551 0.002458 0.002453 0.002368 0.002359
(0.1, 0.5) −0.003927 −0.003927 −0.003854 −0.003854 −0.003780 −0.003781
(0.5, 0.5) 0.006280 0.006280 0.006130 0.006130 0.005981 0.005981
(0.9, 0.5) −0.007194 −0.007194 −0.006960 −0.006953 −0.006731 −0.006718
(0.3, 0.7) 0.001134 0.001134 0.001114 0.001114 0.001094 0.001094
(0.7, 0.7) 0.002551 0.002551 0.002458 0.002453 0.002368 0.002359
(0.1, 0.9) −0.001439 −0.001439 −0.001408 −0.001408 −0.001376 −0.001376
(0.5, 0.9) 0.001941 0.001941 0.001895 0.001894 0.001849 0.001848
(0.9, 0.9) −0.001727 −0.001727 −0.001682 −0.001682 −0.001638 −0.001637

L2 2.2105× 10−5 1.0312× 10−3 1.9287× 10−3

L∞ 2.8241× 10−7 1.2663× 10−5 2.2938× 10−5

throughout the solution domain. Figures (4-5) show first exact and then numerical solutions for u and v of Example
3 for values of hx = hy = 0.05, Re = 1000, ∆t = 10−3 at t = 0.01, respectively.

Table 10. Numerical solutions of v of Problem 3 for values of hx = hy = 0.05, Re= 1000, ∆t = 10−3 at times
t = 0.01, 0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 1.0
Approx. Exact Approx. Exact Approx. Ecaxt

(0.1, 0.1) −0.001609 −0.001609 −0.001574 −0.001574 −0.001539 −0.001539
(0.5, 0.1) −0.000000 −0.000000 −0.000000 −0.000000 −0.000001 −0.000000
(0.9, 0.1) 0.001931 0.001931 0.001880 0.001880 0.001830 0.001830
(0.3, 0.3) −0.001268 −0.001268 −0.001246 −0.001246 −0.001223 −0.001224
(0.7, 0.3) 0.002852 0.002852 0.002746 0.002743 0.002643 0.002637
(0.1, 0.5) −0.000000 −0.000000 −0.000000 −0.000000 −0.000000 −0.000000
(0.5, 0.5) −0.000000 −0.000000 0.000000 −0.000000 −0.000000 −0.000000
(0.9, 0.5) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
(0.3, 0.7) 0.001268 0.001268 0.001246 0.001246 0.001223 0.001224
(0.7, 0.7) −0.002852 −0.002852 −0.002746 −0.002743 −0.002643 −0.002637
(0.1, 0.9) 0.001609 0.001609 0.001574 0.001574 0.001539 0.001539
(0.5, 0.9) 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000
(0.9, 0.9) −0.001931 −0.001931 −0.001880 −0.001880 −0.001830 −0.001830

L2 1.2846× 10−5 6.0214× 10−4 1.1320× 10−3

L∞ 9.3390× 10−8 4.1431× 10−6 7.3722× 10−6
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Figure 4. (a) Exact and (b) numerical solutions of u of Problem 3 for values hx = hy = 0.05, Re= 1000, ∆t = 10−3 at
time t = 0.01.
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Figure 5. (a) Exact and (b) numerical solutions of v of Problem 3 for values hx = hy = 0.05, Re= 1000, ∆t = 10−3 at
time t = 0.01.

4. Conclusion
In this study, numerical solutions of two dimensional coupled Burgers equation has been obtained by using

finite difference method based on a Rubin-Graves type linearization. To demonstrate the accuracy and efficiency
of the method, this method has been applied to three test problems with known analytical solutions and to one
test problem with unknown analytical solution. The error norms L2 and L∞ have been calculated. From these
calculations, it is seen that the proposed method yield good enough results, and it is simple and easy to apply.
In conclusion, numerical solution of two dimensional coupled nonlinear partial differential equations arises in
physical sciences can be achieved easily and effectively by the proposed method. The algebraic systems found
out by using the proposed schemes can be easily stored and solved by the software systems of nowadays. As a
conclusion, the proposed method can be easily and successfully applied to this type of problems arising in applied
mathematics, mathematical physics and engineering science.
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