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Abstract

We study the nonexistence of global weak solutions to the following semi-linear Moore - Gibson- Thompson
equation with the nonlinearity of derivative type, namely,

Uggr + Ugp — Au — (*A)%Ut = |wlP, xe€IR", t>0,
u(0,z) = up(z), w(0,2) =ui(x), uu(0,z)=us(x) zelR",

a

where o € (0,2], p > 1, and (—A)% is the fractional Laplacian operator of order 5. Then, this result is
extended to the case of a weakly coupled system. We intend to apply the method of a modified test function
to establish nonexistence results and to overcome some difficulties as well caused by the well-known fractional
Laplacian (—A)%.The results obtained in this paper extend several contributions in this field.

Keywords: Test functions nonexistenc lifespan estimates.
2010 MSC: 35B33, 35B44, 35R11, 35L76.

1. Introduction

The main goal of this paper is to discuss the nonexistence of global weak solutions to the following
semi-linear Moore-Gibson-Thompson equation

Upge + uge — Au— (—A) 2y = luglP, = eIR", t>0, (1)
w(0,z) = uo(z), uw(0,2) =wui(x), uu(0,z)=us(z), xelR",
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(e

where p>1,n>1, a € (0,2], and (—A)% is the fractional Laplacian operator of order §. We extend
our analysis to the case of a weakly coupled system, more precisely,

Uttt + U — Au — (—A)%Ut =|vfP, xzecIR", t>0,
Vg + Uy — Av — (—A)gvt =lwl?, =xe€IR", >0, 2)

u(0,2) = up(z), w(0,x) =ui(z), uwu(0,x)=us(zr), zelR",
v(0,2) = vo(x), v4(0,2) = vi(x),v(0, ) = va(z), =z € R"

Recently, the nonexistence of global (in time) solutions to the following system
Ut — Au + (—A)‘Slut = ‘U|p, WS ]]_:{n’ t > O,
v — Av + (=A)%20; = ulf, z€IR", t>0, (3)
u(0,z) = up(z), u(0,2) =wui(x), =xe€lR",
v(0,z) =vo(x), v (0,2) =vi(x) x€IR™

is investigated in [10]. It was shown that if 41,02 € [0, %] Jup = up = 0 and ug,v; € ILY(IR™) satisfy

/ ui(x)dx > ey, / ui(x)dx > €9,
n ]:R/n

and s
n _ 1+q=g+{pg—1)d
5 ~ 51—02 lf 51 Z 52,
(¢ — 1352+ (pg—1)
1+ pi=2t 4 (pg —1)6
g_ pi=s + (pg —1)d2 £ 6> an

(p— D%+ (pg— 1)

then there is no global (in time) Sobolev solution (u,v) € C ([0,00) x IL*(IR™)) x C ([0, 00) x IL*(IR™)) to
. The critical exponent to the following structurally damped wave equation with the power nonlinearity
‘Ut|pi
Ut — Au + M(—A)%Ut = ‘Ut|p, x € Rn,
u(0,2) = up(x), u(0,2) =ui(xr) x€R",

has been studied by Tuan Anh Dao and Ahmad Z. Fino in [I1]. It was shown in [11] that if

(4)

l<p<1l+ L where &= min{l, a},
n

then there is no global (in time) weak solution to . Note that one of the most typical important methods
to verify critical exponent is well-known test function method ( see [I3]). Concretely, this method is used
to prove the nonexistence of global solutions by a contradiction argument. However, standard test function
method seems difficult to be applied to containing pseudo-differential operators (—A)% for any a € (0,2].
The difficulty is caused by the nonlocal property of the fractional Laplacian operator. D’ Abbicco and Reissig
in [2] investigated the structurally damped wave equation with the power nonlinearity |u|P. The critical
exponent has been studied and they proposed to distinguish between (parabolic like models) in the case
o € (0,1], the so-called effective damping, and (hyperbolic like models) in the remaining case o € (1,2],
the so-called noneffective damping according to expected decay estimates (see more [3]). In the former case,
they proved the existence of global (in time) solutions when

2
p>pe=1+—"7—
(n—o)4t

for the small initial data and low space dimensions 2 < n < 4 by using the energy estimates. Last years,
the Moore-Gibson-Thompson (MGT) equation, a linearization of a model for wave propagation in viscous
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thermally relaxing fluids has been studied by several authors (see [14],[6], [7], [16], [8],[I7] and references
therein). This model is realized through the third order hyperbolic partial differential equation

TUgt + Ut — C2AU - bAut = O,

where the unknown function u denotes a scalar acoustic velocity, ¢ denotes the speed of sound and 7 denotes
the thermal relaxation. Besides, the coefficient b = 8¢? is related to the diffusivity of the sound with 7 € (0, 3].
Let us underline that, to our knowledge, the MG'T equation has not been widely investigated in the case of
presence of non-local operators. For other contributions related to the semi-linear Moore-Gibson-Thompson
equation with the power nonlinearity of derivative type we refer the reader to [7],[8] and references therein.

Motivated by the above contributions, our goal in this paper is to investigate problems and . The
paper is organized as follows. In the next section, we give some auxiliary results and formulate our main
results. In Section 3, we prove our main results.

2. Auxiliary Results

Before to formulate our main results, we need the following definitions.

Definition 2.1. ([15/,[I8]) Let s € (0,1). Let X be a suitable set of functions defined on IR™. Then, the
fractional Laplacian (—A)® in IR™is a non-local operator given by

e py [ F@-1w)

R @ — Y[

(A feX = (-A)f(z) =

)

as long as the right-hand side exists. Here P.V stands for the Cauchy’s principal value and C,, s =

w\s '1
—~
/\ N"@
CIJ
~—~

\_/

1s the normalization constant and I' denotes the Gamma function.

Definition 2.2. (Weak solution for ) Let T > 0,p > 1, and (ug,u1,uz) € H?(IR™) x H'(IR™) x
IL*(R™). We say that u € C ([0,T), H*(IR™)) N C* ([0,T), H'(IR™)) N C% ([0, T),IL*(IR™)), satisfying u; €
ILY ([0,T) x IR"), is a local weak solution to if

T
/ / |ug(z, t)|Pp(t, z)dxdt + / (u1(z) + uz(x)) (0, x)dx
0o Jrn

IR™

_/ ur (@) (0, 2 dfc—/ /n (2, t)pu(t, z)dzdt
//In xwtt:gdxdt—//n (2. 1)(— )3 (o, 1) dad
- /O /1 (e, ) A (, t)dad,

for any test function ¢ € C§° ([0,T) x IR™) such that its support in time is compact and ¢(z,T) = p(z,T) =
(2, T) =0 for all z € R". If T = oo, we say that u is a global weak solution to (I]).

Definition 2.3. (Weak solution for (4)) Let p,q > 1 and T > 0. We say that (u,v) is a local weak solution
to the problem @) if (ug,vp) € ILL ([0,T) x R™) x ILY ([0,T) x IR™) and satisfies the equations

. loc
/ / ou (s )P (t, 2)dadt + / (w1 (&) + us()) (0, ) da
0 JIR® IR"
T
ul(a:)got(o,m)dac:/o /n ug(x, t) o (t, z)dzdt

_ /H} -

_/0 /Inut(x,t)cpt(t,x)dxdt—/o /nut(x,t)(—A)ggp(J;7t)dxdt
T

I

u(z, t)Ap(x, t)dzdt,
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and

T
|ttt aded [ (@) + @) o(0,2)da
0 IR™

IR™

_/1 nvl(w)SDt(O,:L‘)d;r:/OT/I nvt(xat)%t(t,x)dmdt
_/OT/ nvt(x,t)%(t,x)dxdt—/oT/I ) Ut(l'yt)(—A)gﬁp(l',t)dxdt
_/OT/ n”(%t)&p(a:,t)dxdt,

for any test function ¢ € C°([0,T) x IR™) such that its support in time is compact and ¢(z,T) = p(z,T) =
ou(z,T) =0 for all z € R". If T = oo, we say that (u,v) is a global weak solution to ().

Now, we are ready to state the main results of this paper.

Theorem 2.4. Let a € (0,2] and & = min{1, a}. We assume that (ug,u1, uz) € H>(IR")x H'(IR")x IL*(IR™)
satisfy the following condition:

/ § (u1(x) + ua(z)) ¢(0, z)dz > 0. (8)
If

1<p§1+g, (9)
n

then there is no global (in time) weak solution to problem . Moreover, the sharp behavior of the lifespan
T. of local (in time) solutions to with respect to a sufficiently small parameter € > 0 is given by

__a(-1)
T. < Ce &G=Dn_ for all small positive constant €. (10)

Theorem 2.5. Let o, € (0,2], @ = min{l,a}, and B = min{l,B}. We assume that (ug,u1,uz) €
H?(IR™)x H'(IR™) x IL?(IR™) and (vo,v1,v2) € H2(IR™) x H'(IR™) x IL?(IR") satisfy the following conditions:

/I . (u1(z) + uz(x)) (0, x)dz > 0,

(11)
/ (01(2) + va(2)) (0, )dz > 0.
I n
If
1 - -
n < maX{ﬁJr&p,dJrﬁq}, (12)
pq—1

then there is no global (in time) weak solution to (@ Moreover, the blow-up time T is estimated by

T. < Ce Bt n for all small positive constants «. (13)

The proofs of our main results are given in the next section. For the proofs of Theorems and [2.5]
we shall use the nonlinear capacity method combined with the following pointwise estimate (see Dao and
Reissig [12]).

I =

Lemma 2.6. ([12]) Let (z) = (1+ (|| — 1)*)". Let s € (0,1) and ¢ : R™ — IR be the function defined by

()72 i o 2 1,

o(x) = (14)
1 if x| < 1.
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Then ¢ € C2(IR™), and the following estimate holds

[(=A)°¢(z)| < Co(z),z € R, (15)
where C' is a constant independent of x.

Lemma 2.7. ([12]) Let s € (0,1). Let v be a smooth function satisfying 02¢ € IL.°°(IR™). For any R > 0,
let Ygr be a function defined by

Yr(z) =1 (%) , forall xelR™
Then, (—A)*Yg satisfies the following scaling properties:

S —2s8 S x n
(~A) (r)(@) = B2 (=AY (5) forall =€ R™
Remark 2.8. Throughout, C denotes a positive constant, whose value may change from line to line.

2.1. Proof of Theorem

Let u be a global weak solution to , then for all ¢ € C ([0,00); H%(IR™)) N C! ([0, 00); IL*(IR™)), one
has

+00
/ / |ue(z, t)[Po(t, x)dxdt + / (u1(z) + ua(z)) ¢(0, x)dx
0 IR™

IR™

_/1 nul(:c)@t(O,x)dx—/0+oo/I g, O pu(t, x)dadt
- /OJFOO/I nut(a:,t)@t(t,x)dwdt — /O+Oo/ ) (@, ) Ap(z, t)dwdt

N /Om /1 (@, 1) (—A) 2 p(x, t)dad.

Now, we introduce the function ¢ = ¢(x), defined in (14) with s = §, and the function n = n(t) having the
following properties:

1 if 0<t<i,
1. n € C§°([0,00)) and decreasing if % <t<1,
0 if t>1.

2,072 () (In()] + [ )] + 0" (t)]) < C for any ¢ € [3,1].
Let R be a large parameter in [0,00). We define the following test function:
er(z,t) = nr(t)or(z),

where ng(t) = n(R%t)) and ¢r(r) = ¢(R~'K~1z) for some K > 1 which will be fixed later. Moreover, we
check easily that supp(n) C [0, R*]. We define the functionals

—+o00 R&
h:/ / Iut(:c,t)lpsm(t,x)da:dt:/ / ez, t)Por(t, o) dadt,
and

R% R&
12:/~ / lug(x, t)[Por(t, x)dzdt, .73:/ / lug(x, t)|Por(t, )dzdt.
5 Jme 0 J{z|>RK}
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From (|16)), one obtains
Rd
I +/ . (ul(x) + UQ(iL')) ¢R(x)dx = A& /I . ut(x,t)nﬁé(t)¢R(x)dxdt

R& R&
_/~ /Inut($,t)77R(t)¢R<l‘)d$dt—/0 /{x|>RK}u(x,t)nR( VA p(z)drdt

R&
_/ /1 n ut(@, () (—A)?2 ¢r(z)dzdt.

Using integrating by parts, one has
I —|—/ (u1(x) +u2(x))¢R(m)dx+/ uo(z)WR(0)Agpr(x)dx

R&
_ / / we(, )iy br(x) dadt
-
(17)

where
RCX
Wa(t) = / nr(r)dr.
t
=1, we can proceed the estimate for J; as follows

Applying Holder’s inequality with 5+
R&
< [, [ tlnhOlon()dat
R R"™
2

S </R/ " <|ut(x’t”“”f;%(fvw)))pdmt);
(/Ra/ <|77 ) or(T)pp (t x))p’dxdt)

1 R® _r ,
<ciy ( / | e Ol onla )dmdt>

Using change of variables t = R~% and 2 = R™'K 'z, we get

| < CIF R T5 k ( / <:z>—"—ad:z>

Now, let us turn to estimate Jo, J3, and Jy. Applying Holder ’s inequality again, as we estimated Jy, leads

to
Ré e ,
P P A D
WARYelr: ( / /{ o U (B (D6n” ()| Adr(z)| dwdt) o
2+

e

o=

~ | n+a n
K. (18)

e

1
<CI’R”

"d\‘._.

9

<CI”R
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1
!

1 R& P , p
|| < C1F (L‘* / nr " ()R ¢R(ﬂ?)dl’dt>
2 JIRn
2

1 (20)
L 7514,@ n JUN s I = 7d+n+a n
<CIJR K / () "dz <CIJR K,
and 1
s v A
al<er ([ ] a6 @I-8)Fon(@) duds
o Jrn (21)
1 n+a n
<CIPR™ T KO
Combining the estimates from to we may arrive at
Bt [ () + @) ér(@ds < [ Juola)|[WR(0)|Ad()ldz
1 ~ nta n 1 ~ nta n 1 ~ nta n
+C<I;R‘2"‘+ VKV IRV RY 4+ ROV kMY
PN .- SN
+I7R KT,
Moreover, it is clear that
R~ ~ _
Ur(t) = / nr(T)dr = R* —t then Wg(0)=R™
t
We can easily check that |[A¢g(7)| < R™2¢g(z). Therefore, this implies that
L —l—/ (ur(z) + uz(z)) or(z)dx < RdQ/ |uo(z)|PpRr(x)dx
p 2GS B g GBS B opgantd oyt
+C|(IJR " Kv +1JR " K + 13 R KT (22)
1 _a_i_m —a+=
FIPROTY R )
Since ug € ILY(IR™), it implies immediately that
lim [RdQ/ |u0($)|¢R(az)daz] =0.
R—o00 R"”
Invoking the assumption (), one obtains
5 1
B2 [ Ju@lorta)de < 5 [ () + ua(o) onlo)de
I n n
From , we easily see that
1 p 2GRS 8
I + 3 (ui(z) + uz(z)) pr(z)de < C(IJR " Kp
+& +& (23)

1~ in+ta 2w L 5 cinda o,m L nda o n
+ PRV KY 4 PR KT L PR K aw),
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By choosing K = 1 and noticing the relations Is < I1 and I3 < I;, we may arrive at

n+g / (@) + us(2)) pr(z)dz < c(zf RS

(24)
?p—adnEE Lo oiaqnEd oo _gqndd 3 -Gt e
+I'R ” + IR ” + IR P’)SC’IfR A
Thanks to the following e-Young’s inequality:
ab < ed? + C(e)b”/, forall a,b>0 and forany & >0,
we conclude )
= _g4nta A ~
CIPR™YV <ely + C(e)R™P+n+4,
Consequently, from we derive
1 ., -
(1—e) + 2/ (ur(x) + uz(z)) pr(x)de < C(e)R™OP Mt
which follows that ) )
I, < CR™Hnta (25)
and
/ (u1(z) + uz(x)) pp(z)de < CR™P+n+a, (26)

It is clear that the assumption @D is equivalent to —&p’ +n + & < 0. For this reason, we will split our
consideration into two cases.
Case 1:In the subcritical case —ap’ +n + & < 0, letting R — oo in , we easily deduce

[ (wr(a) + wa(e) m(ods <0,

which contradicts the assumption (8]).
Case 2: For the critical case —ap’ +n + a = 0, from , we can see that Iy < C. Using Beppo Levi’s
theorem on monotone convergence, one obtains

00 R&
/ / g (2, £)|Pdadt = Tim / (g (2, )Pz, £t
0 n 0 R"

R—o0

= lim I1 S C.
R—o0

We conclude that uy € ILP((0,00) x IR"). By the absolute continuity of the Lebesgue integral, it follows
that Iy — 0 and I3 — 0, as R — oo. Using again the fact that a = ”;r,a, we obtain from the following
estimate:

1 L - n E
I + / (u1(z) + ua(z)) pr(x)dx < C(IQ”R_O‘KP’ + I K¥

2
N ) § . ) N (27)
+ I R 4 Rreta KTy ) ,
for all K > 1.
1. If @ € (0,1], then a = &. Consequently, from (27), we have

1 L n 1 n

I + 2/ (u1(x) + ua(z)) dpr(x)dxr < C(I{’R‘“K?’ + KV
' (28)

l n l n
+ IR L PR > :
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Letting R — oo in (28), we get
/ (u1(x) + uz(z)) pr(z)dr < CK ™" forall K >1. (29)

It is obvious that —a + & < 0. We can fix a sufficiently large constant K > 1 in to gain a
contradiction to .

2. If a € (1,2], then @ = 1. As a result, choosing K = 1, we may conclude from that

1 1 1 1 1
I + 2/ (@) + uz(w)) $r(w)dz < C’<I§ RY+ 12 +12+ 17 Rla). (30)
Since o > 1, letting R — oo in (30]) we obtain a contradiction to again.

Let us now consider the case of subcritical exponent to prove the estimate for lifespan T, of solutions to .
We assume that v = u(x,t) is a local solution to . In order to prove the lifespan estimate, we replace
the initial data (0,uy,u2) by (0,ef1,ef2) with a small constant € > 0, where (f1, f2) € H'(IR") x IL*(IR")
satisfy the assumption (§)). Invoking the fact that

| (7@)+ fal@)on(a)de = e >0

I n

and repeating the steps in the above proofs we arrive at the following estimate:
e < CR_dp,—’—n—"_&.

Let R = Té, then a standard calculation lead to

a(p—1)

T, <eg a=(p—Dn,

Summarizing, the proof of the Theorem [2.4] is completed.

2.2. Proof of Theorem
First, we introduce the same test function as in the proof of Theorem Let us assume that (u,v) is
the global weak solution to . We define the functionals

+oo Ré
J1 =/ / \Ut(x,t)!qtpR(t,m)dxdt:/ / lug(z, t)|%pR(t, z)dzdt,
0 n 0 "
and

R® R
Ty = / ~ / g (2, )90 (s 2)dadt, Ty = / / g (2, )| e (t, ) davel,
2 Jmn 0 J{z|>RK}

+oo Ré
n —/ / v (2, 1)|Ppr(t, z)dzdt —/ / (g (2, ) |Por(t, @) dwdt,
0 R" 0 R™

and

R& R&
I — / ~ / i, ) P (t, 2)dadt, I = / / i, ) Por(t, 2)dadt.
2 Jre 0 J{lz[>RK}

From @ and , one has

R&
I1+/ n(ul(x)—ﬁ—uz(az))go(o,a:)dx:/R& /nut(x,t)n}%(t)qbg(x)dxdt
R® R&
- A ) / we(, Oy () dr() dedt — / / w(z, g () Adp(z)dedt
2 Jie 0 Jelzrr)

R&
/0 /1 n u(z, ne(t)(—A) 2 ¢ (x)dad,
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and

R&
J +/I (@) +v2(2)) (0, w)dx = /Ra /1 nut(x,t)n;g(t)¢R(x)dxdt
RS -
- /R@ / (@, )np(t)or(r)dedt —/0 /{I \>RK}v(£’t)nR(t)A¢R($)dxdt

R& ,
_/0 / vy, )R (t)(—A)2 gp(x)dadt.

Repeating the steps of the proof from to , we may conclude the following estimates:

1 _~nta
L<J'R 7 (31)
In the analogous way, one obtains
1 7B+ n+l§
J1 <I'R v (32)
From and , we obtain
pg—1 <7”+n+5>l7d+n+& 5
"™ <R P Ja ¢ = R (33)
pg—1 ~ |, nt+a 3, n B
g < gAR) 5B _ g, (34)

It is clear that the assumption is equivalent to max{d;,d2} < 0. For this reason, we will split our
congsideration into two cases.

Case 1:In the subcritical case max{d,d2} < 0, letting R — oo in ([33)and we easily deduce

n

/ (v1(z) + va(z)) pr(x)dx <0 and / (u1(x) 4+ ua(z)) dpr(x)dx <0,
which contradicts the assumption (11}).

Case 2: For the critical case 6o = 0, from we can see that J; < C. Using Beppo Levi’s theorem on
monotone convergence, one obtains

00 RS
/ / lug(x,t)|9dxdt = lim / |ue(z,t)|9oRr(x, t)dzdt

R—oo
Repeating the steps of the proof from to , we may conclude the following estimates:
N 1
1 R P _pyniB
hay [ o)+ wn@)or@de<c( [T [ julsopentaded ) R
and
_ 1
1 R% q _gynta
B [ @) +w@)or@de<C ([ [ juteltentt o) B
Since o = 0 and invoking the above estimates, we easily deduce that
1
Bty [ )+ vala)) dnle)da
[Rn
(36)

R& i
<( [ ] ueorentasd)
0 R
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Letting R — oo in and using (37), one obtains

+o00
[ e piedsdt+ [ (@) + oa(o) énta)de = o
0 IR" n

which is a contradiction to (1I). In the case d; = 0 we repeat the same arguments as in §y = 0.

Let us now consider the case of subcritical exponent to prove the estimate for lifespan 7, of solutions to .
We assume that (u,v) = (u(z,t),v(x,t)), is a local solution to (2)). In order to prove the lifespan estimate, we
replace the initial data (0, u1,uz), (0,v1,v2) by (0,ef1,ef2),(0,£91,€92) with a small constant € > 0, where
(f1, f2), (91, g2) € HY(IR™) x IL2(IR™) satisfy the assumption . Repeating the steps in the above proofs,
we arrive at the following estimate:

1 _~+n+&

L+ece<JIR T (37)
and N
1 _f4ntB

Ji+ece<I'R [ (38)

If we plug in (38), we find

L (_z nta) 1l
J1+05§CJ1”R( ot v (39)

We easily obtains that

1

ce < cgpi g

n+
Y

Jr(zae=2)s _ g

which leads to

a+Bq 774

e < C’R*[Pq*1
Let R = T=. Then with a standard calculation, one has

__ &(pg—1)
Te < g atfa—n(pe-1)

Summarizing, the proof of the Theorem is completed.
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