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Abstract
In this research, the finite difference method is used to solve the initial value problem
of linear first order Volterra-Fredholm integro-differential equations with singularity. By
using implicit difference rules and composite numerical quadrature rules, the difference
scheme is established on a Shishkin mesh. The stability and convergence of the proposed
scheme are analyzed and two examples are solved to display the advantages of the presented
technique.
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1. Introduction
Volterra-Fredholm integro-differential equations (VFIDEs) have arisen in different areas

of science and engineering. Their implementations can be found in electrostatics [14],
biological models [37], atomic physics [20], astronomy [16], potential theory [17], fluid
dynamics [2] and electromagnetic theory [32] (see, also references therein).

There are many researchs about VFIDEs in the literature. The existence, uniqueness
and stabiliy of them were debated in [6, 25, 27, 28]. Furthermore, different numerical and
semi-analytical methods have been proposed by many scholars. Adomian decomposition
method and its modified versions were used in [12, 17, 18, 24, 29]. Variational iteration
method was applied in [41]. Bernstein polynomials method was suggested for neutral
type VFIDEs in [20]. Legendre collocation matrix method was developed for high-order
VFIDEs in [39]. Homotopy perturbation method was used in [15, 34]. By using trape-
zoidal quadrature rules, the finite difference method was considered in [34]. Orthonormal
Bernstein and Block Pulse functions method were presented in [35]. Shifted Jacobi spec-
tral collocation method was performed to multi-dimensional VFIDEs in [10]. Nyström
discretization approach was introduced in [13]. Galerkin method was carried out by us-
ing Legendre basis functions in [14, 23]. Nonlinear type VFIDEs were examined with the
help of Chebyshev cardinal functions in [21]. Tau method was given for one and two-
dimensional VFIDEs in [36,37]. Collocation method with Boubaker wavelet functions was
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proposed for high-order VFIDEs in [32]. Integral collocation approximation was employed
for high-order VFIDEs in [1]. The other techniques have been described in a series of
papers [2, 7, 8, 16, 19, 31, 38]. The above-mentioned studies were only concerned with the
regular cases (i.e. as the lacking of the singularity).

In this paper, we consider the following initial value problem of singularly perturbed
Volterra-Fredholm integro-differential equation (SPVFIDE):

Lu := L1u +
x∫
0

K1(x, t)u(t)dt + λ

l∫
0

K2(x, t)u(t)dt = f(x), x ∈ I = [0, l], (1.1)

u(0) = A (1.2)
where

L1u = εu′(x) + a(x)u(x),
0 < ε ≪ 1 is a perturbation parameter, λ is a given parameter, a(x) ≥ α > 0 and f(x)
(x ∈ I), K1(x, t) and K2(x, t) ((x, t) ∈ I × I) are sufficiently smooth functions.

In recent times, there has been an increased interest in numerical solutions of singu-
larly perturbed integro-differential equations and various difference schemes have been
presented for both singularly perturbed Volterra integro-differential equations (SPVIDEs)
and singularly perturbed Fredholm integro-differential equations (SPFIDEs). In [30], by
using Simpson quadrature rule and Richardson extrapolation, the order of convergence of
the numerical scheme has been enhanced for SPVIDEs. Exponentially fitted difference
scheme has been constructed on a Shishkin mesh for second order SPFIDEs in [11]. The
stability and convergence of the difference scheme have been analyzed for SPVIDEs in [22].
Boundary value problems of SPFIDEs have been investigated in [9]. Authors in [40] have
presented second-order discretization on a piecewise uniform mesh for SPVIDEs. The fi-
nite difference scheme with exponential coefficient has been established on a uniform mesh
for SPFIDEs in [3]. In [33], for SPVIDEs, a fitted mesh finite difference technique with
Richardson extrapolation has been applied on piecewise-uniform Shishkin mesh. SPVIDEs
with delay arguments have been discretized in [5].

Our motivation in this article is to present reliable and robust numerical approach for
solving SPVFIDEs on a Shishkin mesh.

This work is arranged as follows: Asymptotic estimations of the exact solution are
introduced in Section 2. In Section 3, the finite difference scheme is constructed on a
Shishkin mesh. Error approximations and convergence analysis are presented in Section
4. Experimental results with some examples are given in Section 5. The paper ends with
"Discussion and conclusion" section.

2. Properties of the exact solution
Conveinent asymptotic estimations of the exact solution and its derivatives are given in

this section.

Lemma 2.1 ([26]). Take into account the following initial-value problem

εv′(x) + a(x)v(x) = F (x), 0 < x < l, (2.1)

v(0) = A. (2.2)

Let a(x) ≥ α > 0, F (x) ∈ C
(
Ī
)
, |F (x)| ≤ F(x) and the function F(x) is nondecreasing.

Then, the solution of the problem (2.1)-(2.2) satisfies that

|v(x)| ≤ |A| + α−1F(x), 0 < x < l.
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Lemma 2.2. We assume that

a, f ∈ C1[0, l], ∂

∂x
K1(x, t) ∈ [0, l]2,

∂

∂x
K2(x, t) ∈ [0, l]2 (2.3)

and

γ = eα−1K̄1lα−1 |λ| max
0≤x≤l

l∫
0

|K2 (x, t)| dt < 1.

Then, the solution u(x) of the problem (1.1)-(1.2) holds
∥u∥∞ ≤ C0 (2.4)

and ∣∣u′(x)
∣∣ ≤ C

{
1 + 1

ε
e

−αx
ε

}
, x ∈ [0, l]. (2.5)

where
C0 = (1 − γ)−1

(
|A| + α−1 ∥f∥∞

)
eα−1K̄1l

and
K̄1 = max

x∈[0,l]
|K1 (x, t)| .

Proof. Firstly, we show the proof of (2.4). The equation (1.1) can be rewritten as follows
εu′(x) + a(x)u(x) = F (x), 0 < x < l (2.6)

where

F (x) = f(x) −
x∫
0

K1 (x, t) u(t)dt − λ

l∫
0

K2 (x, t) u(t)dt. (2.7)

Then, we estimate (2.7) as the form

|F (x)| ≤ ∥f∥∞ + K̄1

x∫
0

|u(t)| dt + |λ|
l∫
0

|K2 (x, t)| |u(t)| dt.

Considering Lemma 2.1 for the equation (2.6), we obtain

|u(x)| ≤ δ + α−1K̄1

x∫
0

|u(t)| dt. (2.8)

where

δ = |A| + α−1 ∥f∥∞ + α−1 |λ|
l∫
0

|K2 (x, t)| |u(t)| dt.

Applying the Gronwall’s inequality to the inequality (2.8), we have
|u(x)| ≤ δ exp(α−1K̄1x). (2.9)

We can write the inequality (2.9) clearly that

|u(x)| ≤
(
|A| + α−1 ∥f∥∞

)
exp(α−1K̄1x)

+ α−1 |λ|
l∫
0

|K2 (x, t)| |u(t)| dt exp(α−1K̄1x). (2.10)

Modifying the relation (2.10), it is found that

∥u∥∞

1 − α−1 |λ| max
0≤x≤l

l∫
0

|K2 (x, t)| dt exp(α−1K̄1l)


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≤
(
|A| + α−1 ∥f∥∞

)
exp(α−1K̄1l)

which validates the estimation (2.4). Now, we prove (2.5). Then, we estimate u′(0). From
(1.1), we have

∣∣u′(0)
∣∣ ≤ 1

ε

|f(0)| − |a(0)| |A| − |λ|
l∫
0

|K2(0, t)| |u(t)| dt

 .

Since |K2(x, t)| ≤ K̄2 and |u| ≤ C0, following inequality is written:∣∣u′(0)
∣∣ ≤ C

ε
. (2.11)

By differentiating (2.6), we get

εv′ + a(x)v = F (x) (2.12)

with
v(x) = u′(x).

Here

F (x) = f ′(x) − a′(x)u(x) −
x∫
0

∂

∂x
K1(x, t)u(t)dt − K1(x, x)u(x) − λ

l∫
0

∂

∂x
K2(x, t)u(t)dt.

Considering (2.3) and (2.4), we can write

|F (x)| ≤ C. (2.13)

From (2.12), we obtain

u′(x) = u′(0)e
− 1

ε

x∫
ξ

a(τ)dτ

+ 1
ε

x∫
0

F (ξ) e

− 1
ε

x∫
ξ

a(τ)dτ

dξ.

Consequently, owing to (2.11) and (2.13), the following expression is found:∣∣u′(x)
∣∣ ≤ C

ε
e

−αx
ε + α−1 ∥F∥∞

(
1 − e

−αx
ε

)
which implies (2.5). Therefore, the lemma is proven. �

3. Description of the difference scheme
We denote by ωN the non-uniform mesh on [0, l]

ωN = {0 < x1 < x2 < ... < xN−1 < l, hi = xi − xi−1}

and
ω̄N = ωN ∪ {x = 0, x = l} .

We use some notation for the mesh functions. For any mesh function we defined on ω̄N ,
we use

vi = v(xi), vx̄,i = vi − vi−1
hi

, ∥v∥∞ = ∥v∥∞,ω̄N
= max

0≤i≤N
|vi| .

We construct the difference scheme on Shishkin-type mesh for solving the problem (1.1)-
(1.2). For an even number N , we divide each of the subintervals [0, σ] and [σ, l] into N

2
equidistant subintervals. The transition point σ is determined as

σ = min{ l

2
, α−1ε ln N}.
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We use the notation h(1) for the mesh width in [0, σ] and the notation h(2) for the width
in [σ, l]. Hence, the mesh stepsizes hold

h(1) = 2σ

N
, h(2) = 2 (l − σ)

N
,

h(1) ≤ lN−1, lN−1 ≤ h(2) ≤ lN−1, h(1) + h(2) = 2lN−1.

xi node points are specified as

ω̄N =
{

xi = ih(1), i = 0, 1, ..., N
2 , xi ∈ [0, σ] ;

xi = σ +
(

i − N
2

)
h(2), i = N

2 + 1, ..., N, xi ∈ [σ, l] .

We start with the following integral identity for the equation (1.1):

χ−1
i h−1

i

xi∫
xi−1

εu′(x)φidx + χ−1
i h−1

i

xi∫
xi−1

a(x)u(x)φidx + χ−1
i h−1

i

xi∫
xi−1

 x∫
0

K1(x, t)u(t)dt

φidx

+ χ−1
i h−1

i λ

xi∫
xi−1

 l∫
0

K2(x, t)u(t)dt

φidx = χ−1
i h−1

i

xi∫
xi−1

f(x)φidx, (3.1)

where the basis function

φi(x) = e− ai(xi−x)
ε , i = 1, 2, ..., N.

φi(x) is the solution of the following problem:

−εφ
′
i(x) + aiφi(x) = 0, xi−1 ≤ x ≤ xi

φi(x) = 1.

For the first two term of (3.1), following relation is obtained:

h−1
i χ−1

i

xi∫
xi−1

[
εu′(x) + a(x)u(x)

]
φi(x)dx = h−1

i χ−1
i

xi∫
xi−1

[
εu′(x) + a(xi)u(x)

]
φi(x)dx

+h−1
i χ−1

i

xi∫
xi−1

[a(x) − a (xi)] u(x)φi(x)dx

= εϑiux̄,i + aiui + R
(1)
i (3.2)

where
ϑi = aiϱi

1 − e−aiϱi
e−aiϱi , ϱi = hi

ε
, (3.3)

R
(1)
i = h−1

i χ−1
i

xi∫
xi−1

[a(x) − a (xi)] u(x)φi(x)dx,

and the χi coefficient

χi = h−1
i

xi∫
xi−1

φi(x)dx.

For the right-side integral term of (3.1), we have

h−1
i χ−1

i

xi∫
xi−1

f(x)φi(x)dx = fi + R
(2)
i (3.4)
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where

R
(2)
i = h−1

i χ−1
i

xi∫
xi−1

[f(x) − f (xi)] φi(x)dx.

For the third term in left side of (3.1), using interpolating quadrature rules in [4], we find

χ−1
i h−1

i

xi∫
xi−1

dxφi(x)
x∫
0

K1(x, t)u(t)dt =
x∫
0

K1(xi, t)u(t)dt + R
(3)
i (3.5)

where

R
(3)
i = −χ−1

i h−1
i

xi∫
xi−1

dxφi(x)
xi∫

xi−1

 x∫
0

∂

∂x
K1 (x, t) u (t) dt

 dx. (3.6)

Using the right side rectangle rule to the right side of (3.5), we get
x∫
0

K1(xi, t)u(t)dt + R
(3)
i =

i∑
j=1

hjK1,ijuj + R
(3)
i + R

(4)
i (3.7)

where

R
(4)
i = −

i∑
j=1

xj∫
xj−1

(ξ − xj−1) ∂

∂ξ

 x∫
0

K1 (ξ, t) u (t) dt

 dξ. (3.8)

Eventually, for the fourth term in left side of (3.1), applying the interpolating quadrature
rules in [4], it is found

χ−1
i h−1

i λ

xi∫
xi−1

dxφi(x)
l∫
0

K2(x, t)u(t)dt = λ

l∫
0

K2(xi, t)u(t)dt + R
(5)
i (3.9)

where

R
(5)
i = −χ−1

i h−1
i λ

xi∫
xi−1

dxφi(x)
xi∫

xi−1

 l∫
0

∂

∂x
K2 (x, t) u (t) dt

 dx.

After, applying right side rectangle rule to the right side of (3.9), we have

λ

l∫
0

K2(xi, t)u(t)dt + R
(5)
i = λ

N∑
j=1

hjK2,ijuj + R
(5)
i + R

(6)
i (3.10)

where

R
(6)
i = −λ

N∑
j=1

xj∫
xj−1

(ξ − xj−1) ∂

∂ξ

 x∫
0

K2 (ξ, t) u (t) dt

 dξ.

Combining (3.2), (3.4), (3.7) and (3.10), we can write the following difference scheme:

εϑiux̄,i + aiui +
i∑

j=1
hjK1,ijuj + λ

N∑
j=1

hjK2,ijuj + Ri = fi, i = 1, 2, ..., N, (3.11)

with remainder term

Ri =
6∑

k=1
R

(k)
i . (3.12)

By omitting the error term in (3.11), the following difference scheme is presented for the
approximate solution:

εϑiyx̄,i + aiyi +
i∑

j=1
hjK1,ijyj + λ

N∑
j=1

hjK2,ijyj = fi, i = 1, 2, ..., N, (3.13)
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y0 = A, (3.14)
where ϑi is stated by (3.3).

4. Error analysis
In this section, the convergence of the proposed method is examined. The error function

zi = yi − ui, i = 0, 1, 2, ..., N is the solution of the following problem:

lzi = Ri, i = 0, 1, 2, ..., N,

z0 = 0.

Lemma 4.1 ([26]). Consider the following difference problem

εϑivx̄,i + aivi = Fi, i = 0, 1, 2, ..., N, (4.1)

v0 = A. (4.2)
Let |Fi| ≤ Fi and the function Fi be nondecreasing. Then, the solution of (4.1)-(4.2) holds

|vi| ≤ |A| + α−1Fi, i = 0, 1, 2, ..., N.

Lemma 4.2. Let yi be the solution of (3.13)-(3.14). If

γ̄ = α−1 |λ| eα−1K̄1xi max
1≤i≤N

N∑
j=1

hj |K2,ij | < 1

then, for the solution of the difference problem (3.13)-(3.14), the following estimate is
satisfied:

∥y∥∞ ≤ (1 − γ̄)−1
(
|A| + α−1 ∥f∥∞

)
eα−1K̄1xi .

Proof. The difference scheme (3.13) can be rewritten in the form

εϑiyt̄,i + aiyi = Fi, i = 1, 2, ..., N − 1

where

Fi = fi −
i∑

j=1
hjK1,ijyj − λ

N∑
j=1

hjK2,ijyj (4.3)

From (4.3), we get

|Fi| ≤ ∥f∥∞ +
i∑

j=1
hj |K1,ij | |yj | + |λ|

N∑
j=1

hj |K2,ij | |yj | . (4.4)

Moreover, applying Lemma 4.1. to (4.4), we have

|yi| ≤ |A| + α−1 ∥f∥∞ + α−1K̄1

i∑
j=1

hj |yj | + α−1 |λ|
N∑

j=1
hj |K2,ij | |yj |

≤ δ̄ + α−1K̄1

i∑
j=1

hj |yj | (4.5)

where

δ̄ = |A| + α−1 ∥f∥∞ + α−1 |λ|
N∑

j=1
hj |K2,ij | |yj | .

Applying the difference analogue of Gronwall’s inequality to the relation (4.5), we obtain

|yi| ≤ δ̄eα−1K̄1xi
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Then, it can be written obviously that

∥y∥∞ ≤
(
|A| + α−1 ∥f∥∞

)
eα−1K̄1xi + α−1 |λ| eα−1K̄1xi max

1≤i≤N

N∑
j=1

hj |K2,ij | ∥y∥∞ . (4.6)

To estimate the error function, by rewriting A = 0, f = R and y = z in (4.6), it is found
that

∥z∥∞ ≤ (1 − γ̄)−1 α−1 ∥R∥∞ eα−1K̄1xi .

Thus, the proof of the lemma is fulfilled. �

Lemma 4.3. Under the conditions of Lemma 2.2 and ∂K1(x,t)
∂t ∈ [0, l]2, ∂K2(x,t)

∂t ∈ [0, l]2,
the error term Ri holds

∥R∥∞ ≤ CN−1 ln N.

Proof. Using the mean value theorem, we have

|a(x) − a(xi)| =
∣∣∣a′(ηi)

∣∣∣ |x − xi| , ηi ∈ (xi, x)

≤ Chi

Therefore, we find∣∣∣R(1)
i

∣∣∣ ≤ χ−1
i h−1

i

xi∫
xi−1

Chiφi(x)dx ≤ Chiχ
−1
i h−1

i

xi∫
xi−1

φi(x)dx ≤ Chi.

By the same way, it can be shown that
∣∣∣R(2)

i

∣∣∣ ≤ Chi. For the remainder term R
(3)
i , applying

Leibnitz rule to the integral term in (3.6), we have

R
(3)
i = −χ−1

i h−1
i

xi∫
xi−1

dxφi(x)
xi∫

xi−1

K1 (x, x) u (x) + d

dx

x∫
0

K1 (x, t) u (t) dt

 dx

Thus, the following relation can be written:∣∣∣R(3)
i

∣∣∣ ≤
xi∫

xi−1

|K1 (x, x)| |u (x)| +

∣∣∣∣∣∣
x∫
0

∂

∂x
K1 (x, t) u (t) dt

∣∣∣∣∣∣
 dx

∣∣∣R(3)
i

∣∣∣ ≤ Chi.

In a similar way,
∣∣∣R(5)

i

∣∣∣ ≤ Chi is found. For the error term R
(4)
i , using Leibnitz rule for

integral term in (3.8), we obtain∣∣∣R(4)
i

∣∣∣ ≤
i∑

j=1

xi∫
xi−1

(ξ − xj−1)

|K1 (ξ, x) u(x)| +
x∫
0

∣∣∣∣ ∂

∂ξ
K1 (ξ, t) u(t)dt

∣∣∣∣
 dξ

≤
l∫
0

(ξ − xj−1)

|K1 (ξ, x) u(x)| +
x∫
0

∣∣∣∣ ∂

∂ξ
K1 (ξ, t) u(t)dt

∣∣∣∣
 dξ

≤ C

hi +
xi∫

xi−1

∣∣u′(x)
∣∣ dx

 .

Similarly, ∣∣∣R(6)
i

∣∣∣ ≤ C

hi +
xi∫

xi−1

∣∣u′(x)
∣∣ dx

 .
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According to the node points of Shishkin mesh, we take the following estimations. Initially,
considering the first case σ = l

2 and l
2 < α−1ε ln N , we find h(1) = h(2) = h = lN−1. Hence,

we evaluate R
(k)
i for k = 1, 2, 3, 5. Now, we estimate the remainder term R

(4)
i .

∣∣∣R(4)
i

∣∣∣ ≤ C

h +
xi∫

xi−1

∣∣u′(x)
∣∣ dx

 ≤ C

h +
xi∫

xi−1

1
ε

e− αx
ε dx



≤ C

h + ε−1
xi∫

xi−1

e− αx
ε dx

 = 2α−1N−1 ln N.

Likewise, we obtain R
(6)
i = 2α−1N−1 ln N. In the second case, for the interval [σ, l], we

have the inequality

∣∣∣R(4)
i

∣∣∣ ≤ C

h +
xi∫

xi−1

∣∣u′(x)
∣∣ dx

 ≤ C

h + ε−1
xi∫

xi−1

e− αx
ε dx


≤ C

{
h + α−1

(
e− αxi−1

ε − e− αxi
ε

)}
.

Since xi = α−1ε ln N +
(
i − N

2

)
h, we can write

e− αxi−1
ε − e− αxi

ε = 1
N

e
−α(i−1− N

2 )H

ε

(
1 − e− αH

ε

)
< N−1

∣∣∣R(4)
i

∣∣∣ ≤ CN−1.

For the interval [0, σ], if we take σ = α−1ε ln N , we get

∣∣∣R(4)
i

∣∣∣ ≤ C
(
1 + ε−1

) α−1ε ln N

N/2
,

∣∣∣R(4)
i

∣∣∣ ≤ CN−1 ln N.

Similarly, we find ∣∣∣R(6)
i

∣∣∣ ≤ CN−1 ln N.

Thus, substituting the estimations of all remainder terms in (3.12), we obtain

|Ri| ≤ CN−1 ln N.

�

Theorem 4.4. Let u be the solution of (1.1)-(1.2) and y be the solution of (3.13)-(3.14).
Then, the following estimate is satisfied:

∥y − u∥∞,ω̄N
≤ CN−1 ln N.

Proof. This follows immediately by combining of previous two lemmas. �
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5. Illustrative examples
In this section, theoretical results are tested on two samples. In this context, we use

the following iteration for solving discretization (3.13)-(3.14):

y
(n)
i =

εϑiy
(n)
i−1 + hifi − hi

(
i∑

j=1
hjK1,ijy

(n−1)
j + λ

N∑
j=1

hjK2,ijy
(n−1)
j

)
εϑi + hiai

,

y
(n)
0 = A.

Example 1: We take into account the following singularly perturbed Volterra-Fredholm
equation:

εu
′ + u +

x∫
0

xu(t)dt +
1∫
0

u(t)dt = e
−x
ε

(
−ε2 + ε + 1

)
+ εx − εe

−1
ε + ε

subject to initial condition
u(0) = 1.

The exact solution of this problem is u(x) = e
−x
ε . Error approximations are computed as

eN = |yi − ui|
where ui is the exact solution and yi is approximate solution. Besides, the order of
convergence is defined as follows

pN = ln(eN /e2N )
ln 2

.

Experimental datas are displayed in Table 1.
Table 1. Maximum pointwise errors eN and order of convergence pN on ω̄N

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−2 0.00817305 0.00399709 0.00197592 0.00098227 0.00048971

1.031 1.016 1.008 1.004 1.002
2−4 0.00918949 0.00426125 0.00204326 0.00099927 0.00049398

1.108 1.060 1.032 1.016 1.023
2−6 0.01477887 0.00738994 0.00369472 0.00184726 0.00092348

0.999 1.001 1.001 1.002 1.005
2−8 0.01531296 0.00767148 0.00383674 0.00191787 0.00095693

0.997 0.999 1.004 1.003 1.008
2−10 0.01554171 0.00770116 0.00384749 0.00192375 0.00096087

1.013 1.001 1.000 1.003 1.001

eN 0.01554171 0.00770116 0.00384749 0.00192375 0.00096087
pN 0.997 0.999 1.000 1.002 1.001

Example 2: Consider the another problem

εu
′ + (3x2 + 1)u +

x∫
0

tu(t)dt + 1
2

1∫
0

(1 − xt)u(t)dt = e
−x
ε (x + ε),

u(0) = 1.

The exact solution of this problem is unknown. Since the exact solution is unknown, we
apply the double-mesh technique. The maximum pointwise errors are remarked by

eN =
∣∣∣yN

i − y2N
i

∣∣∣
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and the convergence rates are specified as follows

pN = ln(eN /e2N )
ln 2

.

The computational results are tabulated in Table 2.

Table 2. Maximum pointwise errors eN and order of convergence pN on ω̄N

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−2 0.00811413 0.00398210 0.00197214 0.00098132 0.00048947

1.026 1.014 1.007 1.003 1.019
2−4 0.00897773 0.00420438 0.00202853 0.00099552 0.00049304

1.094 1.051 1.026 1.013 1.030
2−6 0.01054824 0.00529412 0.00263706 0.00131833 0.00065826

0.994 1.005 1.000 1.002 1.006
2−8 0.01383275 0.00696637 0.00348319 0.00174159 0.00087080

0.989 1.000 1.000 1.001 1.002
2−10 0.01509617 0.00754809 0.00376404 0.00187702 0.00093510

1.000 1.003 1.003 1.005 1.011

eN 0.01509617 0.00754809 0.00376404 0.00187702 0.00093510
pN 0.989 1.000 1.000 1.001 1.002

From Tables 1-2, it can be observed that almost first-order convergence is acquired for
different values of the perturbation parameter and mesh stepsize. This shows that the
numerical applications accordance with the theory.

6. Discussion and conclusion
A new difference scheme was introduced by using exponential basis functions and in-

terpolating quadrature rules to get the numerical solution of SPVIDEs. The difference
scheme was constructed on a Shishkin mesh. Error analysis of the method was completed
and two test problems were solved. The obtained outcomes were shown in Tables 1-2 and
the order of uniform convergence was found as O(N−1 ln N). The computed results show
that the proposed method is stable and very effective for solving these problems. It can
also be applied to partial and fractional types of integro-differential equations for future
investigations.
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