

Magnetic Curves in *C***-manifolds**

Şaban Güvenç*

(Communicated by Marian Ioan Munteanu)

ABSTRACT

In this paper, we study normal magnetic curves in C-manifolds. We prove that magnetic trajectories with respect to the contact magnetic fields are indeed θ_{α} -slant curves with certain curvature functions. Then, we give the parametrizations of normal magnetic curves in \mathbb{R}^{2n+s} with its structures as a C-manifold.

Keywords: C-manifold, magnetic curve θ_{α} -slant curve. *AMS Subject Classification (2020):* Primary: 53C25 ; Secondary: 53C40; 53A04.

 η^{α}

1. Introduction

Let (M, g) be a Riemannian manifold, F a closed 2-form and let us denote the Lorentz force on M by Φ , which is a (1, 1)-type tensor field. If F is associated by the relation

$$g(\Phi X, Y) = F(X, Y), \ \forall X, Y \in \chi(M),$$
(1.1)

then it is called a *magnetic field* ([1], [2] and [5]). Let ∇ be the Riemannian connection associated to the Riemannian metric g and $\gamma : I \to M$ a smooth curve. If γ satisfies the Lorentz equation

$$\nabla_{\gamma'(t)}\gamma'(t) = \Phi(\gamma'(t)), \tag{1.2}$$

then it is called a *magnetic curve* or a *trajectory* for the magnetic field *F*. The Lorentz equation can be considered as a generalization of the equation for geodesics. Magnetic trajectories have constant speed. If the speed of the magnetic curve γ is equal to 1, then it is called a *normal magnetic curve* [6]. For fundamentals of almost contact metric manifolds, we refer to Blair's book [4]. This paper is based on a similar idea of Ozgur and the present author's previous paper [7].

2. Preliminaries

Let (M^{2n+s},g) be a differentiable manifold, φ a (1,1)-type tensor field, η^{α} 1-forms, ξ_{α} vector fields for $\alpha = 1, 2, ..., s$, satisfying

$$\varphi^2 X = -X + \sum_{\alpha=1}^{s} \eta^{\alpha} \left(X \right) \xi_{\alpha}, \tag{2.1}$$

$$(\xi_{\beta}) = \delta_{\beta}^{\alpha}, \ \varphi\xi_{\alpha} = 0, \ \eta^{\alpha} (\varphi X) = 0, \ \eta^{\alpha} (X) = g (X, \xi_{\alpha}),$$
$$g(\varphi X, \varphi Y) = g(X, Y) - \sum_{\alpha=1}^{s} \eta^{\alpha} (X) \eta^{\alpha} (Y),$$
(2.2)

where $X, Y \in TM$. Then $(\varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ is called *framed* φ -structure and $(M^{2n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ is called *framed* φ manifold. The fundamental 2-form and Nijenhuis tensor is given by:

$$\Omega(X,Y) = g\left(X,\varphi Y\right),\,$$

* Corresponding author

Received: 07-06-2021, Accepted: 07-12-2021

$$N_{\varphi}\left(X,Y\right) = -2\sum_{\alpha=1}^{s} d\eta^{\alpha}\left(X,Y\right)\xi_{\alpha}.$$

If $d\Omega = 0$ and $d\eta^{\alpha} = 0$, $M = (M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ is called a *C*-manifold. In a *C*-manifold, it is known that

$$\left(\nabla_X\varphi\right)Y=0$$

and

$$\nabla_X \xi_\alpha = 0,$$

(see [3] and [4]).

3. Magnetic Curves in C-manifolds

Let $\gamma : I \to M$ be a unit-speed curve in an *n*-dimensional Riemannian manifold (M, g). The curve γ is called a *Frenet curve of osculating order* r $(1 \le r \le n)$, if there exists orthonormal vector fields $T, v_2, ..., v_r$ along the curve validating the Frenet equations

$$T = \gamma' = v_1,$$

$$\nabla_T T = \kappa_1 v_2,$$

$$\nabla_T v_2 = -\kappa_1 v_1 + \kappa_2 v_3,$$

...

$$\nabla_T v_r = -\kappa_{r-1} v_{r-1},$$

(3.1)

where $\kappa_1, ..., \kappa_{r-1}$ are positive functions called the curvatures of γ . If $\kappa_1 = 0$, then γ is called a *geodesic*. If κ_1 is a non-zero positive constant and r = 2, γ is called a *circle*. If $\kappa_1, ..., \kappa_{r-1}$ are non-zero positive constants, then γ is called a *helix of order* r ($r \ge 3$). If r = 3, it is shortly called a *helix*.

A submanifold of a *C*-manifold is said to be an *integral submanifold* if $\eta^{\alpha}(X) = 0$, $\alpha \in \{1, 2, ..., s\}$, where *X* is tangent to the submanifold. A *Legendre curve* is a 1-dimensional integral submanifold of a *C*-manifold $(M^{2n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$. More precisely, a unit-speed curve $\gamma : I \to M$ is a Legendre curve if *T* is g-orthogonal to all ξ_{α} ($\alpha = 1, 2, ...s$), where $T = \gamma'$.

Definition 3.1. Let γ be a unit-speed curve in a *C*-manifold $(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$. γ is called a θ_{α} -slant curve if there exist constant contact angles such that $\eta^{\alpha}(T) = \cos \theta_{\alpha}, \alpha = 1, 2, ..., s$. If $\theta_{\alpha} = \theta$ for all $\alpha = 1, 2, ..., s$, then γ is shortly called slant. Moreover, if $\theta_{\alpha} = \frac{\pi}{2}$ for all $\alpha = 1, 2, ..., s$, then γ is called a Legendre curve.

For θ_{α} -slant curves, we can give the following inequality for the constant contact angles:

$$\sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} \le 1$$

The equality case is only valid when γ is a geodesic as an integral curve of $\pm \sum_{\alpha} \cos \theta_{\alpha} \xi_{\alpha}$.

Let γ be a unit-speed Legendre curve in a *C*-manifold $(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$. If we differentiate $\eta^{\alpha}(T) = 0$, we obtain $\eta^{\alpha}(v_2) = 0$. We can continue this process until we find $\eta^{\alpha}(v_r) = 0$. Thus, we can state the following proposition:

Proposition 3.1. If γ is a unit-speed Legendre curve in a C-manifold $(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$, then ξ_{α} is g-orthogonal to $sp \{T, v_2, ..., v_r\}$, for all $\alpha = 1, 2, ..., s$.

If we consider equations (1.1), (1.2) and (3.1) together, for a normal magnetic curve of a magnetic field F with charge q, we find

$$\nabla_T T = \Phi T,$$

$$F(X,Y) = g(\Phi X,Y),$$

$$F_q(X,Y) = q\Omega(X,Y)$$

$$= qg(X,\varphi Y),$$

which gives us

$$\Phi_q = -q\varphi.$$

Here, *T* denotes the tangential vector field of the normal magnetic curve γ for the magnetic field F_q in *M*. Then, we have the following equations:

$$\begin{aligned} \nabla_T T &= -q\varphi T, \\ \nabla_T \xi_\alpha &= 0, \end{aligned} \tag{3.2}$$

$$\nabla_T \varphi T = (\nabla_T \varphi) T + \varphi \nabla_T T$$

= $\varphi (-q\varphi T)$
= $-q\varphi^2 T$
= $-q \left(-T + \sum_{\alpha=1}^s \eta^\alpha (T) \xi_\alpha\right)$
= $qT - q \sum_{\alpha=1}^s \eta^\alpha (T) \xi_\alpha.$

If we take the inner product of equation (3.2) with ξ_{α} , we obtain

$$0 = g(-q\varphi T, \xi_{\alpha}) = g(\nabla_T T, \xi_{\alpha})$$
$$= \frac{d}{dt}g(T, \xi_{\alpha}).$$

Integrating both sides, we get

 $\eta^{\alpha}(T) = \cos \theta_{\alpha} = constant,$

for all $\alpha = 1, 2, ..., s$. Equations (3.1) and (3.2) give us

$$\nabla_T T = \kappa_1 v_2 = -q\varphi T,\tag{3.3}$$

$$g(\varphi T, \varphi T) = g(T, T) - \sum_{\alpha=1}^{s} (\eta^{\alpha}(T))^{2}$$
$$= 1 - \sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha}$$

and

$$\|\varphi T\| = \sqrt{1 - \sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha}}$$

From equation (3.3), we find

$$\kappa_1 = |q| \sqrt{1 - \sum_{\alpha=1}^s \cos^2 \theta_\alpha} = constant, \tag{3.4}$$

$$-q\varphi T = \kappa_1 v_2 = |q| \sqrt{1 - \sum_{\alpha=1}^s \cos^2 \theta_\alpha} v_2$$

and

$$\varphi T = -sgn(q) \sqrt{1 - \sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} v_2}.$$
(3.5)

If $\kappa_2 = 0$, then r = 2 and γ is a circle. If we apply η^{α} to equation (3.5), we obtain

$$\eta^{\alpha}\left(v_{2}\right)=0,$$

which gives us

$$\nabla_T \eta^{\alpha} (v_2) = 0$$

= $g (\nabla_T v_2, \xi_{\alpha}) + g (T, \nabla_T \xi_{\alpha})$
= $-\kappa_1 \cos \theta_{\alpha}.$

As a result, we get $\cos \theta_{\alpha} = 0$, for all $\alpha = 1, 2, ..., s$. Hence, γ is a Legendre circle, $\|\varphi T\| = 1$ and $\kappa_1 = |q|$. Let $\kappa_2 \neq 0$. Using equations (2.1) and (3.1), we calculate

$$\nabla_T \varphi T = (\nabla_T \varphi) T + \varphi \nabla_T T
= \varphi (-q\varphi T)$$

$$= -q \left(-T + \sum_{\alpha=1}^s \cos \theta_\alpha \xi_\alpha \right).$$
(3.6)

Differentiating equation (3.5), we also have

$$\nabla_T \varphi T = -sgn(q) \sqrt{1 - \sum_{\alpha=1}^s \cos^2 \theta_\alpha \left(-\kappa_1 T + \kappa_2 v_3 \right)}$$
(3.7)

In view of (3.4), (3.6) and (3.7), it is easy to see that

$$q\left[\sum_{\alpha=1}^{s}\cos\theta_{\alpha}\xi_{\alpha} - \left(\sum_{\alpha=1}^{s}\cos^{2}\theta_{\alpha}\right)T\right] = sgn(q)\sqrt{1 - \sum_{\alpha=1}^{s}\cos^{2}\theta_{\alpha}\kappa_{2}v_{3}}.$$
(3.8)

Note that

$$g(T,T) = 1, \ g\left(T, \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right) = \sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha},$$
$$g\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}, \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right) = \sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha}, \ g(v_{3}, v_{3}) = 1.$$

So, if we calculate the norm of both sides of equation (3.8), we get

$$\kappa_2 = |q| \sqrt{\sum_{\alpha=1}^s \cos^2 \theta_\alpha}.$$
(3.9)

If we write (3.9) in (3.8), we have

$$\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha} = \left(\sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha}\right) T + \sqrt{\sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha}} \sqrt{1 - \sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha} v_{3}}$$
(3.10)

If we differentiate (3.10), we find $\kappa_3 = 0$. From equations (3.5) and (3.10), we can write

$$v_2 = \frac{-sgn(q)}{\sqrt{1 - \sum_{\alpha=1}^s \cos^2 \theta_\alpha}} \varphi T$$
(3.11)

$$v_{3} = \frac{1}{\sqrt{\sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha}} \sqrt{1 - \sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha}}} \left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha} - \left(\sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha} \right) T \right)$$
(3.12)

Finally, if $\kappa_1 = 0$, after some calculations, by (2.1) and (3.5), we obtain $T = \pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$, where $\sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} = 1$. So, we can give the following theorem: **Theorem 3.1.** Let $\gamma : I \to M = (M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ be a unit-speed curve in a *C*-manifold *M*. Then γ is a normal magnetic curve for F_q ($q \neq 0$) in *M* if and only if

i) γ *is a geodesic* θ_{α} -*slant curve as an integral curve of* $\pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$ *, where* $\sum_{\alpha=1}^{s} \cos^{2} \theta_{\alpha} = 1$ *; or ii)* γ *is a Legendre circle with* $\kappa_{1} = |q|$ *having the Frenet frame field*

$$\{T, -sgn(q)\varphi T\}$$

or

iii) γ *is a non-Legendre* θ_{α} *-slant helix with*

$$\kappa_1 = |q| \sqrt{1 - \sum_{\alpha=1}^s \cos^2 \theta_\alpha},$$
$$\kappa_2 = |q| \sqrt{\sum_{\alpha=1}^s \cos^2 \theta_\alpha},$$

having the Frenet frame field

$$\left\{T,v_2,v_3\right\},\,$$

where $\sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} < 1$, v_2 and v_3 are given in equations (3.11) and (3.12), respectively.

Corollary 3.1. If γ is a unit-speed slant curve in a *C*-manifold *M*, then it is a normal magnetic curve if and only if *i*) it is a geodesic as an integral curve of $\frac{\pm 1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}$; or

ii) γ *is a Legendre circle with* $\kappa_1 = |q|$ *having the Frenet frame field*

$$\{T, -sgn(q)\varphi T\};$$

or

iii) γ is a non-Legendre slant helix with $\kappa_1 = |q|\sqrt{1 - s\cos^2\theta}, \kappa_2 = |q|\sqrt{s\varepsilon}\cos\theta$, having the Frenet frame field

$$\left\{T, \frac{-sgn(q)}{\sqrt{1-s\cos^2\theta}}\varphi T, \frac{\varepsilon}{\sqrt{s}\sqrt{1-s\cos^2\theta}}\left(\sum_{\alpha=1}^s \xi_\alpha - s\cos\theta T\right)\right\},\$$

where $\theta \neq \frac{\pi}{2}$ is the contact angle satisfying $|\cos \theta| < \frac{1}{\sqrt{s}}$ and $\varepsilon = sgn(\cos \theta)$.

Proof. Since $\theta_{\alpha} = \theta$ for all $\alpha = 1, 2, ..., s$, if we use

$$\sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} = s \cos^2 \theta$$

and

$$\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha} = \cos \theta \sum_{\alpha=1}^{s} \xi_{\alpha}$$

in Theorem 3.1, the proof is clear.

Remark. If we take s = 1, we have Proposition 1 in [8].

Let $M = (M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ be a *C*-manifold. A Frenet curve of order r = 2 is called a φ -curve in M if $sp \{T, v_2, \xi_1, ..., \xi_s\}$ is a φ -invariant space. A Frenet curve of order $r \ge 3$ is called a φ -curve if $sp \{T, v_2, ..., v_r\}$ is φ -invariant. A φ -helix of order r is a φ -curve with constant curvatures $\kappa_1, ..., \kappa_{r-1}$. A φ -helix of order 3 is shortly named a φ -helix.

Proposition 3.2. If γ is a Legendre φ -helix in a *C*-manifold *M*, then it is a Legendre φ -circle.

Proof. Let γ be a Legendre φ -helix. Then the contact angles $\theta_{\alpha} = \frac{\pi}{2}$ for all $\alpha = 1, 2, ..., s$ and the Frenet frame field $\{T, v_2, v_3\}$ is φ -invariant. Since γ is Legendre, we have $g(\varphi T, \varphi T) = 1$. Thus, we can write

$$g\left(\varphi T, v_2\right) = \cos\mu,\tag{3.13}$$

$$\varphi T = \cos \mu v_2 \pm \sin \mu v_3, \tag{3.14}$$

for some function $\mu = \mu(t)$. If we differentiate equation (3.13), we find

$$-\mu' \sin \mu = \kappa_2 g \left(\varphi T, v_3\right)$$

$$= \pm \kappa_2 \sin \mu.$$
(3.15)

Firstly, let us assume that $\mu = 0$, i.e. $\varphi T = v_2$. Since γ is a Legendre curve, applying φ to $\varphi T = v_2$, we obtain $\varphi^2 T = -T = \varphi v_2$. Differentiating both sides of $\varphi T = v_2$, we also have

$$\nabla_T \varphi T = \nabla_T v_2,$$
$$(\nabla_T \varphi) T + \varphi \nabla_T T = -\kappa_1 T + \kappa_2 v_3$$
$$\kappa_1 \varphi v_2 = -\kappa_1 T + \kappa_2 v_3,$$
$$-\kappa_1 T = -\kappa_1 T + \kappa_2 v_3,$$

which is equivalent to $\kappa_2 = 0$. Likewise, if $\mu = \pi$, we obtain $\kappa_2 = 0$. Finally, let us assume that $\mu \neq 0, \pi$. In this case, since γ is a helix, using (3.15), we have

$$\kappa_1 = constant,$$

 $\kappa_2 = \mp \mu' = constant.$

If we differentiate (3.14) and use $\kappa_2 = \mp \mu'$, we calculate

$$\kappa_1 \varphi v_2 = -\kappa_1 \cos \mu T.$$

If we apply φ to both sides, we conclude $\varphi T = \pm v_2$, which gives $\kappa_2 = 0$. This completes the proof.

Remark. For s = 1, we obtain Proposition 2 of [8]. Likewise, the following theorem generalizes Theorem 1 of [8] to *C*-manifolds:

Theorem 3.2. Let γ be a φ -helix of order $r \leq 3$ in a *C*-manifold $M = (M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$. Then, the following statements are valid:

i) If $\cos \theta_{\alpha}$ ($\alpha = 1, 2, ..., s$) are constants such that $\sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} = 1$, then γ is an integral curve of $\pm \sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$, hence it is a normal magnetic curve for arbitrary q.

ii) If $\cos \theta_{\alpha} = 0$ for all $\alpha = 1, 2, ..., s$, *i.e.* γ *is a Legendre* φ *-curve, then it is a magnetic circle generated by the magnetic field* $F_{\pm\kappa_1}$.

iii) If
$$\cos \theta_{\alpha}$$
 ($\alpha = 1, 2, ..., s$) are constants such that $\sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} = \frac{\kappa_2^2}{\kappa_1^2 + \kappa_2^2}$, then γ is a magnetic curve for $F_{\pm \sqrt{\kappa_1^2 + \kappa_2^2}}$ in Figure 1.5 For any magnetic field E

iv) Except above cases, γ cannot be a magnetic curve for any magnetic field F_q .

Proof. In view of Theorem 3.1 and Proposition 3.2, it is straightforward to show that $\nabla_T T = -q\varphi T$ for valid q.

4. Magnetic Curves of \mathbb{R}^{2n+s} with its structures as a C-manifold

In this section, we consider parameterizations of normal magnetic curves in $M = \mathbb{R}^{2n+s}$ as a *C*-manifold. Let $\{x_1, ..., x_n, y_1, ..., y_n, z_1, ..., z_s\}$ be the coordinate functions and define

$$X_i = \frac{\partial}{\partial x_i}, \ Y_i = \frac{\partial}{\partial y_i}, \ \xi_\alpha = \frac{\partial}{\partial z_\alpha},$$

for i = 1, ..., n and $\alpha = 1, 2, ..., s$. $\{X_i, Y_i, \xi_\alpha\}$ is an orthonormal basis of $\chi(M)$ with respect to the usual metric

$$g = \sum_{i=1}^{n} \left[(dx_i)^2 + (dy_i)^2 \right] + \sum_{\alpha=1}^{s} (dz_{\alpha})^2$$

Let us define a (1, 1)-type tensor field φ as

 $\varphi X_i = -Y_i, \ \varphi Y_i = X_i, \ \varphi \xi_\alpha = 0.$

Finally, let $\eta^{\alpha} = dz_{\alpha}$ for $\alpha = 1, 2, ..., s$. It is well-known that $(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ is a *C*-manifold, since $d\eta^{\alpha} = 0$ and $d\Omega = 0$, where $\Omega(X, Y) = g(X, \varphi Y)$ for all $X, Y \in \chi(M)$ (see [3] and [4]).

Let us denote normal magnetic curve by

$$\gamma = (\gamma_1, ..., \gamma_n, \gamma_{n+1}, ..., \gamma_{2n}, \gamma_{2n+1}, ..., \gamma_{2n+s}).$$

Then

$$T = \gamma' = \left(\gamma'_1, ..., \gamma'_n, \gamma'_{n+1}, ..., \gamma'_{2n}, \gamma'_{2n+1}, ..., \gamma'_{2n+s}\right),$$

which gives us

$$\nabla_T T = \left(\gamma_1'', ..., \gamma_n'', \gamma_{n+1}'', ..., \gamma_{2n}'', \gamma_{2n+1}'', ..., \gamma_{2n+s}''\right)$$
$$\varphi T = \left(\gamma_{n+1}', ..., \gamma_{2n}', -\gamma_1', ..., -\gamma_n', 0, ..., 0\right).$$

Since

we have

 $\eta^{\alpha}(T) = \gamma_{2n+\alpha}' = \cos \theta_{\alpha} = constant$

 $\nabla_T T = -q\varphi T,$

and

$$\gamma_{2n+\alpha} = \cos\theta_{\alpha}t + h_{\alpha}.$$

We also get

$$\gamma_i'' = -q\gamma_{n+i}', \tag{4.1}$$
$$\gamma_{n+i}'' = -q\gamma_{n+i}', \tag{4.2}$$

$$\gamma_{n+i} = q\gamma_i \tag{4.2}$$

for i = 1, ..., n. As a result, we obtain

i.e.

$$(\gamma'_i)^2 + (\gamma'_{n+i})^2 = c_i^2.$$

 $\gamma_i'\gamma_i'' + \gamma_{n+i}'\gamma_{n+i}'' = 0,$

Since γ is unit-speed, that is g(T, T) = 1, we have

$$\sum_{i=1}^{n} c_i^2 + \sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} = 1.$$

If we consider differentiable functions $f_i : I \to \mathbb{R}$, we can write

$$\gamma_i' = c_i \cos f_i,\tag{4.3}$$

$$\gamma_{n+i}' = c_i \sin f_i. \tag{4.4}$$

Then, we have

$$\gamma_i'' = -c_i f_i' \sin f_i, \tag{4.5}$$

$$\gamma_{n+i}^{\prime\prime} = c_i f_i^{\prime} \cos f_i. \tag{4.6}$$

If we write (4.4) and (4.5) in (4.1), or likewise (4.3) and (4.6) in (4.2), we find

$$-c_i f_i' \sin f_i = -qc_i \sin f_i \tag{4.7}$$

$$c_i f'_i \cos f_i = q c_i \cos f_i. \tag{4.8}$$

dergipark.org.tr/en/pub/iejg

Let us analyze equations (4.7) and (4.8):

i) If $c_i \neq 0$, $\sin f_i \neq 0$ and $\cos f_i \neq 0$, $\forall i$, then we have $f'_i = q$, that is,

$$f_i\left(t\right) = qt + d_i$$

Hence, we find

$$\gamma_i = \frac{c_i}{q} \sin(qt + d_i) + b_i,$$

$$\gamma_{n+i} = \frac{-c_i}{q} \cos(qt + d_i) + b_{n+i}.$$

ii) If $c_i = 0$, $\exists i$, then (4.3) and (4.4) give us $\gamma'_i = c_i = 0$ and $\gamma'_{n+i} = c_i = 0$, respectively. So we have $\gamma_i = b_i$ and $\gamma_{n+i} = b_{n+i}$, which can also be obtained from above parameterization by writing $c_i = 0$.

iii) If $\sin f_i = 0, \exists i$, then $f_i = k\pi, (k \in \mathbb{Z})$, which is a constant, so $\cos f_i = \pm 1$. Thus (4.8) gives $c_i = 0$, since $q \neq 0$ and $f'_i = 0$. So, this is the same as Case ii).

iv). If $\cos f_i = 0, \exists i$, then $f_i = \frac{\pi}{2} + k\pi, (k \in \mathbb{Z})$, which is a constant, so $\sin f_i = \pm 1$. Therefore (4.7) gives $c_i = 0$, since $q \neq 0$ and $f'_i = 0$. This is again the same as Case ii).

As a result, we can give all four cases in one parameterization and state the following theorem:

Theorem 4.1. The normal magnetic curves on \mathbb{R}^{2n+s} satisfying the Lorentz equation $\nabla_T T = -q\varphi T$ have the parametric equations

$$\gamma_i = \frac{c_i}{q} \sin(qt + d_i) + b_i,$$

$$\gamma_{n+i} = \frac{-c_i}{q} \cos(qt + d_i) + b_{n+i}$$

$$\gamma_{2n+\alpha} = \cos\theta_{\alpha}t + h_{\alpha},$$

where $i = 1, ..., n, \alpha = 1, 2, ..., s, b_i, b_{n+i}, d_i, h_{\alpha}$ are arbitrary constants, θ_{α} are the constant contact angles and c_i are arbitrary constants satisfying

$$\sum_{i=1}^{n} c_i^2 = 1 - \sum_{\alpha=1}^{s} \cos^2 \theta_{\alpha} \ge 0.$$

References

- [1] Adachi, T.: Curvature bound and trajectories for magnetic fields on a Hadamard surface. Tsukuba J. Math. 20, 225-230 (1996).
- [2] Barros M., Romero, A., Cabrerizo, J. L., Fernández, M.: *The Gauss-Landau-Hall problem on Riemannian surfaces*. J. Math. Phys. 46 (11), 112905, 15 pp (2005).
- [3] Blair, D. E.: Geometry of manifolds with structural group $U(n) \times O(s)$. J. Differential Geometry. 4, 155-167 (1970).
- [4] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. 2nd ed., Progr. Math. 203, Birkhäuser Boston, Boston, MA, (2010).
- [5] Comtet, A.: On the Landau levels on the hyperbolic plane. Ann. Physics. 173, 185-209 (1987).
- [6] Druţă-Romaniuc, S. L., Inoguchi, J., Munteanu, M. I., Nistor, A. I.: Magnetic curves in Sasakian manifolds. Journal of Nonlinear Mathematical Physics. 22, 428-447 (2015).
- [7] Güvenç, Ş., Özgür, C.: On slant magnetic curves in S-manifolds. J. Nonlinear Math. Phys. 26 (4), 536-554 (2019).
- [8] Druţă-Romaniuc, S.-L., Inoguchi, J.-I., Munteanu, M. I., Nistor, A. I.: Magnetic Curves in Cosymplectic Manifolds. Reports on Mathematical Physics. 78 (1), 33-48 (2016).

Affiliations

ŞABAN GÜVENÇ ADDRESS: Balikesir University, Dept. of Mathematics, 10145, Balikesir-Turkey. E-MAIL: sguvenc@balikesir.edu.tr ORCID ID: orcid.org/0000-0001-6254-4693