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Abstract

Stochastic Di�erential Equations (SDEs) are extensively utilized to model numerous physical quantities from
di�erent �elds. In particular, linear SDEs are used in epidemic modeling. It is crucial to ensure the positivity
of several quantities in an epidemic model. Numerous articles on this topic proves the positivity of SDEs
solutions using probabilistic tools, such as in Theorem 3.1 of [10]. In this work, we suggest an alternative
way to show the positivity of the solutions. The proposed approach is based on �nding solutions to linear
SDEs using Itô formula. We comment on several examples of stochastic epidemic models existing in the
literature.
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1. Introduction

Nowadays, we have many types of interesting di�erential equations utilized for modelling problems arising
from di�erent �elds of science. For instance, one can �nd works on fractional di�erential equations such as
in [6], [3], [2], and/or their applications to study the speed of cancer see for example [4] or to investigate the
e�ect of quarantine or vaccination during pandemic situations as in [13]. Stochastic di�erential equations
constitute since decades a very active trend of research when modeling real life problems such as in [8] for
COVID-19 or modelling SARS-COV2 as in [7].

In this paper, the interest is on Stochastic epidemic models that utilize a system of linear SDEs. There
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are plenty of papers on stochastic epidemic models. Yet, as far as we could tell, these papers usually discuss
the existence of a global positive solution, but they do not investigate �nding a solution of the SDE. In this
work, we propose an alternate method to demonstrate the positivity of the solutions of linear SDEs of the
form:

dX(t) = [α(t) + β(t)X(t)]dt+ [γ(t) + θ(t)X(t)]dB(t),

where B is a standard Brownian motion. The processes α(t), β(t), γ(t), θ(t) are all square integrable adapted
processes not dependent on X. The reader can �nd a solution to the above SDE in the book of [9]. In this
short communication, we provide also detailed solutions of a system of linear SDEs using Itô formula. More-
over, we use the solution to show when it is positive, and we apply all this to a variety of existing stochastic
epidemic models. This can be seen as a direct alternative to what is existing in the literature, where research
articles on this topic do not solve the SDEs but prove the existence and positivity of the solution in a rela-
tively long proof.

This paper is structured as follows: Theoretical solutions of linear SDEs is presented in Section 2. Section 3
o�ers applications to a variety of stochastic epidemic models. Finally, concluding remarks are discussed in
Section 4.

2. SDEs with linear coe�cients

Let (Ω,FT , (Ft)t∈[0,T ], P ) be a �ltered probability space and let W := (W (t))t∈[0,T ] be a m-dimensional
Brownian motion. We assume that the �ltration (Ft)t∈[0,T ] is the natural �ltration generated by the Brownian
motionW . Consider the n-dimensional stochastic process X := (X(t))t∈[0,T ] which satis�es the below system
of Stochastic Di�erential Equations (SDEs)

dX1(t) = [α1(t) + β1(t)X1(t)]dt+
m∑
j=1

[γ1j(t) + θ1j(t)X1(t)]ρ1jdWj(t)

· · ·

dXk(t) = [αk(t) + βk(t)Xk(t)]dt+

m∑
j=1

[γkj(t) + θkj(t)Xk(t)]ρkjdWj(t) (1)

· · ·

dXn(t) = [αn(t) + βn(t)Xn(t)]dt+
m∑
j=1

[γnj(t) + θnj(t)Xn(t)]ρnjdWj(t),

where X(0) = (X1(0), . . . , Xn(0)) is a given positive real vector and t ∈ [0, T ]. We assume that αk(t) :=
α(t, X̂−k(t)), βk(t) := β(t, X̂−k(t)), γk(t) := γ(t, X̂−k(t)), and θk(t) := θ(t, X̂−k(t)) where

X̂−k(t) := (X1(t), . . . , Xk−1(t), Xk+1(t), . . . , Xn(t))

is the n− 1-dimension vector obtained from X(t) by removing the kth component for any k = 1, . . . , n. In
other words, for each SDE of the above system, the coe�cients are linear.

To achieve this objective, we need to employ the Itô formula provided in the next lemma.

Lemma 2.1. Consider a process Y = (Y1, . . . , Yn), where for k ∈ {1, . . . , n}, Yk is driven by the stochastic

di�erential equation

dYk(t) = uk(t)dt+

m∑
j=1

vkj(t)dWj(t), Yk(0) ∈ R+,
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where vkj = (v1j , . . . , vnj), j = 1, . . . ,m, as well u = (u1, . . . , un) denotes n-dimensional square-integrable

adapted processes. Given a function g(y) twice continuously di�erentiable from Rn to R, then we have

dg(Y (t)) =
n∑

k=1

∂g

∂yk
(Y (t))dYk(t) +

n∑
k,l=1

1

2

∂2g

∂ykyl
(Y (t))d 〈Yk(t), Yl(t)〉 , (2)

where d 〈Wk(t),Wl(t)〉 = δkldt and d 〈t,Wk(t)〉 = d 〈Wk(t), t〉 = d 〈t, t〉 = 0.

Note that if is a function f twice continuously di�erentiable from R to R, then the formula (2) can be reduced
to

df(Yk(t)) =

f ′
(Yk(t))uk(t) +

1

2
f

′′
(Yk(t))

m∑
j=1

v2kj(t)

 dt
+f

′
(Yk(t))

m∑
j=1

vkj(t)dWj(t). (3)

We also need the processes (ζk(t))t∈[0,T ], k ∈ {1, . . . , n} de�ned by the SDE

dζk(t) = ak(t)ζk(t)dt+
m∑
j=1

bkj(t)ζk(t)dWj(t), ζk(0) = 1, (4)

where (ak(t))t∈[0,T ] and (bkj(t))t∈[0,T ] are two stochastic processes that do not depend on ζk. The solution
of (4) can be obtained by applying Itô formula (3) to ln ζk(t); i.e. one obtains

ζk(t) = exp

∫ t

0

ak(u)− 1

2

m∑
j=1

b2kj(u)

 du+
m∑
j=1

∫ t

0
bkj(u)dWj(u)

 , (5)

where t ∈ [0, T ]. Now, we can provide the main result of this paper.

Theorem 2.2. Let k ∈ {1, 2, . . . , n}. The solution of Xk the kth process of the system (1) is given by

Xk(t) = ζk(t)

Xk(0) +

∫ t

0
[αk(u)−

m∑
j=1

θkj(u)γkj(u)ρ2kj ]ζ
−1
k (u)du

+

m∑
j=1

∫ t

0
γkj(t)ρkjζ

−1(u)dWj(u)

 . (6)

where t ∈ [0, T ], and ζk(t) is as in equation (5).

Proof. Let k ∈ {1, 2, . . . , n} and assume that the solution of Xk(t) can be written as

Xk(t) := Zk(t)ζ(t), t ∈ [0, T ], with Xk(0) = Zk(0), (7)

where Zk(t) is a stochastic process to be determined. From (7) we can write Zk(t) = Xk(t)ζ−1(t). By Itô
formula and (4), dζ−1k (t) can be expressed as

dζ−1k (t) =

−ak(t) +

m∑
j=1

b2kj(t)

 ζ−1k (t)dt−
m∑
j=1

bkj(t)ζ
−1
k (t)dWj(t), (8)
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with ζ−1k (0) = 1. Then, dZk(t) can be calculated using the below integration by parts for stochastic processes

dZk(t) = d(ζ−1k (t)Xk(t)) = ζ−1k (t)dXk(t) +Xk(t)dζ−1k (t) + [dζ−1k (t), dXk(t)].

Using (1) and (8) the above expression can be written as

dZk(t) = ζ−1k (t)

[αk(t) + βk(t)Xk(t)]dt+
m∑
j=1

[θkj(t)Xk(t)

+γkj(t)]ρkjdWj(t)) + ζ−1k (t)

Xk(t)

(−ak(t) +

m∑
j=1

b2kj(t))dt

−
m∑
j=1

bkj(t)dWj(t)

− m∑
j=1

bkj(t)[γkj(t) + θkj(t)Xk(t)]ρkjdt


=

 m∑
j=1

γkj(t)ρkjζ
−1(t) + [

m∑
j=1

θkj(t)ρkj − bkj(t)]Zk(t)

 dWj(t).

+

[αk(t)−
m∑
j=1

bkj(t)γkj(t)ρkj ]ζ
−1
k (t) + [βk(t)− ak(t)

+
m∑
j=1

bkj(t)(bkj(t)− θkj(t)ρkj)

Zk(t)

 dt. (9)

Assume that ak and bkj have the values

ak(t) = βk(t), and bkj(t) = θkj(t)ρkj , for j ∈ {1, . . . ,m}. (10)

Then dZk(t) reduces to

dZk(t) = [αk(t)−
m∑
j=1

θkj(t)γkj(t)ρ
2
kj ]ζ

−1
k (t)dt+

m∑
j=1

γkj(t)ρkjζ
−1(t)dWj(t),

and thus

Zk(t) = Zk(0) +

∫ t

0
[αk(u)−

m∑
j=1

θkj(u)γkj(u)ρ2kj ]ζ
−1
k (u)du

+
m∑
j=1

∫ t

0
γkj(t)ρkjζ

−1(u)dWj(u).

Using the above equation and (7), we obtain the theoretical solution of Xk(t) as expressed in (6) which ends
the proof.

The next proposition provides an important particular case of the Theorem. 2.2 which can be applied to
epidemic stochastic models.

Proposition 2.3. Consider the system (1) and let γkj(t) = 0 for any k ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, and
t ∈ [0, T ]. Then the solution (6) is given by

Xk(t) = ζk(t)

(
Xk(0) +

∫ t

0
αk(u)ζ−1k (u)du

)
. (11)

Moreover if Xk(0) > 0 and αk(t) ≥ 0 then Xk(t) > 0.

Proof. To obtain the solution (11) it is su�cient to vanish the terms γkj(t) in (6). The positivity of Xk(t) is
guaranteed when Xk(0) > 0 and αk(t) ≥ 0 since by (5) ζ−1k (t) > 0 for any t ∈ [0, T ].
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3. Application to the solution of SDEs of stochastic epidemic models

In this section, we provide solutions to a variety of stochastic epidemic models and show that the solutions
are positive using Proposition. 2.3. We �rst consider the below SIRI stochastic model discussed in [10]

dS(t) = [α− λS(t)I(t)− βS(t)]dt+ σ1S(t)dW1(t)

dI(t) = [λS(t)I(t)− (γ + β)I(t) + ηR(t)]dt+ σ2I(t)dW2(t)

dR(t) = [γI(t)− (η + β)R(t)]dt+ σ3R(t)dW3(t).

(12)

To solve (12), we apply Proposition. 2.3 with k = 3, m = 3, ρkj = δkj , and γkj = 0 (for k, j = 1, 2, 3). In
addition, we apply the following assumptions

X1 = S, α1 = α, a1 = β1 = −(λI + β), b1j = θ1j = σ1 j = 1, 2, 3

X2 = I, α2 = ηR, a2 = β2 = λS − (λ+ β), b2j = θ2j = σ2 j = 1, 2, 3

X3 = R, α3 = γI, a3 = β3 = −(η + β), b3j = θ3j = σ3 j = 1, 2, 3.

(13)

Using equations (5), (10), and (13), one may explicitly express ζk(t), k = 1, 2, 3. Consequently, with the
implementation of (11), we obtain the following exact solutions for the SIRI model (12):

S(t) = S(0)ζ1(t) + α

∫ t

0
ζ1(t− u)du,

I(t) = I(0)ζ2(t) + η

∫ t

0
R(u)ζ2(t− u)du,

R(t) = R(0)ζ3(t) + γ

∫ t

0
I(t)ζ3(t− u)du.

(14)

It is a trivial task to show that S, I, and R given in (14) are positive and unique. This is a clear proof of the
importance of Proposition 2.3 which provides a simple and straightforward alternative to the long discussion
in section 3 of [10]. It should be mentioned herein that authors in [10] proved the uniqueness and positivity
of the solutions of the SDEs of the SIRI model (12) by using a totally di�erent theory.

Tables 1 and 2 show the implementation of our present strategy -using Equations (5) and (11)- to han-
dle several stochastic epidemic models already published in the literature; [12], [1], [14], [5], [11].

Ref. Model and solution by Proposition 2.3

[12]

dSm = [Γ1 − µSm − a1SmIf ] dt+ σSmSmdBSm(t),
dSf = [Γ2 − µSf − a2SfIm] dt+ σSf

SfdBSf
(t),

dIm = [a1SmIf − (µ+ β1) Im − b1Im] dt+ σImImdBIm(t),
dIf = [a2SfIm − (µ+ β2) If − b2If ] dt+ σIf IfdBIf (t),

Parameters' values for solutions by (11) and (5), bij = 0, i 6= j

X1 = Sm, α1 = Γ1, a1 = −(µ+ a1If ), b11 = σSm ,
X2 = Sf , α2 = Γ2, a1 = −(µ+ a2Im), b22 = σSf

,

X3 = Im, α3 = a1SmIf , a3 = −(µ+ β1 + b1), b33 = σIm
X4 = If , α4 = a2SfIm, a4 = −(µ+ β2 − b2), b44 = σIf
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[1]

dS
dt = (µN − βIS − (µ+ ω)S − ∅V )dt+ σ1SdB1,
dV
dt = (ωS − (µ+ ∅)V )dt+ σ2V dB2,
dL
dt = (βIS − (µ+ δ + γ)L)dt+ σ3LdB3,
dI
dt = (γL− (µ+ α+ d)I) + σ4IdB4,

Parameters' values for solutions by (11) and (5), bij = 0, i 6= j

X1 = S, α1 = µN − ∅V, a1 = −(βI + µ+ ω), b11 = σ1,
X2 = V, α2 = ωS, a1 = −(µ+ ∅)V, b22 = σ2,
X3 = L, α3 = βIS, a3 = −(µ+ δ + γ), b33 = σ3
X4 = I, α4 = γL, a4 = −(µ+ α+ d), b44 = σ4

[14]

dS(t) = (µ− βS(t)I(t)− (µ+ φ)S(t))dt− σS(t)I(t)dW (t)
dI(t) = (βS(t)I(t) + ρβV (t)I(t)− (λ+ µ)I(t))dt+ σ(S(t)

+ρV (t))I(t)dW (t)
dV (t) = (φS(t)− ρβV (t)I(t)− µV (t))dt− ρσV (t)I(t)dW (t)
dR(t) = (λI(t)− µR(t))dt,

Parameters' values for solutions by (11) and (5), bij = 0, i 6= j

X1 = S, α1 = µ, a1 = −(βI(t) + µ+ φ), b11 = −σI(t),
X2 = I, α2 = 0, a2 = βS(t) + ρβV (t)− (λ+ µ),

b22 = σ(S(t) + ρV (t))
X3 = V, α3 = φS(t), a3 = −(ρβI(t) + µ), b33 = −ρσI(t)
X4 = R, α4 = λI(t), a4 = −µ, b44 = 0

Table 1: Application of Proposition. 2.3 to some existing stochastic epidemic models.

Ref. Model and solution by Proposition 2.3

[5]

dS(t) = [Λ− β (I(t) + ηCC(t) + ηAA(t))S(t)− µS(t)] dt
−σ (I(t) + ηCC(t) + ηAA(t))S(t)dB(t),

dI(t) = [β (I(t) + ηCC(t) + ηAA(t))S(t)− ξ3I(t)
+αA(t) + ωC(t)] dt
+σ (I(t) + ηCC(t) + ηAA(t)) I(t)dB(t),

dC(t) = [φI(t)− ξ2C(t)] dt
dA(t) = [ρI(t)− ξ1A(t)] dt,

Parameters' values for solutions by (11) and (5), bij = 0, i 6= j

X1 = S, α1 = Λ, a1 = −(β (I(t) + ηCC(t) + ηAA(t)) + µ),
b11 = −σ (I(t) + ηCC(t) + ηAA(t)) ,

X2 = I, α2 = β (ηCC(t) + ηAA(t))S(t) + αA(t) + ωC(t),
a2 = βS(t)− ξ3, b22 = σ (I(t) + ηCC(t) + ηAA(t)) ,

X3 = C, α3 = φI(t), a3 = −ξ2, b33 = 0
X4 = A, α4 = ρI(t), a4 = −ξ1, b44 = 0

The model considered in our paper is slightly modi�ed from the model treated in [5]. Everything is the same except in the
equation of dI(t), in the coe�cient of dB(t), we replace S(t) by I(t).
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[11]

dS = [Λ− β (I + ηCC + ηAA)S − µS] dt
+ (σ11 + σ12S)SdB1(t)

dI = [β (I + ηCC + ηAA)S − ξ3I + ωC + αA] dt
+ (σ21 + σ22I) IdB2(t)

dC = [φI − ξ2C] dt+ (σ31 + σ32C)CdB3(t)
dA = [ρI − ξ1A] dt+ (σ41 + σ42A)AdB4(t)

Parameters' values for solutions by (11) and (5), bij = 0, i 6= j

X1 = S, α1 = Λ, a1 = −(β(I + ηCC + ηAA) + µ),
b11 = σ11 + σ12S,

X2 = I, α2 = β(ηCC + ηAA)S + αA+ ωC,
a2 = βS(t)− ξ3, b22 = σ21 + σ22I,

X3 = C, α3 = φI, a3 = −ξ2, b33 = σ31 + σ32C
X4 = A, α4 = ρI, a4 = −ξ1, b44 = σ41 + σ42A

Table 2: Solutions of other recent stochastic epidemic models using Proposition. 2.3.

4. Conclusion

Stochastic Di�erential Equations are applied in many real-life problems. For example, linear SDEs are
extensively utilized when modeling epidemic situations. Showing existence and the positivity of solutions
is among the important points to investigate while studying such models. The literature contains a huge
number of articles that deal with these issues using probability techniques, but without looking at the
SDEs solutions of the model. This research communication suggests investigating the properties of a given
stochastic epidemic model by solving the SDEs of the model and show for instance the positivity from the
expression of an SDE's solution. Our approach is applied to several existing stochastic epidemic models.
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