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ABSTRACT

In this paper, we study normal magnetic curves inC-manifolds. We prove that magnetic trajectories
with respect to the contact magnetic fields are indeed θα-slant curves with certain curvature
functions. Then, we give the parametrizations of normal magnetic curves in R2n+s with its
structures as a C-manifold.
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1. Introduction

Let (M, g) be a Riemannian manifold, F a closed 2-form and let us denote the Lorentz force onM by Φ, which
is a (1, 1)-type tensor field. If F is associated by the relation

g(ΦX,Y ) = F (X,Y ), ∀X,Y ∈ χ(M), (1.1)

then it is called a magnetic field ([1], [2] and [5]). Let ∇ be the Riemannian connection associated to the
Riemannian metric g and γ : I →M a smooth curve. If γ satisfies the Lorentz equation

∇γ′(t)γ
′(t) = Φ(γ′(t)), (1.2)

then it is called a magnetic curve or a trajectory for the magnetic field F . The Lorentz equation can be considered
as a generalization of the equation for geodesics. Magnetic trajectories have constant speed. If the speed of the
magnetic curve γ is equal to 1, then it is called a normal magnetic curve [6]. For fundamentals of almost contact
metric manifolds, we refer to Blair’s book [4]. This paper is based on a similar idea of Ozgur and the present
author’s previous paper [7].

2. Preliminaries

Let
(
M2n+s, g

)
be a differentiable manifold, ϕ a (1, 1)-type tensor field, ηα 1-forms, ξα vector fields for

α = 1, 2, ..., s, satisfying

ϕ2X = −X +

s∑
α=1

ηα (X) ξα, (2.1)

ηα (ξβ) = δαβ , ϕξα = 0, ηα (ϕX) = 0, ηα (X) = g (X, ξα) ,

g(ϕX,ϕY ) = g(X,Y )−
s∑

α=1

ηα(X)ηα(Y ), (2.2)

where X,Y ∈ TM . Then (ϕ, ξα, η
α, g) is called framed ϕ-structure and (M2n+s, ϕ, ξα, η

α, g) is called framed ϕ-
manifold. The fundamental 2-form and Nijenhuis tensor is given by:

Ω(X,Y ) = g (X,ϕY ) ,
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Nϕ (X,Y ) = −2

s∑
α=1

dηα (X,Y ) ξα.

If dΩ = 0 and dηα = 0, M = (M,ϕ, ξα, η
α, g) is called a C-manifold. In a C-manifold, it is known that

(∇Xϕ)Y = 0

and
∇Xξα = 0,

(see [3] and [4]).

3. Magnetic Curves in C-manifolds

Let γ : I →M be a unit-speed curve in an n-dimensional Riemannian manifold (M, g). The curve γ is called
a Frenet curve of osculating order r (1 ≤ r ≤ n), if there exists orthonormal vector fields T, v2, ..., vr along the curve
validating the Frenet equations

T = γ′ = v1,

∇TT = κ1v2,

∇T v2 = −κ1v1 + κ2v3, (3.1)
...

∇T vr = −κr−1vr−1,

where κ1, ..., κr−1 are positive functions called the curvatures of γ. If κ1 = 0, then γ is called a geodesic. If κ1 is a
non-zero positive constant and r = 2, γ is called a circle. If κ1, ..., κr−1 are non-zero positive constants, then γ is
called a helix of order r (r ≥ 3) . If r = 3, it is shortly called a helix.

A submanifold of a C-manifold is said to be an integral submanifold if ηα(X) = 0, α ∈ {1, 2, ..., s} , where
X is tangent to the submanifold. A Legendre curve is a 1-dimensional integral submanifold of a C-manifold
(M2n+s, ϕ, ξα, η

α, g). More precisely, a unit-speed curve γ : I →M is a Legendre curve if T is g-orthogonal to
all ξα (α = 1, 2, ...s), where T = γ′.

Definition 3.1. Let γ be a unit-speed curve in a C-manifold (M,ϕ, ξα, η
α, g). γ is called a θα−slant curve if

there exist constant contact angles such that ηα(T ) = cos θα, α = 1, 2, ..., s. If θα = θ for all α = 1, 2, ..., s, then γ
is shortly called slant. Moreover, if θα = π

2 for all α = 1, 2, ..., s, then γ is called a Legendre curve.

For θα−slant curves, we can give the following inequality for the constant contact angles:

s∑
α=1

cos2 θα ≤ 1.

The equality case is only valid when γ is a geodesic as an integral curve of ±
s∑

α=1

cos θαξα.

Let γ be a unit-speed Legendre curve in aC-manifold (M,ϕ, ξα, η
α, g). If we differentiate ηα(T ) = 0, we obtain

ηα(v2) = 0. We can continue this process until we find ηα(vr) = 0. Thus, we can state the following proposition:

Proposition 3.1. If γ is a unit-speed Legendre curve in a C-manifold (M,ϕ, ξα, η
α, g), then ξα is g-orthogonal to

sp {T, v2, ..., vr}, for all α = 1, 2, ..., s.

If we consider equations (1.1), (1.2) and (3.1) together, for a normal magnetic curve of a magnetic field F with
charge q, we find

∇TT = ΦT,

F (X,Y ) = g (ΦX,Y ) ,

Fq (X,Y ) = qΩ (X,Y )

= qg (X,ϕY ) ,
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which gives us

Φq = −qϕ.

Here, T denotes the tangential vector field of the normal magnetic curve γ for the magnetic field Fq inM . Then,
we have the following equations:

∇TT = −qϕT, (3.2)

∇T ξα = 0,

∇TϕT = (∇Tϕ)T + ϕ∇TT
= ϕ (−qϕT )

= −qϕ2T

= −q

(
−T +

s∑
α=1

ηα (T ) ξα

)

= qT − q
s∑

α=1

ηα (T ) ξα.

If we take the inner product of equation (3.2) with ξα, we obtain

0 = g (−qϕT, ξα) = g (∇TT, ξα)

=
d

dt
g (T, ξα) .

Integrating both sides, we get
ηα(T ) = cos θα = constant,

for all α = 1, 2, ..., s. Equations (3.1) and (3.2) give us

∇TT = κ1v2 = −qϕT, (3.3)

g (ϕT, ϕT ) = g (T, T )−
s∑

α=1

(ηα (T ))
2

= 1−
s∑

α=1

cos2 θα

and

‖ϕT‖ =

√√√√1−
s∑

α=1

cos2 θα.

From equation (3.3), we find

κ1 = |q|

√√√√1−
s∑

α=1

cos2 θα = constant, (3.4)

−qϕT = κ1v2 = |q|

√√√√1−
s∑

α=1

cos2 θαv2

and

ϕT = −sgn(q)

√√√√1−
s∑

α=1

cos2 θαv2. (3.5)

If κ2 = 0, then r = 2 and γ is a circle. If we apply ηα to equation (3.5), we obtain

ηα (v2) = 0,
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which gives us

∇T ηα (v2) = 0

= g (∇T v2, ξα) + g (T,∇T ξα)

= −κ1 cos θα.

As a result, we get cos θα = 0, for all α = 1, 2, ..., s. Hence, γ is a Legendre circle, ‖ϕT‖ = 1 and κ1 = |q|. Let
κ2 6= 0. Using equations (2.1) and (3.1), we calculate

∇TϕT = (∇Tϕ)T + ϕ∇TT
= ϕ (−qϕT ) (3.6)

= −q

(
−T +

s∑
α=1

cos θαξα

)
.

Differentiating equation (3.5), we also have

∇TϕT = −sgn(q)

√√√√1−
s∑

α=1

cos2 θα (−κ1T + κ2v3) (3.7)

In view of (3.4), (3.6) and (3.7), it is easy to see that

q

[
s∑

α=1

cos θαξα −

(
s∑

α=1

cos2 θα

)
T

]
= sgn(q)

√√√√1−
s∑

α=1

cos2 θακ2v3. (3.8)

Note that

g (T, T ) = 1, g

(
T,

s∑
α=1

cos θαξα

)
=

s∑
α=1

cos2 θα,

g

(
s∑

α=1

cos θαξα,

s∑
α=1

cos θαξα

)
=

s∑
α=1

cos2 θα, g (v3, v3) = 1.

So, if we calculate the norm of both sides of equation (3.8), we get

κ2 = |q|

√√√√ s∑
α=1

cos2 θα. (3.9)

If we write (3.9) in (3.8), we have

s∑
α=1

cos θαξα =

(
s∑

α=1

cos2 θα

)
T +

√√√√ s∑
α=1

cos2 θα

√√√√1−
s∑

α=1

cos2 θαv3 (3.10)

If we differentiate (3.10), we find κ3 = 0. From equations (3.5) and (3.10), we can write

v2 =
−sgn(q)√

1−
s∑

α=1

cos2 θα

ϕT (3.11)

v3 =
1√

s∑
α=1

cos2 θα

√
1−

s∑
α=1

cos2 θα

(
s∑

α=1

cos θαξα −

(
s∑

α=1

cos2 θα

)
T

)
(3.12)

Finally, if κ1 = 0, after some calculations, by (2.1) and (3.5), we obtain T = ±
s∑

α=1

cos θαξα, where
s∑

α=1

cos2 θα = 1.

So, we can give the following theorem:
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Theorem 3.1. Let γ : I →M = (M,ϕ, ξα, η
α, g) be a unit-speed curve in a C-manifoldM . Then γ is a normal magnetic

curve for Fq (q 6= 0) in M if and only if

i) γ is a geodesic θα−slant curve as an integral curve of ±
s∑

α=1

cos θαξα, where
s∑

α=1

cos2 θα = 1; or

ii) γ is a Legendre circle with κ1 = |q| having the Frenet frame field

{T,−sgn(q)ϕT} ;

or
iii) γ is a non-Legendre θα−slant helix with

κ1 = |q|

√√√√1−
s∑

α=1

cos2 θα,

κ2 = |q|

√√√√ s∑
α=1

cos2 θα,

having the Frenet frame field
{T, v2, v3} ,

where
s∑

α=1

cos2 θα < 1, v2 and v3 are given in equations (3.11) and (3.12), respectively.

Corollary 3.1. If γ is a unit-speed slant curve in a C-manifold M , then it is a normal magnetic curve if and only if

i) it is a geodesic as an integral curve of ±1√
s

s∑
α=1

ξα; or

ii) γ is a Legendre circle with κ1 = |q| having the Frenet frame field

{T,−sgn(q)ϕT} ;

or
iii) γ is a non-Legendre slant helix with κ1 = |q|

√
1− s cos2 θ, κ2 = |q|

√
sε cos θ, having the Frenet frame field{

T,
−sgn(q)√
1− s cos2 θ

ϕT,
ε

√
s
√

1− s cos2 θ

(
s∑

α=1

ξα − s cos θT

)}
,

where θ 6= π
2 is the contact angle satisfying |cos θ| < 1√

s
and ε = sgn (cos θ) .

Proof. Since θα = θ for all α = 1, 2, ..., s, if we use

s∑
α=1

cos2 θα = s cos2 θ

and
s∑

α=1

cos θαξα = cos θ

s∑
α=1

ξα

in Theorem 3.1, the proof is clear.

Remark. If we take s = 1, we have Proposition 1 in [8].
Let M = (M,ϕ, ξα, η

α, g) be a C-manifold. A Frenet curve of order r = 2 is called a ϕ-curve in M if
sp {T, v2, ξ1, ..., ξs} is a ϕ−invariant space. A Frenet curve of order r ≥ 3 is called a ϕ-curve if sp {T, v2, ..., vr} is
ϕ−invariant. A ϕ−helix of order r is a ϕ−curve with constant curvatures κ1, ..., κr−1. A ϕ−helix of order 3 is
shortly named a ϕ−helix.

Proposition 3.2. If γ is a Legendre ϕ−helix in a C-manifold M , then it is a Legendre ϕ−circle.
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Proof. Let γ be a Legendre ϕ−helix. Then the contact angles θα = π
2 for all α = 1, 2, ..., s and the Frenet frame

field {T, v2, v3} is ϕ−invariant. Since γ is Legendre, we have g (ϕT, ϕT ) = 1. Thus, we can write

g (ϕT, v2) = cosµ, (3.13)

ϕT = cosµv2 ± sinµv3, (3.14)

for some function µ = µ(t). If we differentiate equation (3.13), we find

−µ′ sinµ = κ2g (ϕT, v3) (3.15)
= ±κ2 sinµ.

Firstly, let us assume that µ = 0, i.e. ϕT = v2. Since γ is a Legendre curve, applying ϕ to ϕT = v2, we obtain
ϕ2T = −T = ϕv2. Differentiating both sides of ϕT = v2, we also have

∇TϕT = ∇T v2,

(∇Tϕ)T + ϕ∇TT = −κ1T + κ2v3,

κ1ϕv2 = −κ1T + κ2v3,

−κ1T = −κ1T + κ2v3,

which is equivalent to κ2 = 0. Likewise, if µ = π, we obtain κ2 = 0. Finally, let us assume that µ 6= 0, π. In this
case, since γ is a helix, using (3.15), we have

κ1 = constant,

κ2 = ∓µ′ = constant.

If we differentiate (3.14) and use κ2 = ∓µ′, we calculate

κ1ϕv2 = −κ1 cosµT.

If we apply ϕ to both sides, we conclude ϕT = ±v2, which gives κ2 = 0. This completes the proof.

Remark. For s = 1, we obtain Proposition 2 of [8]. Likewise, the following theorem generalizes Theorem 1 of
[8] to C-manifolds:

Theorem 3.2. Let γ be a ϕ−helix of order r ≤ 3 in a C-manifold M = (M,ϕ, ξα, η
α, g). Then, the following statements

are valid:
i) If cos θα (α = 1, 2, ..., s) are constants such that

s∑
α=1

cos2 θα = 1, then γ is an integral curve of ±
s∑

α=1

cos θαξα, hence

it is a normal magnetic curve for arbitrary q.
ii) If cos θα = 0 for all α = 1, 2, ..., s, i.e. γ is a Legendre ϕ−curve, then it is a magnetic circle generated by the magnetic

field F±κ1
.

iii) If cos θα (α = 1, 2, ..., s) are constants such that
s∑

α=1

cos2 θα =
κ2
2

κ2
1+κ

2
2
, then γ is a magnetic curve for F±

√
κ2
1+κ

2
2

.

iv) Except above cases, γ cannot be a magnetic curve for any magnetic field Fq.

Proof. In view of Theorem 3.1 and Proposition 3.2, it is straightforward to show that ∇TT = −qϕT for valid
q.

4. Magnetic Curves of R2n+s with its structures as a C-manifold

In this section, we consider parameterizations of normal magnetic curves in M = R2n+s as a C-manifold. Let
{x1, ..., xn, y1, ..., yn, z1, ..., zs} be the coordinate functions and define

Xi =
∂

∂xi
, Yi =

∂

∂yi
, ξα =

∂

∂zα
,
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for i = 1, ..., n and α = 1, 2, ..., s. {Xi, Yi, ξα} is an orthonormal basis of χ (M) with respect to the usual metric

g =

n∑
i=1

[
(dxi)

2
+ (dyi)

2
]

+

s∑
α=1

(dzα)
2
.

Let us define a (1, 1)-type tensor field ϕ as

ϕXi = −Yi, ϕYi = Xi, ϕξα = 0.

Finally, let ηα = dzα for α = 1, 2, ..., s. It is well-known that (M,ϕ, ξα, η
α, g) is a C-manifold, since dηα = 0 and

dΩ = 0, where Ω (X,Y ) = g (X,ϕY ) for all X,Y ∈ χ(M) (see [3] and [4]).
Let us denote normal magnetic curve by

γ = (γ1, ..., γn, γn+1, ..., γ2n, γ2n+1, ..., γ2n+s) .

Then
T = γ′ =

(
γ′1, ..., γ

′
n, γ
′
n+1, ..., γ

′
2n, γ

′
2n+1, ..., γ

′
2n+s

)
,

which gives us
∇TT =

(
γ′′1 , ..., γ

′′
n, γ
′′
n+1, ..., γ

′′
2n, γ

′′
2n+1, ..., γ

′′
2n+s

)
,

ϕT =
(
γ′n+1, ..., γ

′
2n,−γ′1, ...,−γ′n, 0, ..., 0

)
.

Since
∇TT = −qϕT,

we have
ηα (T ) = γ′2n+α = cos θα = constant

and
γ2n+α = cos θαt+ hα.

We also get

γ′′i = −qγ′n+i, (4.1)
γ′′n+i = qγ′i (4.2)

for i = 1, ..., n. As a result, we obtain
γ′iγ
′′
i + γ′n+iγ

′′
n+i = 0,

i.e.
(γ′i)

2
+
(
γ′n+i

)2
= c2i .

Since γ is unit-speed, that is g(T, T ) = 1, we have

n∑
i=1

c2i +

s∑
α=1

cos2 θα = 1.

If we consider differentiable functions fi : I → R, we can write

γ′i = ci cos fi, (4.3)

γ′n+i = ci sin fi. (4.4)

Then, we have
γ′′i = −cif ′i sin fi, (4.5)

γ′′n+i = cif
′
i cos fi. (4.6)

If we write (4.4) and (4.5) in (4.1), or likewise (4.3) and (4.6) in (4.2), we find

− cif ′i sin fi = −qci sin fi (4.7)

cif
′
i cos fi = qci cos fi. (4.8)
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Let us analyze equations (4.7) and (4.8):
i) If ci 6= 0, sin fi 6= 0 and cos fi 6= 0, ∀i, then we have f ′i = q, that is,

fi (t) = qt+ di.

Hence, we find
γi =

ci
q

sin (qt+ di) + bi,

γn+i =
−ci
q

cos (qt+ di) + bn+i.

ii) If ci = 0, ∃i, then (4.3) and (4.4) give us γ′i = ci = 0 and γ′n+i = ci = 0, respectively. So we have γi = bi and
γn+i = bn+i, which can also be obtained from above parameterization by writing ci = 0.

iii) If sin fi = 0,∃i, then fi = kπ, (k ∈ Z) , which is a constant, so cos fi = ±1. Thus (4.8) gives ci = 0, since
q 6= 0 and f ′i = 0. So, this is the same as Case ii).

iv). If cos fi = 0, ∃i, then fi = π
2 + kπ, (k ∈ Z) , which is a constant, so sin fi = ±1. Therefore (4.7) gives ci = 0,

since q 6= 0 and f ′i = 0. This is again the same as Case ii).
As a result, we can give all four cases in one parameterization and state the following theorem:

Theorem 4.1. The normal magnetic curves on R2n+s satisfying the Lorentz equation∇TT = −qϕT have the parametric
equations

γi =
ci
q

sin (qt+ di) + bi,

γn+i =
−ci
q

cos (qt+ di) + bn+i,

γ2n+α = cos θαt+ hα,

where i = 1, ..., n, α = 1, 2, ..., s, bi, bn+i, di, hα are arbitrary constants, θα are the constant contact angles and ci are
arbitrary constants satisfying

n∑
i=1

c2i = 1−
s∑

α=1

cos2 θα ≥ 0.
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