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Abstract— The quality of human embryos produced during in vitro fertilization is conventionally graded by clinical 

embryologists and this process is time-consuming and prone to human error. Artificial intelligence methods may be 

used to grade images captured by time-lapse microscopy (TLM). Segmentation of embryos from the background of 

TLM images is an essential step for embryo quality assessment as the background of the embryo has various artifacts 

which may mislead the grading algorithms. In this study, we performed a comparative analysis of automated day-5 

human embryo (blastocyst) image segmentation methods based on deep learning. Four fully convolutional deep models, 

including U-Net and its three variants, were created using the combination of two gradient descent-based optimizers and 

two-loss functions and compared to our proposed model. The experimental results on the test set confirmed that our 

customized Dilated Inception U-Net model with Adam optimizer and Dice loss outperformed other U-Net variants with 

Dice coefficient, Jaccard index, accuracy, and precision of 98.68%, 97.52%, 99.20%, and 98.52%, respectively. 

 

Keywords— U-Net, deep learning, convolutional neural network, in vitro fertilization (IVF), human embryo, 

segmentation 

 

 

İnsan Embriyo Segmentasyonu için U-Net Tabanlı 

Modellerin Karşılaştırılması 
 

Özet— Tüp bebek tedavisi sırasında üretilen insan embriyolarının kalitesi, geleneksel olarak klinik embriyologlar 

tarafından derecelendirilir ve bu süreç zaman alıcı olup insan hatasına açıktır. Hızlandırılmış mikroskopi (TLM) 

yöntemi ile alınan görüntüleri derecelendirmek için yapay zeka yöntemleri kullanılabilir. TLM görüntülerinde 

embriyonun arka plandan segmentasyonu, arka planın derecelendirme algoritmalarını yanlış yönlendirebilecek çeşitli 

artefaktlara sahip olması nedeniyle embriyo kalite değerlendirmesi için önemli bir adımdır. Bu çalışmada, derin 

öğrenmeye dayalı otomatikleştirilmiş 5. gün insan embriyosu (blastosist) görüntü segmentasyon yöntemlerinin 

karşılaştırmalı bir analizi yapılmıştır. U-Net ve üç varyantından oluşan dört tam evrişimli derin model, iki gradyan iniş 

tabanlı optimizasyon algoritmasının ve iki kayıp fonksiyonunun kombinasyonu kullanılarak oluşturulmuş ve önerilen 

modelimiz ile karşılaştırılmıştır. Test setindeki deneysel sonuçlar, optimizasyon fonksiyonu olarak Adam ve kayıp 

fonksiyonu olarak ise Dice kullanan özelleştirilmiş Dilated Inception U-Net modelinin, sırasıyla %98.68, %97.52, 

%99.20 ve %98.52'lik Dice katsayısı, Jaccard benzerlik katsayısı, doğruluk ve kesinlik ile diğer U-Net tabanlı 

modellerden daha iyi performans gösterdiğini doğrulamıştır. 

 

Anahtar Kelimeler— U-Net, derin öğrenme, evrişimli sinir ağları, in vitro fertilizasyon (IVF), insan embriyosu, 

segmentasyon 
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1. INTRODUCTION 

Image segmentation separates images into coherent 

regions based on deterministic features such as color, 

intensity value, and texture of pixels in the image and is 

usually the first step of image analysis. The main purpose 

of image segmentation in medical image processing 

applications is to optimize disease diagnosis by detecting 

the required region of interest (ROI) using an automated 

tool or algorithm [1]. Current studies show that although 

image segmentation is not a simple process, it is an 

essential step for diagnosing disease and isolating the ROI 

in different medical imaging modalities [2].  

Infertility is estimated to affect 8-12% of couples of 

reproductive age worldwide [3]. In vitro fertilization 

(IVF) is one of the most common types of assisted 

reproductive technology (ART). More than 8 million 

babies have been born with  IVF treatment since 1978 

when IVF was used in the clinic successfully and the first 

baby was born [4]. IVF involves culturing 7 to 12 

candidate embryos of the patient in vitro for 3 to 5 days 

and then transferring one embryo or two embryos that are 

selected based on their developmental and morphological 

qualities to the patient [5]. Since the selection of a high 

quality embryo affects the success of IVF treatment 

greatly, there is a need for a robust, reliable embryo 

selection method to choose the best potential candidate. 

Furthermore, since single embryo transfer (SET) reduces 

the risk of multiple pregnancies and offers health 

advantages for the fetus and the mother, transferring the 

single best embryo is the safest approach possible and is 

recommended whenever possible [6–8]. Traditional 

embryo analysis based on morphological evaluation under 

a microscope is time-consuming, subjective, and leads to 

deterioration of optimal culture conditions when the 

embryo is removed from the incubator to be put under the 

microscope [9]. Although time-lapse imaging (TLI) 

systems for IVF are now available as an effective tool that 

allows the noninvasive analysis of embryos through 

continuous monitoring, the assessment made with TLI 

systems is still prone to human error [10–12]. Human 

error can be minimized in embryo evaluation by 

developing a decision support system using artificial 

intelligence algorithms. Segmentation is an important 

preprocessing stage for these algorithms to become more 

effective [13], [14]. 

Time-lapse microscopy (TLM) embryo images can 

involve various artifacts such as irregular embryo shape, 

hatched day−5 human embryo (blastocyst) shape, 

fragments attached to the external surface of the embryo, 

other data in the image zone such as the well number and 

information regarding the time since the start of the 

incubation, and artifacts created by the image optics. 

Manual cropping for artifact removal can be used before 

classification studies that aim to determine embryo 

quality from large numbers of microscopic images with 

automatic analysis [15]. However, this process can't 

remove artifacts completely and is time-

consuming.  Once sufficiently trained, segmentation 

methods automatically remove artifacts outside of the 

embryo region. Therefore, segmentation of the embryo 

image is crucial in the preprocessing step to develop a 

classification algorithm. In this paper, we focus on how 

segmentation can help improve outcomes in infertility 

treatment by preparing images to facilitate the grading of 

human embryos by automated algorithms. We tackle the 

problem of automatic segmentation of human embryos 

with U-Net based models in the blastocyst stage of 

embryo development.  

In this study, Section 2 reviews relevant literature and 

summarizes the previous work on the segmentation of 

embryos or different embryo regions in images. Section 3 

presents the implemented segmentation architectures. 

Section 4 describes the dataset used in the training stage 

and the evaluation parameters used on the testing stage. In 

Section 5, the experimental results are presented in detail, 

along with current approaches in the literature. Finally, 

Section 6 is the concluding section. 

2. RELATED WORKS  

Several attempts have been made to automate embryo 

segmentation, including works on automating the 

segmentation of the inner cell mass (ICM), trophectoderm 

epithelium (TE), and zona pellucida (ZP) in time-lapse 

microscope images. 

Karlsson et al. [16], [17] proposed a variational method 

based on an image model for automatic segmentation of 

the outer and inner circumference of the zona pellucida. 

Morales et al. [18] presented the use of a parametric 

active contour model adapted for quantification and 

segmentation on the thickness variation of zona pellucida 

that could only be applied after a preprocessing step 

aimed at improving certain aspects of visual information. 

Furthermore, several semi-automated segmentation 

techniques have been described [19]. Filho et al. [13] 

proposed a semi-automatic segmentation method for 

segmentation of both TE and ICM. They used an ellipse 

fitting method for segmentation of TE’s outer boundaries 

and variational levels set algorithm involved with 

initialization of a circle manually placed for both the TE’s 

inner boundaries and ICM. Recently, Saeedi et al. [20] 

have published their work for automatic detection of the 

TE  and ICM regions using a set of texture measurements 

in HMC human embryo images. They reported 91.3% and 

86.6% accuracy for identification of ICM and TE 

respectively. 

Singh et al. [21] utilized the retinex algorithm to 

deemphasize debris in the cavity area of the embryo and 

then applied a level-set algorithm to identify the 

boundaries of TE region. They achieved a mean shape 

accuracy of 87.8%. Recently, Rad et al. [22] presented an 

automatic segmentation approach of TE region in the 

blastocyst images by using four fully convolutional deep 

models. Their proposed models have reached an average 

accuracy of 96.9% and a Dice coefficient of 86.61% for 

the identification of TE. 

https://www.sciencedirect.com/science/article/pii/S092523122030936X#s0015
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Deep convolutional networks have made great advances 

possible in numerous segmentation tasks over the past 

few years [23], [24] especially in biomedical image 

processing [25]. Kheradmand et al. [26] proposed a two-

stage ICM segmentation pipeline that first uses the 

preprocessing method and then a pre-trained 16-layer 

VGG network on ImageNet. Rad et al. [27] proposed a 

multi-resolutional ensemble of stacked dilated U-Net to 

segment the ICM region. The proposed method 

outperformed the previous work [26] by 5.1% in accuracy 

and 2.8% in Dice coefficient.  Recently, Harun et al. [28] 

presented a U-Net-based deep neural network (DNN) to 

detect the ICM and TE regions. This method achieved a 

92.5% Dice coefficient, 85.3% Jaccard index for TE 

segmentation, 94.3% Dice coefficient, and an 89.3% 

Jaccard index for ICM segmentation. 

When these studies in the literature were examined, it was 

seen that there were relatively few studies on human 

embryo segmentation and they were generally aimed at 

the segmentation of embryo components. A study, which 

includes the comparison of U-Net-based embryo 

segmentation models with a new dataset, can be useful in 

the literature where studies are completed using the same 

dataset. 

3. METHODS 

In this section, details of implemented U-Net based 

architectures were provided.  

3.1. Base U-Net 

U-net developed by Ronneberger et al. [25] is commonly 

used in biomedical image segmentation and doesn't 

require very large datasets. It is an end-to-end network 

made of encoder blocks that extract features of images 

and decoder blocks that restore the features along with 

bridges for connecting these two types of blocks. This 

architecture applies convolution blocks followed by a 

rectified linear unit (ReLU) in both the encoder and 

decoder blocks. 

The U-Net model was used with an input size of 256×256 

pixels. The block diagram of the U-Net architecture is 

depicted in Figure 1. Turquoise boxes symbolize multi-

channel feature maps. Input sizes and the number of 

channels are denoted on the left of the boxes and above 

each feature map, respectively. The purple boxes 

represent copies of the feature maps. The color arrows 

show the different functions. 

 

 

Figure 1. The U-Net architecture.  

The base U-Net architecture consists of an encoder unit 

and a decoder unit, both with a depth of 4. The encoder 

unit makes up the first half of the architectural diagram. 

Here, four convolution blocks are applied with 64, 128, 

256, and 512 kernels respectively. Each block consists of 

two 3x3 convolutions (unpadded convolutions) followed 

by a ReLU activation unit and max pooling operation 

performed to encode the input image into multiple 

different level feature representations in each block. The 

decoder unit makes up the second half of the architecture. 

The decoder unit performs up-sampling and concatenation 

to restore the features supplied by the encoder block onto 

the pixel space (higher resolution). The first decoder 

block produces 512 kernels, and then the number of 
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kernels is reduced by half after each dropout and batch 

normalization operation until it reaches 64 kernels, while 

the size of the image gradually increases using the up-

convolution layer.  

3.2. Inception U-Net 

The inception U-Net architecture combining inception 

module and the U-Net is used to make the network deeper 

so that it can read high-level details via various kernel 

sizes instead of fixed-size filters for convolutions. The 

convolution blocks in the U-Net architecture were 

replaced with the inception blocks in the GoogleNet [29] 

achieving the state-of-the-art in the classification 

computer vision tasks of the ImageNet (ILVRC14). The 

outputs from the different filters were concatenated and 

transferred onto the next layer. In this study, the Inception 

U-Net had 4 pairs of encoder and decoder blocks. Each 

inception module included 3 × 3 max pooling operations 

and two types of convolution operations, consisting of 1 × 

1 convolutions before every 3 × 3 convolution for 

dimensionality reduction as shown in Figure 2. 

Figure 2. The inception module utilized in the Inception 

U-Net models. 

3.3. Deep Residual U-Net (ResUNet) 

Deep neural networks perform better when the depth of 

the network is increased however this may cause a 

degradation problem [30]. ResNet architecture, which has 

the projection shortcut connection, can decrease this 

problem. Zhang et al. [31]  presented a deep residual U-

Net that uses residual units instead of plain convolutional 

units as the fundamental block. In this study, residual 

units consisted of a projection shortcut and two 

convolution blocks including a batch normalization (BN) 

layer, a ReLU activation layer, and 3x3 convolutions as 

shown in Figure 3. 

3.4. Dilated Inception U-Net 

Shi et al. [32] incorporated dilated convolution based 

inception module and inception module into the encoding 

path of the original U-Net to create a multi-scale 

information learning structure. Each dilated inception 

module used three dilated convolutions with a kernel size 

of 3×3 and different dilation factors: 1, 2, and 3. This 

method was used instead of the inception module with 

different size kernels in the Inception U-Net. Dilated 

convolutions increase the field of view by keeping the 

same size with its input so that it can concatenate these 

convolution outputs having different scale feature 

information.  

                  
Figure 3. The residual module utilized the Residual U-Net 

models. 

Figure 4. The dilated inception module utilized in the 

proposed models. 

Our proposed network was created with dilated inception 

modules consisting of convolutions with multiple kernel 

sizes with two different scale dilation to extract features 

from a wider receptive field simultaneously. Unlike the 

original dilated inception modules with the kernel size of 

a convolutional layer is 3 × 3, we used convolutions with 

multiple kernel sizes, group normalization, and scaled 

exponential linear unit (SELU). We adopted 1 × 1, 3 × 3, 

and 5 × 5 convolutions with the 1 and 2 kernel dilation 

factors as shown in Figure 4.  

Network with SELUs has self-normalizing features as it 

enables stabilization of the mean and variance in the 

previous layers at each layer [33]. Networks trained with 

small batch sizes suffer from the incorrect prediction of 

the batch statistics and increase the training error 

dramatically when using batch normalization (BN). 

Therefore, we used group normalization (GN), which is 

independent of batch size [34]. 
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4. EXPERIMENTS AND EVALUATIONS 

In our study, the U-Net variant models were trained on 5-

fold cross-validation sets divided from the private dataset 

consisting of 258 training set images. We chose the 

number of k fold as 5 to save computational complexity 

and time. The images were obtained as anonymized 

images from the Acıbadem Fulya Hospital IVF Center. 

The embryo images were captured continuously over five 

days with the integrated time-lapse imaging system 

Embryoscope developed by Vitrolife (USA). 

4.1. Experiment Setup 

4.1.1 Dataset 

In our private dataset used in this study, the embryo 

images were acquired using an Embryoscope system an 

optic system that uses Hoffman modulation contrast to 

perform microscopic imaging similar to an inverted 

microscope. In total 303 embryo images of 500× 500 size 

were included in the study.  

We also used a publicly available human blastocyst 

dataset introduced by Saeedi et al. [20] to better evaluate 

how effective our proposed segmentation method is. This 

dataset consists of 249 embryo images acquired using an 

Olympus IX71 inverted microscope with Nomarski 

differential interference contrast (DIC) optics from the 

Pacific Centre for Reproductive Medicine (PCRM), 

Canada. 

4.1.2 Ground Truth Acquisition 

The regions of the embryo in the images were annotated 

as belonging to the embryo or the background by experts 

from Acıbadem Fulya Hospital IVF Center using The 

VGG Image Annotator (VIA). Ground truth images were 

generated by filling out all the closed boundary 

coordinates of the embryo in an annotation csv file using 

the OpenCV library. 

4.1.3 Data Augmentation 

Data augmentation in a dataset can prevent overfitting in 

training data and provide a better generalization to test 

data. Since the number of labeled images were limited, 

we utilized the augmentation methods to increase the 

number of samples. We enriched the data required for 

training by augmenting the number of samples 20 times 

with rotation, horizontal-vertical flip, horizontal-vertical 

shift, and zoom. The images were split into a training set 

and a test set with a ratio of 85:15. The training set in the 

private dataset  which contained a total of 258 images of 

(256,256) size was increased to 5418 images using the 

augmentation methods details of which are listed below: 

● Shifting horizontally or vertically (0.1)  

● Flipping horizontally or vertically 

● Zooming in or out [0.9, 1.1] 

● Rotating by an angle [0, 360] 

4.1.4 Hyperparameter Optimization 

The Adaptive Momentum (Adam) [35] is a technique for 

efficient stochastic optimization to optimize all network 

parameters. Root Mean Square Propagation (RMSProp) 

[36] is an adaptive learning rate method that updates 

parameters using a momentum on the rescaled gradient. 

Dice loss [37] is a loss function based on Dice coefficient, 

an evaluation metric for segmentation results, Tversky 

loss function based on the Tversky index deals with 

imbalanced class problems. Tversky loss [38] is different 

from Dice loss because of the equal weights for false 

positives (FP) and false negatives (FN).  

 

Combinations of two different loss functions and two 

optimizers to reduce the loss between ground truth and 

prediction of the network were used. We adopted Dice 

and Tversky as loss functions and Adam and RmsProp as 

optimizers with an initial learning rate of 0.0001 and 

0.045, respectively. Furthermore, we used the early 

stopping callback to avoid overfitting when the loss value 

has not reduced for 15 epochs. Similarly, when the 

validation loss failed to improve for 5 consecutive steps, 

the learning rate was reduced by the factor of 0.2.  

4.1.5 Implementation Framework  

The model was trained and tested using an NVIDIA 

GeForce® RTX 2080 Ti GPU with 11 GB of memory and 

32 GB of RAM. The model was implemented using Keras 

with a TensorFlow backend. We used a minibatch size of 

4, early stopping, and maximum epochs of 50. 

4.2. Evaluation Metrics 

To evaluate the U-Net model's performance, predictions 

of the embryo segmentations were compared with their 

corresponding ground truth annotations. We used 

different common evaluation metrics such as accuracy, 

Jaccard index, Dice coefficient, and precision. These 

metrics depend on four parameters: TP represents the 

number of true positives (pixels correctly included as 

embryo pixels), FP represents the false positives 

(incorrectly included as embryo pixels), FN represents the 

false negatives (pixels incorrectly excluded although they 

were part of the embryo pixels) and TN represents 

the true negatives (pixels correctly included as 

background pixels). 

Pixel accuracy (ACC) is the percent of pixels in the image 

that were classified correctly as the background and 

embryo. 

Accuracy  =    
𝑇 𝑃 + 𝑇 𝑁

   𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁
                            (1) 
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The Jaccard index, also called intersection over union 

(IOU), is a similarity measure that evaluates the number 

of pixels shared between the ground truth and prediction 

masks divided by their union. 

Jaccard index   = 
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
  = 

𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁
                   (2) 

The Dice similarity coefficient (DSC),  also termed as 

overlap index or F1 Score [39], denotes the similarity 

between predicted and ground truth embryo regions. The 

Dice coefficient is very similar to the IOU. 

Dice coefficient = 
2 ×|𝐴 ∩ 𝐵|

|𝐴|+|𝐵|
  = 

2 × 𝑇 𝑃

2 × 𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁 
         (3) 

Precision, also known as positive predictive value (PPV), 

represents the percent of correctly predicted pixels among 

all the predicted pixels. 

Precision = 
       𝑇𝑃      

𝑇𝑃+𝐹𝑃
                                                  (4) 

5. RESULTS AND DISCUSSION 

5.1. Quantitative Results 

To evaluate of segmentation performance of the proposed 

method, the Dice coefficient, Jaccard index, Accuracy,  

and precision were adopted. The results of the proposed 

model and U-Net variant models for the embryo 

segmentation in test data were tabulated, taking into 

account the different optimizers and loss functions 

utilized, and were shown in Tables 1, 2, 3, and 4.  

As shown in Tables 1, 2, 3, and 4,  all models trained with 

Adam optimizer and Dice loss showed higher 

performance results compared to their equivalents in the 

other table, while our customized Dilated Inception U-Net 

achieved the best overall blastocyst segmentation 

performance with a Jaccard index of 97.52% and a Dice 

score of 98.68%. 

Table 1. Performance of different U-Net models with 

Adam optimizer and Dice loss function (in %). 

Architecture DSC IOU ACC PPV 

Base U-Net 
98.56 97.16 99.14 98.29 

Inception U-Net 
98.58 97.19 99.15 98.39 

Dilated Inception U-

Net 

98.58 97.18 99.15 98.38 

ResUNet 
98.63 97.29 99.18 98.40 

Custom Dilated 
Inception U-Net 

98.68 97.52 99.20 98.52 

Table 2. Performance of different U-Net models with 

Adam optimizer and Tversky loss function (in %). 

Architecture DSC IOU ACC PPV 

Base U-Net 
98.3 96.66 98.97 97.32 

Inception U-Net 
98.54 97.12 99.12 98.1 

Dilated Inception U-

Net 

98.49 97.03 99.09 97.8 

ResUNet 
98.45 96.95 99.06 97.57 

Custom Dilated 

Inception U-Net 

98.61 97.27 99.15 98.12 

 

Table 3. Performance of different U-Net models with 

RmsProp optimizer and Dice loss function (in %). 

Architecture DSC IOU ACC PPV 

Base U-Net 
98.08 96.23 98.85 97.78 

Inception U-Net 
98.41 96.87 99.05 98.31 

Dilated Inception U-
Net 

98.35 96.76 99.02 98.73 

ResUNet 
98.33 96.71 99.0 98.34 

Custom Dilated 

Inception U-Net 

98.30 96.84 99.04 97.93 

 

Table 4. Performance of different U-Net models with 

RmsProp optimizer and Tversky loss function (in %). 

Architecture DSC IOU ACC PPV 

Base U-Net 
96.32 92.91 97.72 93.09 

Inception U-Net 
97.98 96.04 98.77 96.59 

Dilated Inception U-
Net 

98.29 96.63 98.97 97.47 

ResUNet 
98.15 96.37 98.88 97.20 

Custom Dilated 

Inception U-Net 

98.25 96.79 99.00 97.30 

The data in Table 4, which includes models using 

RmsProp optimizer with Tversky loss function, suggests 

that our proposed model outperformed the commonly 

used Base U-Net by 1.93% in Dice coefficient and 3.88% 

in Jaccard index, 4.21% in precision, and 1.28% in 

accuracy. In our study, we showed that a model with 
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dilated convolution-based inception module including 

using group normalization and SELU can be successful. 

5.2. Comparison with State of the Art 

In order to demonstrate the robustness and reliability of 

our proposed model, the results with the public dataset 

and our private dataset were shown in Table 5 together 

with the results of the relevant studies in the literature. 

The second column shows the region of interest that is 

intended to be segmented in the study. Our customized 

model was compared to five present state-of-the-art 

approaches [20], [22], [26–28] aiming different blastocyst 

components segmentation of embryo on the same public 

dataset. In TE segmentation, our proposed model 

outperformed state-of-the-art, [22], by 1.52% in Dice 

Coefficient and 2.18% in Jaccard index. The Dice 

coefficient, Jaccard index, accuracy, and precision values 

in the ICM segmentation of the proposed model were 

91.97%, 85.20%, 98.77%, and 90.69%, respectively. 

These values were higher than the studies performed for 

ICM segmentation in the literature [20], [26], [27]. The 

blastocyst segmentation outcomes showed that our 

customized Dilated Inception U-Net is a robust model 

which produces higher metric values in Dice coefficient,  

Jaccard index, and precision than the state-of-the-art study 

[40].

 

Table 5. Performance comparison between the proposed model and the state-of-the-art approaches (in %). 

 Region DSC IOU ACC PPV Dataset 

Saeedi et al. [20] TE 77.3 63.0 86.6 69.0 Dataset [20] 

Saeedi et al. [20] ICM 83.1 71.1 93.3 84.5 Dataset [20] 

Kheradmand et al. [26] ICM 86.7 76.5 95.6 - Dataset [20] 

Rad et al. [27] ICM 89.5 81.6 98.3 88.6 Dataset [20] 

Harun et al. [28] ICM 94.3 89.3 99.1 94.9 Dataset [20] 

Harun et al. [28] TE 92.5 85.3 98.3 91.8 Dataset [20] 

Harun et al. [40] 
Zona-Ablated 

Blastocysts 
98.4 96.9 99.4 98.1 Private dataset 

Rad et al.[22] TE 86.50 76.56 96.89 - Dataset [20] 

Custom Dilated  

Inception U-Net  
Blastocysts 98.68 97.52 99.20 98.52 Private dataset 

Custom Dilated  

Inception U-Net 
Blastocysts 98.11 96.31 97.71 97.83 Dataset [20] 

Custom Dilated  
Inception U-Net 

ICM 91.97 85.20 98.77 90.69 Dataset [20] 

Custom Dilated  

Inception U-Net 
TE 88.02 78.74 97.31 87.08 Dataset [20] 

 

5.3. Qualitative Evaluation 

To verify the segmentation model results, the predicted 

embryo area was compared with the manually labeled 

ground truth embryo by experts. The embryo ground truth 

area was overlaid on the predicted embryo to evaluate the 

differences. Figure 5 shows the results of several human 

embryo images predicted by proposed models overlaid on 

the ground truth images in private and public datasets. All 

results of the customized method were organized from the 

best to worst prediction samples in public and private 

datasets, according to the Jaccard index values. In our 

private data set, the best and worst Jaccard index values 

were 98.50% and 92.85%, respectively, while in the 

public dataset these values were 98.61% and 91.51%, 

respectively.
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Dataset Input Image 

 

Ground truth 

(GT) 

Segmentation 

results 

Comparison 

with GT 

Performance 

Metrics (in %) 

 

 

 

Private 

dataset 

    

 

Dice: 99.25 

IOU: 98.51 

Accuracy:99.50 

Precision:98.88 

 

 

Private 

dataset 

    

 

Dice: 98.82 

IOU: 97.66 

Accuracy:99.42 

Precision:99.22 

 

 

Private 

dataset 

    

 

Dice: 98.26 

IOU: 96.59 

Accuracy:98.80 

Precision:97.75 

 

 

Private 

dataset 

    

 

Dice: 97.88 

IOU: 95.86 

Accuracy: 98.51 

Precision: 96.19 

 

 

Private 

dataset 

    

 

Dice: 96.29 

IOU: 92.85 

Accuracy: 98.00 

Precision: 95.61 

 

 

Public 

dataset[20] 

    

Dice: 99.30 

IOU: 98.61 

Accuracy: 99.13 

Precision:99.30 

 

 

Public 

dataset[20] 

    

Dice: 98.18 

IOU: 96.43 

Accuracy: 97.69 

Precision:97.07 

 

 

Public 

dataset[20] 

    

Dice: 97.33 

IOU: 94.80 

Accuracy: 97.19 

Precision:95.26 
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Public 

dataset[20] 

    

Dice: 95.57 

IOU: 91.51 

Accuracy:94.44 

Precision:97.70 

Figure 5. Sample results of the custom segmentation method: Green lines imply contour of the ground truth, red 

highlights the segmented blastocyst by proposed model. 

6. CONCLUSION 

In this study, we compared different optimization 

algorithms such as Adam and RmsProp and different loss 

functions such as Dice and Tversky in U-Net variant 

architectures and proposed Dilated Inception U-Net to 

measure the performance for embryo segmentation. Our 

custom models adopted group normalization and SELU 

activation function in place of batch normalization and 

ReLU, respectively. The best performance was achieved 

with 98.68% Dice coefficient and 97.52% Jaccard index 

by using our proposed Dilated Inception U-Net utilizing 

Adam optimizer and Dice loss. Besides, we observed that 

models using Adam optimizer with Dice loss showed 

better embryo segmentation performance than the other 

models using combinations of loss function and optimizer 

in our experiments. As a part of the evaluation, we had 

also implemented unweighted and weighted ensemble 

methods of these U-Net variant models in this study; 

however, as these methods performed inadequately, they 

were not included in the manuscript. Further work 

utilizing various architectures and larger data sets is 

needed to determine the best approach in embryo 

segmentation. 
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