Magnetic Curves in C-manifolds

Şaban Güvenç*

(Communicated by Marian Ioan Munteanu)

Abstract

In this paper, we study normal magnetic curves in C-manifolds. We prove that magnetic trajectories with respect to the contact magnetic fields are indeed θ_{α}-slant curves with certain curvature functions. Then, we give the parametrizations of normal magnetic curves in $\mathbb{R}^{2 n+s}$ with its structures as a C-manifold.

Keywords: C-manifold, magnetic curve θ_{α}-slant curve.
AMS Subject Classification (2020): Primary: 53C25 ; Secondary: 53C40; 53A04.

1. Introduction

Let (M, g) be a Riemannian manifold, F a closed 2-form and let us denote the Lorentz force on M by Φ, which is a $(1,1)$-type tensor field. If F is associated by the relation

$$
\begin{equation*}
g(\Phi X, Y)=F(X, Y), \quad \forall X, Y \in \chi(M) \tag{1.1}
\end{equation*}
$$

then it is called a magnetic field ([1], [2] and [5]). Let ∇ be the Riemannian connection associated to the Riemannian metric g and $\gamma: I \rightarrow M$ a smooth curve. If γ satisfies the Lorentz equation

$$
\begin{equation*}
\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}(t)=\Phi\left(\gamma^{\prime}(t)\right), \tag{1.2}
\end{equation*}
$$

then it is called a magnetic curve or a trajectory for the magnetic field F. The Lorentz equation can be considered as a generalization of the equation for geodesics. Magnetic trajectories have constant speed. If the speed of the magnetic curve γ is equal to 1 , then it is called a normal magnetic curve [6]. For fundamentals of almost contact metric manifolds, we refer to Blair's book [4]. This paper is based on a similar idea of Ozgur and the present author's previous paper [7].

2. Preliminaries

Let $\left(M^{2 n+s}, g\right)$ be a differentiable manifold, φ a (1, 1)-type tensor field, $\eta^{\alpha} 1$-forms, ξ_{α} vector fields for $\alpha=1,2, \ldots, s$, satisfying

$$
\begin{align*}
\varphi^{2} X & =-X+\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \xi_{\alpha}, \tag{2.1}\\
\eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha}, \varphi \xi_{\alpha} & =0, \eta^{\alpha}(\varphi X)=0, \eta^{\alpha}(X)=g\left(X, \xi_{\alpha}\right), \\
g(\varphi X, \varphi Y) & =g(X, Y)-\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \eta^{\alpha}(Y), \tag{2.2}
\end{align*}
$$

where $X, Y \in T M$. Then $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called framed φ-structure and ($M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g$) is called framed φ manifold. The fundamental 2-form and Nijenhuis tensor is given by:

$$
\Omega(X, Y)=g(X, \varphi Y)
$$

[^0]$$
N_{\varphi}(X, Y)=-2 \sum_{\alpha=1}^{s} d \eta^{\alpha}(X, Y) \xi_{\alpha}
$$

If $d \Omega=0$ and $d \eta^{\alpha}=0, M=\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called a C-manifold. In a C-manifold, it is known that

$$
\left(\nabla_{X} \varphi\right) Y=0
$$

and

$$
\nabla_{X} \xi_{\alpha}=0
$$

(see [3] and [4]).

3. Magnetic Curves in C-manifolds

Let $\gamma: I \rightarrow M$ be a unit-speed curve in an n-dimensional Riemannian manifold (M, g). The curve γ is called a Frenet curve of osculating order $r(1 \leq r \leq n)$, if there exists orthonormal vector fields T, v_{2}, \ldots, v_{r} along the curve validating the Frenet equations

$$
\begin{align*}
T= & \gamma^{\prime}=v_{1} \\
\nabla_{T} T= & \kappa_{1} v_{2} \\
\nabla_{T} v_{2}= & -\kappa_{1} v_{1}+\kappa_{2} v_{3} \tag{3.1}\\
& \cdots \\
\nabla_{T} v_{r}= & -\kappa_{r-1} v_{r-1}
\end{align*}
$$

where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive functions called the curvatures of γ. If $\kappa_{1}=0$, then γ is called a geodesic. If κ_{1} is a non-zero positive constant and $r=2, \gamma$ is called a circle. If $\kappa_{1}, \ldots, \kappa_{r-1}$ are non-zero positive constants, then γ is called a helix of order $r(r \geq 3)$. If $r=3$, it is shortly called a helix.

A submanifold of a C-manifold is said to be an integral submanifold if $\eta^{\alpha}(X)=0, \alpha \in\{1,2, \ldots, s\}$, where X is tangent to the submanifold. A Legendre curve is a 1-dimensional integral submanifold of a C-manifold $\left(M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$. More precisely, a unit-speed curve $\gamma: I \rightarrow M$ is a Legendre curve if T is g-orthogonal to all $\xi_{\alpha}(\alpha=1,2, \ldots s)$, where $T=\gamma^{\prime}$.

Definition 3.1. Let γ be a unit-speed curve in a C-manifold $\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$. γ is called a θ_{α}-slant curve if there exist constant contact angles such that $\eta^{\alpha}(T)=\cos \theta_{\alpha}, \alpha=1,2, \ldots, s$. If $\theta_{\alpha}=\theta$ for all $\alpha=1,2, \ldots, s$, then γ is shortly called slant. Moreover, if $\theta_{\alpha}=\frac{\pi}{2}$ for all $\alpha=1,2, \ldots, s$, then γ is called a Legendre curve.

For θ_{α}-slant curves, we can give the following inequality for the constant contact angles:

$$
\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} \leq 1
$$

The equality case is only valid when γ is a geodesic as an integral curve of $\pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$.
Let γ be a unit-speed Legendre curve in a C-manifold $\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$. If we differentiate $\eta^{\alpha}(T)=0$, we obtain $\eta^{\alpha}\left(v_{2}\right)=0$. We can continue this process until we find $\eta^{\alpha}\left(v_{r}\right)=0$. Thus, we can state the following proposition:
Proposition 3.1. If γ is a unit-speed Legendre curve in a C-manifold $\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, then ξ_{α} is g-orthogonal to $\operatorname{sp}\left\{T, v_{2}, \ldots, v_{r}\right\}$, for all $\alpha=1,2, \ldots, s$.

If we consider equations (1.1), (1.2) and (3.1) together, for a normal magnetic curve of a magnetic field F with charge q, we find

$$
\begin{gathered}
\nabla_{T} T=\Phi T, \\
F(X, Y)=g(\Phi X, Y), \\
F_{q}(X, Y)=q \Omega(X, Y) \\
= \\
=q g(X, \varphi Y),
\end{gathered}
$$

which gives us

$$
\Phi_{q}=-q \varphi .
$$

Here, T denotes the tangential vector field of the normal magnetic curve γ for the magnetic field F_{q} in M. Then, we have the following equations:

$$
\begin{align*}
& \nabla_{T} T=-q \varphi T \tag{3.2}\\
& \nabla_{T} \xi_{\alpha}=0 \\
\nabla_{T} \varphi T= & \left(\nabla_{T} \varphi\right) T+\varphi \nabla_{T} T \\
= & \varphi(-q \varphi T) \\
= & -q \varphi^{2} T \\
= & -q\left(-T+\sum_{\alpha=1}^{s} \eta^{\alpha}(T) \xi_{\alpha}\right) \\
= & q T-q \sum_{\alpha=1}^{s} \eta^{\alpha}(T) \xi_{\alpha}
\end{align*}
$$

If we take the inner product of equation (3.2) with ξ_{α}, we obtain

$$
\begin{aligned}
0 & =g\left(-q \varphi T, \xi_{\alpha}\right)=g\left(\nabla_{T} T, \xi_{\alpha}\right) \\
& =\frac{d}{d t} g\left(T, \xi_{\alpha}\right)
\end{aligned}
$$

Integrating both sides, we get

$$
\eta^{\alpha}(T)=\cos \theta_{\alpha}=\text { constant }
$$

for all $\alpha=1,2, \ldots, s$. Equations (3.1) and (3.2) give us

$$
\begin{equation*}
\nabla_{T} T=\kappa_{1} v_{2}=-q \varphi T \tag{3.3}
\end{equation*}
$$

$$
\begin{align*}
g(\varphi T, \varphi T) & =g(T, T)-\sum_{\alpha=1}^{s}\left(\eta^{\alpha}(T)\right)^{2} \tag{0}\\
& =1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}
\end{align*}
$$

and

$$
\|\varphi T\|=\sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}
$$

From equation (3.3), we find

$$
\begin{align*}
& \kappa_{1}=|q| \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}=\text { constant } \tag{3.4}\\
& -q \varphi T=\kappa_{1} v_{2}=|q| \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} v_{2}}
\end{align*}
$$

and

$$
\begin{equation*}
\varphi T=-\operatorname{sgn}(q) \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} v_{2}} \tag{3.5}
\end{equation*}
$$

If $\kappa_{2}=0$, then $r=2$ and γ is a circle. If we apply η^{α} to equation (3.5), we obtain

$$
\eta^{\alpha}\left(v_{2}\right)=0
$$

which gives us

$$
\begin{aligned}
\nabla_{T} \eta^{\alpha}\left(v_{2}\right) & =0 \\
& =g\left(\nabla_{T} v_{2}, \xi_{\alpha}\right)+g\left(T, \nabla_{T} \xi_{\alpha}\right) \\
& =-\kappa_{1} \cos \theta_{\alpha} .
\end{aligned}
$$

As a result, we get $\cos \theta_{\alpha}=0$, for all $\alpha=1,2, \ldots, s$. Hence, γ is a Legendre circle, $\|\varphi T\|=1$ and $\kappa_{1}=|q|$. Let $\kappa_{2} \neq 0$. Using equations (2.1) and (3.1), we calculate

$$
\begin{align*}
\nabla_{T} \varphi T & =\left(\nabla_{T} \varphi\right) T+\varphi \nabla_{T} T \\
& =\varphi(-q \varphi T) \tag{3.6}\\
& =-q\left(-T+\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right) .
\end{align*}
$$

Differentiating equation (3.5), we also have

$$
\begin{equation*}
\nabla_{T} \varphi T=-\operatorname{sgn}(q) \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\left(-\kappa_{1} T+\kappa_{2} v_{3}\right)} \tag{3.7}
\end{equation*}
$$

In view of (3.4), (3.6) and (3.7), it is easy to see that

$$
\begin{equation*}
q\left[\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}-\left(\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) T\right]=\operatorname{sgn}(q) \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} \kappa_{2} v_{3} .} \tag{3.8}
\end{equation*}
$$

Note that

$$
\begin{gathered}
g(T, T)=1, g\left(T, \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right)=\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} \\
g\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}, \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right)=\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}, g\left(v_{3}, v_{3}\right)=1
\end{gathered}
$$

So, if we calculate the norm of both sides of equation (3.8), we get

$$
\begin{equation*}
\kappa_{2}=|q| \sqrt{\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}} \tag{3.9}
\end{equation*}
$$

If we write (3.9) in (3.8), we have

$$
\begin{equation*}
\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}=\left(\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) T+\sqrt{\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}} \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} v_{3}} \tag{3.10}
\end{equation*}
$$

If we differentiate (3.10), we find $\kappa_{3}=0$. From equations (3.5) and (3.10), we can write

$$
\begin{gather*}
v_{2}=\frac{-\operatorname{sgn}(q)}{\sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}} \varphi T \tag{3.11}\\
v_{3}=\frac{1}{\sqrt{\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}} \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}}\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}-\left(\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) T\right) \tag{3.12}
\end{gather*}
$$

Finally, if $\kappa_{1}=0$, after some calculations, by (2.1) and (3.5), we obtain $T= \pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$, where $\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=1$. So, we can give the following theorem:

Theorem 3.1. Let $\gamma: I \rightarrow M=\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a unit-speed curve in a C-manifold M. Then γ is a normal magnetic curve for $F_{q}(q \neq 0)$ in M if and only if
i) γ is a geodesic θ_{α}-slant curve as an integral curve of $\pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$, where $\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=1$; or
ii) γ is a Legendre circle with $\kappa_{1}=|q|$ having the Frenet frame field

$$
\{T,-\operatorname{sgn}(q) \varphi T\} ;
$$

or
iii) γ is a non-Legendre θ_{α}-slant helix with

$$
\begin{gathered}
\kappa_{1}=|q| \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}, \\
\kappa_{2}=|q| \sqrt{\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}
\end{gathered}
$$

having the Frenet frame field

$$
\left\{T, v_{2}, v_{3}\right\}
$$

where $\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}<1, v_{2}$ and v_{3} are given in equations (3.11) and (3.12), respectively.
Corollary 3.1. If γ is a unit-speed slant curve in a C-manifold M, then it is a normal magnetic curve if and only if
i) it is a geodesic as an integral curve of $\frac{ \pm 1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}$; or
ii) γ is a Legendre circle with $\kappa_{1}=|q|$ having the Frenet frame field

$$
\{T,-\operatorname{sgn}(q) \varphi T\} ;
$$

or
iii) γ is a non-Legendre slant helix with $\kappa_{1}=|q| \sqrt{1-s \cos ^{2} \theta}, \kappa_{2}=|q| \sqrt{s} \varepsilon \cos \theta$, having the Frenet frame field

$$
\left\{T, \frac{-\operatorname{sgn}(q)}{\sqrt{1-s \cos ^{2} \theta}} \varphi T, \frac{\varepsilon}{\sqrt{s} \sqrt{1-s \cos ^{2} \theta}}\left(\sum_{\alpha=1}^{s} \xi_{\alpha}-s \cos \theta T\right)\right\},
$$

where $\theta \neq \frac{\pi}{2}$ is the contact angle satisfying $|\cos \theta|<\frac{1}{\sqrt{s}}$ and $\varepsilon=\operatorname{sgn}(\cos \theta)$.
Proof. Since $\theta_{\alpha}=\theta$ for all $\alpha=1,2, \ldots, s$, if we use

$$
\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=s \cos ^{2} \theta
$$

and

$$
\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}=\cos \theta \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

in Theorem 3.1, the proof is clear.
Remark. If we take $s=1$, we have Proposition 1 in [8].
Let $M=\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a C-manifold. A Frenet curve of order $r=2$ is called a φ-curve in M if $s p\left\{T, v_{2}, \xi_{1}, \ldots, \xi_{s}\right\}$ is a φ-invariant space. A Frenet curve of order $r \geq 3$ is called a φ-curve if $s p\left\{T, v_{2}, \ldots, v_{r}\right\}$ is φ-invariant. A φ-helix of order r is a φ-curve with constant curvatures $\kappa_{1}, \ldots, \kappa_{r-1}$. A φ-helix of order 3 is shortly named a φ-helix.

Proposition 3.2. If γ is a Legendre φ-helix in a C-manifold M, then it is a Legendre φ-circle.

Proof. Let γ be a Legendre φ-helix. Then the contact angles $\theta_{\alpha}=\frac{\pi}{2}$ for all $\alpha=1,2, \ldots, s$ and the Frenet frame field $\left\{T, v_{2}, v_{3}\right\}$ is φ-invariant. Since γ is Legendre, we have $g(\varphi T, \varphi T)=1$. Thus, we can write

$$
\begin{gather*}
g\left(\varphi T, v_{2}\right)=\cos \mu \tag{3.13}\\
\varphi T=\cos \mu v_{2} \pm \sin \mu v_{3} \tag{3.14}
\end{gather*}
$$

for some function $\mu=\mu(t)$. If we differentiate equation (3.13), we find

$$
\begin{align*}
-\mu^{\prime} \sin \mu & =\kappa_{2} g\left(\varphi T, v_{3}\right) \tag{3.15}\\
& = \pm \kappa_{2} \sin \mu .
\end{align*}
$$

Firstly, let us assume that $\mu=0$, i.e. $\varphi T=v_{2}$. Since γ is a Legendre curve, applying φ to $\varphi T=v_{2}$, we obtain $\varphi^{2} T=-T=\varphi v_{2}$. Differentiating both sides of $\varphi T=v_{2}$, we also have

$$
\begin{gathered}
\nabla_{T} \varphi T=\nabla_{T} v_{2}, \\
\left(\nabla_{T} \varphi\right) T+\varphi \nabla_{T} T=-\kappa_{1} T+\kappa_{2} v_{3}, \\
\kappa_{1} \varphi v_{2}=-\kappa_{1} T+\kappa_{2} v_{3}, \\
-\kappa_{1} T=-\kappa_{1} T+\kappa_{2} v_{3},
\end{gathered}
$$

which is equivalent to $\kappa_{2}=0$. Likewise, if $\mu=\pi$, we obtain $\kappa_{2}=0$. Finally, let us assume that $\mu \neq 0, \pi$. In this case, since γ is a helix, using (3.15), we have

$$
\begin{gathered}
\kappa_{1}=\text { constant }, \\
\kappa_{2}=\mp \mu^{\prime}=\text { constant } .
\end{gathered}
$$

If we differentiate (3.14) and use $\kappa_{2}=\mp \mu^{\prime}$, we calculate

$$
\kappa_{1} \varphi v_{2}=-\kappa_{1} \cos \mu T .
$$

If we apply φ to both sides, we conclude $\varphi T= \pm v_{2}$, which gives $\kappa_{2}=0$. This completes the proof.
Remark. For $s=1$, we obtain Proposition 2 of [8]. Likewise, the following theorem generalizes Theorem 1 of [8] to C-manifolds:

Theorem 3.2. Let γ be a φ-helix of order $r \leq 3$ in a C-manifold $M=\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$. Then, the following statements are valid:
i) If $\cos \theta_{\alpha}(\alpha=1,2, \ldots, s)$ are constants such that $\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=1$, then γ is an integral curve of $\pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$, hence it is a normal magnetic curve for arbitrary q.
ii) If $\cos \theta_{\alpha}=0$ for all $\alpha=1,2, \ldots$, s, i.e. γ is a Legendre φ-curve, then it is a magnetic circle generated by the magnetic field $F_{ \pm \kappa_{1}}$.
iii) If $\cos \theta_{\alpha}(\alpha=1,2, \ldots, s)$ are constants such that $\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=\frac{\kappa_{2}^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}}$, then γ is a magnetic curve for $F_{ \pm \sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}}$.
iv) Except above cases, γ cannot be a magnetic curve for any magnetic field F_{q}.

Proof. In view of Theorem 3.1 and Proposition 3.2, it is straightforward to show that $\nabla_{T} T=-q \varphi T$ for valid q.

4. Magnetic Curves of $\mathbb{R}^{2 n+s}$ with its structures as a C-manifold

In this section, we consider parameterizations of normal magnetic curves in $M=\mathbb{R}^{2 n+s}$ as a C-manifold. Let $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{s}\right\}$ be the coordinate functions and define

$$
X_{i}=\frac{\partial}{\partial x_{i}}, Y_{i}=\frac{\partial}{\partial y_{i}}, \xi_{\alpha}=\frac{\partial}{\partial z_{\alpha}},
$$

for $i=1, \ldots, n$ and $\alpha=1,2, \ldots, s .\left\{X_{i}, Y_{i}, \xi_{\alpha}\right\}$ is an orthonormal basis of $\chi(M)$ with respect to the usual metric

$$
g=\sum_{i=1}^{n}\left[\left(d x_{i}\right)^{2}+\left(d y_{i}\right)^{2}\right]+\sum_{\alpha=1}^{s}\left(d z_{\alpha}\right)^{2}
$$

Let us define a (1, 1)-type tensor field φ as

$$
\varphi X_{i}=-Y_{i}, \varphi Y_{i}=X_{i}, \varphi \xi_{\alpha}=0
$$

Finally, let $\eta^{\alpha}=d z_{\alpha}$ for $\alpha=1,2, \ldots, s$. It is well-known that $\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is a C-manifold, since $d \eta^{\alpha}=0$ and $d \Omega=0$, where $\Omega(X, Y)=g(X, \varphi Y)$ for all $X, Y \in \chi(M)$ (see [3] and [4]).

Let us denote normal magnetic curve by

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}, \ldots, \gamma_{2 n}, \gamma_{2 n+1}, \ldots, \gamma_{2 n+s}\right)
$$

Then

$$
T=\gamma^{\prime}=\left(\gamma_{1}^{\prime}, \ldots, \gamma_{n}^{\prime}, \gamma_{n+1}^{\prime}, \ldots, \gamma_{2 n}^{\prime}, \gamma_{2 n+1}^{\prime}, \ldots, \gamma_{2 n+s}^{\prime}\right)
$$

which gives us

$$
\begin{gathered}
\nabla_{T} T=\left(\gamma_{1}^{\prime \prime}, \ldots, \gamma_{n}^{\prime \prime}, \gamma_{n+1}^{\prime \prime}, \ldots, \gamma_{2 n}^{\prime \prime}, \gamma_{2 n+1}^{\prime \prime}, \ldots, \gamma_{2 n+s}^{\prime \prime}\right) \\
\varphi T=\left(\gamma_{n+1}^{\prime}, \ldots, \gamma_{2 n}^{\prime},-\gamma_{1}^{\prime}, \ldots,-\gamma_{n}^{\prime}, 0, \ldots, 0\right)
\end{gathered}
$$

Since

$$
\nabla_{T} T=-q \varphi T
$$

we have

$$
\eta^{\alpha}(T)=\gamma_{2 n+\alpha}^{\prime}=\cos \theta_{\alpha}=\text { constant }
$$

and

$$
\gamma_{2 n+\alpha}=\cos \theta_{\alpha} t+h_{\alpha} .
$$

We also get

$$
\begin{align*}
\gamma_{i}^{\prime \prime} & =-q \gamma_{n+i}^{\prime} \tag{4.1}\\
\gamma_{n+i}^{\prime \prime} & =q \gamma_{i}^{\prime}
\end{align*}
$$

for $i=1, \ldots, n$. As a result, we obtain

$$
\gamma_{i}^{\prime} \gamma_{i}^{\prime \prime}+\gamma_{n+i}^{\prime} \gamma_{n+i}^{\prime \prime}=0
$$

i.e.

$$
\left(\gamma_{i}^{\prime}\right)^{2}+\left(\gamma_{n+i}^{\prime}\right)^{2}=c_{i}^{2}
$$

Since γ is unit-speed, that is $g(T, T)=1$, we have

$$
\sum_{i=1}^{n} c_{i}^{2}+\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=1
$$

If we consider differentiable functions $f_{i}: I \rightarrow \mathbb{R}$, we can write

$$
\begin{gather*}
\gamma_{i}^{\prime}=c_{i} \cos f_{i} \tag{4.3}\\
\gamma_{n+i}^{\prime}=c_{i} \sin f_{i} \tag{4.4}
\end{gather*}
$$

Then, we have

$$
\begin{align*}
& \gamma_{i}^{\prime \prime}=-c_{i} f_{i}^{\prime} \sin f_{i}, \tag{4.5}\\
& \gamma_{n+i}^{\prime \prime}=c_{i} f_{i}^{\prime} \cos f_{i} . \tag{4.6}
\end{align*}
$$

If we write (4.4) and (4.5) in (4.1), or likewise (4.3) and (4.6) in (4.2), we find

$$
\begin{gather*}
-c_{i} f_{i}^{\prime} \sin f_{i}=-q c_{i} \sin f_{i} \tag{4.7}\\
c_{i} f_{i}^{\prime} \cos f_{i}=q c_{i} \cos f_{i} . \tag{4.8}
\end{gather*}
$$

Let us analyze equations (4.7) and (4.8):
i) If $c_{i} \neq 0, \sin f_{i} \neq 0$ and $\cos f_{i} \neq 0, \forall i$, then we have $f_{i}^{\prime}=q$, that is,

$$
f_{i}(t)=q t+d_{i} .
$$

Hence, we find

$$
\begin{gathered}
\gamma_{i}=\frac{c_{i}}{q} \sin \left(q t+d_{i}\right)+b_{i} \\
\gamma_{n+i}=\frac{-c_{i}}{q} \cos \left(q t+d_{i}\right)+b_{n+i}
\end{gathered}
$$

ii) If $c_{i}=0, \exists i$, then (4.3) and (4.4) give us $\gamma_{i}^{\prime}=c_{i}=0$ and $\gamma_{n+i}^{\prime}=c_{i}=0$, respectively. So we have $\gamma_{i}=b_{i}$ and $\gamma_{n+i}=b_{n+i}$, which can also be obtained from above parameterization by writing $c_{i}=0$.
iii) If $\sin f_{i}=0, \exists i$, then $f_{i}=k \pi,(k \in \mathbb{Z})$, which is a constant, so $\cos f_{i}= \pm 1$. Thus (4.8) gives $c_{i}=0$, since $q \neq 0$ and $f_{i}^{\prime}=0$. So, this is the same as Case ii).
iv). If $\cos f_{i}=0, \exists i$, then $f_{i}=\frac{\pi}{2}+k \pi,(k \in \mathbb{Z})$, which is a constant, so $\sin f_{i}= \pm 1$. Therefore (4.7) gives $c_{i}=0$, since $q \neq 0$ and $f_{i}^{\prime}=0$. This is again the same as Case ii).
As a result, we can give all four cases in one parameterization and state the following theorem:
Theorem 4.1. The normal magnetic curves on $\mathbb{R}^{2 n+s}$ satisfying the Lorentz equation $\nabla_{T} T=-q \varphi T$ have the parametric equations

$$
\begin{gathered}
\gamma_{i}=\frac{c_{i}}{q} \sin \left(q t+d_{i}\right)+b_{i}, \\
\gamma_{n+i}=\frac{-c_{i}}{q} \cos \left(q t+d_{i}\right)+b_{n+i}, \\
\gamma_{2 n+\alpha}=\cos \theta_{\alpha} t+h_{\alpha},
\end{gathered}
$$

where $i=1, \ldots, n, \alpha=1,2, \ldots, s, b_{i}, b_{n+i}, d_{i}, h_{\alpha}$ are arbitrary constants, θ_{α} are the constant contact angles and c_{i} are arbitrary constants satisfying

$$
\sum_{i=1}^{n} c_{i}^{2}=1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} \geq 0
$$

References

[1] Adachi, T.: Curvature bound and trajectories for magnetic fields on a Hadamard surface. Tsukuba J. Math. 20, 225-230 (1996).
[2] Barros M., Romero, A., Cabrerizo, J. L., Fernández, M.: The Gauss-Landau-Hall problem on Riemannian surfaces. J. Math. Phys. 46 (11), 112905, 15 pp (2005).
[3] Blair, D. E.: Geometry of manifolds with structural group $U(n) \times O(s)$. J. Differential Geometry. 4, 155-167 (1970).
[4] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. 2nd ed., Progr. Math. 203, Birkhäuser Boston, Boston, MA, (2010).
[5] Comtet, A.: On the Landau levels on the hyperbolic plane. Ann. Physics. 173, 185-209 (1987).
[6] Druţă-Romaniuc, S. L., Inoguchi, J., Munteanu, M. I., Nistor, A. I.: Magnetic curves in Sasakian manifolds. Journal of Nonlinear Mathematical Physics. 22, 428-447 (2015).
[7] Güvenç, Ş., Özgür, C.: On slant magnetic curves in S-manifolds. J. Nonlinear Math. Phys. 26 (4), 536-554 (2019).
[8] Druţă-Romaniuc, S.-L., Inoguchi, J.-I., Munteanu, M. I., Nistor, A. I.: Magnetic Curves in Cosymplectic Manifolds. Reports on Mathematical Physics. 78 (1), 33-48 (2016).

Affiliations

Şaban Güvenç

Address: Balikesir University, Dept. of Mathematics, 10145, Balikesir-Turkey.
E-MAIL: sguvenc@balikesir.edu.tr
ORCID ID: orcid.org/0000-0001-6254-4693

[^0]: Received:07-06-2021, Accepted:07-12-2021

 * Corresponding author

